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ABSTRACT. This paper investigates the boundary behav-
ior of layer potentials for the time fractional diffusion equation
(TFDE) in Lipschitz domains. The paper is a continuation of
[9]. Since now the boundary of the spatial domain Q admits
only Lipschitz smoothness, we have to replace the classical
technique used in [9] with a more delicate harmonic analysis
technique.

We prove that certain nontangential maximal functions
related to the layer potentials are bounded in LP(3r), which
in particular implies the usual jump relations known for the
heat equation. Although the results are well known in the
case of the heat potential corresponding to the case a = 1,
the proofs of the same properties seem not to be available in
the case 0 < a < 1.

1. Introduction. We study the boundary behavior of layer
potentials for the time fractional diffusion equation

P —A® =0, inQr=Qx(0,7),
(1) ®=g, onXp=Ix(0,T)
®(z,0) =0, z € Q,

where 2 C R" is a bounded domain with Lipschitz boundary I' and

o 1 ! Cw
(2) at U(t) = mA (t - T) ’LL,(T) dr
is the fractional Caputo time derivative of order 0 < o < 1. For aa =1
the fractional derivative is interpreted as the limit lim,41 0 u(¢), which
coincides with the usual time derivative du(t)/dt [8, page 68].
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In the case of the Dirichlet and Neumann problems for the heat
equation the nontangential maximal functions associated with the
solution have been shown to be bounded in L?(X7) [2, 5, 6]. In this
paper we extend these well-known results for TFDE.

In [9] we have studied the boundary behavior of the single layer
potential in C'** domains, 0 < A < 1. The technique for showing
similar results for the double layer potential is analogous. In this paper
we study both the single layer and the double layer potentials. Detailed
proofs are given only for the double layer potential since the arguments
for the single layer potential are similar. The technique used in our
considerations can be found in [6, 14|. The mapping properties of
the layer potentials in LP-spaces follow from the well-known technique
found, e.g., from [16].

2. Notation and main results. We define the single layer potential
by

3)  (Se)at) = / / Gz —y,t — T)ply,7) do(y) dr,

where G is the fundamental solution of the fractional diffusion equation.
It is known that

(4)

—n/2io— —n 1 —al (o,a) n
G(z,t) = nr e e T [l Pt ‘( | zeR", t>0,

n/2,1), (1,1)
zeR™ t<0,

where H is the Fox H-function [11-13]. The double layer potential is
defined by

(5)  (De)(e,t) = / [ uGla = w1t = Dol ) ao) ar

The boundary behavior of the double layer potential is based on the
properties of the operator

(6) Jaso(:v,t)—/oEﬁan(y>G(w—y,t—T)w(y,T) do(y)dr

for given 0 < e <t and ¢ € L}, .(E).
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Our main result states that the nontangential function for the double
layer potential defines a bounded linear operator in LP(Xr). As a con-
sequence, the double layer potential has a nontangential limit pointwise
almost everywhere in ¥7. The nontangential maximal function of u is
defined by

N (u)(z,t) = sup{|u(y,t)| : y € 2N Bz, )
such that (z —y,n(z)) > Bl — y|}

for some 0 < 8 < 1 and a positive constant ¢ depending on €2 and .

In the paper we prove the following results.

Theorem 1. Let 1 < p < 0o and ¢ € LP(X,). We have
(i) The operator J. : LP(X) — LP(Es) is bounded independently
of €.
(ii) The operator J(y) = SUp.~q |Je| is bounded in LP(3).

(iii) The limit (Jo)(z,t) = liﬁJl(Jega)(ac,t) exists pointwise almost
€.
everywhere in Yo and in LP(X). In particular, J is bounded in

LP(Ss).

Theorem 2. There exists a constant 0 < B < 1 depending on
the Lipschitz constant for Q and a constant 6 = §(3,Q) such that
the nontangential mazimal function N (D) is bounded in LP(Xr).
Moreover,

(DB) (&) — —59(@0,1) + (74 0, )

pointwise for almost every (zo,t) € 1 as @ > © — xo such that
(xo — z,n(z0)) > Blz — 0]

The same technique as in the proof of Theorem 2 may be used to
prove a similar result for the single layer potential. We only state the
corresponding result without proof.

Theorem 3. There exists a constant 0 < B < 1 depending on
the Lipschitz constant for Q and a constant 6 = §(3,Q) such that
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the nontangential mazimal function N(V,Sv¢) is bounded in LP(Xr).
Moreover,

(V0 1),mlw0)) — 36(z0,6)+ (7)o, 1)
with
(7'9)(,1) = lim / / Oy G — y,t — )by, 7) do(y) dr,

pointwise for almost every (zo,t) € X1 as @ 3 © — =xo such that
(xo — x,n(z0)) > Ble — xol.

3. Estimates for the fundamental solution. In our analysis we
need the following Fox H-functions defined for z > 0

(7) Hy(z) = Hiy 2] (Sla/zai) a, 1)]
a,a 0,1
(8) Hz)(2) = Hgg[ (T(L/z 1)) ((1 1)), a, 1)]
a,a 0,1) (0,
(9) H)(2) = Hy} E (51/2,%) El,lg El 1% (1,1)]'

The following properties of the functions (7)—(9) are in a central role.

Lemma 1. For the functions H,) the following holds:

(i) Differentiation formula (d/dz)H(p)( z) = =2 'Hp1)(2) forp =
1,2.

(ii) The asymptotic behavior at infinity:
(10)
|H(P) (Z)| S Cz(n+2p72a)/2(27oc) exp(_UZI/@ia))a o= aa/(270¢) (2—01)7
forp=1,2,3 and z > 1.

(iii) The asymptotic behavior near zero:

2% logz| ifn=2,
11 H 2H, <C
(11) InHp)(2) + 2H(p11) (2))] {z if n >3,

forp =1,2 and z < 1. The constants in (ii) and (iii) can depend on
n,p and a.
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Proof. Property (i) is an easy consequence of the Mellin-Barnes
integral representation of Fox H-functions and of the analyticity of the
functions H(,). The asymptotic expansions for H(, are stated in [5,
formulae (3.7), (3.14), (3.15) and (3.16)]. Note that the first terms in
the series representation of nH ;) + 2H o) cancel out. For the proofs of
the asymptotics we refer to [1, 11]. o

Remark 1. Although we have an exact and optimal value for the
constant o in (ii), in what follows o may denote various positive
constants. The only thing that matters is that ¢ > 0.

The next result gives estimates for the partial derivatives of the
fundamental solution.

Lemma 2. Let 8 be any multi-index with |8| =1 or |8| = 2. The
following asymptotic formulae hold for the partial derivatives of the
fundamental solution.

(i) The asymptotic behavior at infinity:

(12) (088; "G (, 1)
< Ot~ (@n/2)=1+(@/2)~12=18]) gyp(— g0/ (2-0) |2/ (2-0))

for a positive constant o as t~|z|? — oco.

(ii) The asymptotic behavior near zero:

|| 4181 ifn >3,

13 6ﬂ62*|ﬂ|G t <Ct|5|—0‘—3{
(13) 1070, " G(x,t)| < 2|2~ 18| log (t=2|z[2)| ifn =2,

as t=%|z|*> — 0.

Proof. From Lemma 1 and (4) we get the formula

(14) 0.,G(z,t)
—-n Lj o— 1 —a 1 —a

for the partial derivative of the fundamental solution.
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For the case |3 = 2 we differentiate in z once more to get

ta—l

02 . G(z,t) =

T;Tj

{2501'237]' (nH(g) (2) + 2H 3, (Z))

71'"/2 |m|n+4

(15)
+ ((n + 2)30,':0]- — (5ij‘$|2) (nH(l)(z) + 2H(2) (Z)) },

where we have denoted z = (1/4)t~®|z|?. Then Lemma 1 gives

ta—l 3
02,5, G (@, 0)] < Oz D 1Hip(2)
p=1

< O (@n/D=1(n(e=1)+2)/(2(2=0)) gxp(— sV =),

Since 27 exp(—cz”) is uniformly bounded in [1, c0) for any ¢, 3 > 0 and
v € R, we may estimate

02, G(z,1)| < Ct=( /D=1 exp(—gp2!/ =)

for any 0 < o¢ < o, from which (12) follows in the case |5| = 2.

If z is small, we get from (15) and Lemma 1 an estimate

t—o g nt2 ifn >3,

16 92, G t)<C
(16) ‘zzJ (z,t)] < {ta1|log(t°‘|x|2) ifn=2.

Then (13) follows from (16) in the case |3| = 2).

In the case || = 1 differentiation in time in 14) gives us

—n/2 xjta72
6t8$jG(£L',t) = —T (a — 1)W{TLH(1)(Z) =+ 2H(2)(z)}
(17)

O[7T_n/2£l7jta_2

|z |2 {nH(Z)(Z) + 2H3) (Z)}
Now Lemma 1 gives the following estimate

0: 0, G(z, )| < Ot 2| g| 71 (nF6720)/(2(2=2) exp(— g2t/ (279)),

z —r OQ.
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Then we may choose 0 < o¢g < ¢ and argue as before to obtain

|3t8sz(a:, t)| S Cta_2‘$|_n_1 exp(_gozl/@_a))
< Ollaln=1)/21-2 gy 1/(2-a))

)

which completes the proof of (12) in the case |5| = 1.

If z is small, Lemma 1 together with (17) gives us an estimate

t—o 2|g|nt3 ifn >3,

18 0:0,.G(z,t)| < C .
(18) |00z, G (z,1)| {t“2xlog(to‘|.’c|2)| ifn=2,

which completes the proof of (13) in the case |3 = 1. O

Now we can prove important properties for the gradient of the
fundamental solution, which is crucial for the weak type estimate.

Lemma 3. Assume that |acfy|—|—|tf7-|"‘/2 > 2(|x7x1|—|—|t—t1|a/2),
and let z = (1/4)(t —7)~%|z —y|?. For the gradient of the fundamental
solution we have

(i) If z > 1, then

(19) |VG(z —y,t —7) = VG(x1 —y,t1 — 7)|
|z — x| + |t — 1]/

<C .
(|a: —y|+t- T‘a/z)”H?/a)

(ii) If < 1 and v > 0, then
‘VG('T —yl- T) — VG($1 — Yt — T)|
|$71‘1|+‘t7t1|a/2
<c{@—TVWHw—M”*2 ifn>3,

(t—7m)y " YHe —y|™2 ifn=2.

(20)

Proof. We consider the change in x and the change in ¢ separately.
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Let us first consider the change in the z-variable. If z > 1, then using
the Mean Value Theorem and estimate (12) in Lemma 2 we obtain

|VG(1‘ - yat - T) - VG(II - yat - T)‘
< Clz — x| (t — T)f(a(n+2))/271+a
X exp{—o(t — 1)~/ C=)|F _ 4|2/ (=)},
Now 27 eXP(—UZI/(Q’“)) is uniformly bounded in R, for any +.
Choosing v = (n/2) + (1/a) we get
VG(x —y,t —7) — VG(z1 — y,t — 7)| < Cla — xq||7 — y| 2/,
Since z > 1, we have 2|z — x| < |t — 7—|04/2 tlz—y| < 3z —yl/2.

Then by the triangle inequality we have |z —y| > |z — y|/4. Using the
previous two inequalities we may conclude the claim in this case.

If z < 1, then using the Mean Value Theorem and estimate (16) in
Lemma 2 we get

|z —y| "2 ifn >3,

VG(z—y,t)-VG(z1—y,t)| < Clz—zq[t7*71
VG- Gar=p.)] < Clonpmet {7707 0,

We used the fact that 27 log z is bounded near zero for any v > 0 above
in the case n = 2.

For the change in ¢ Lemma 2 gives the following estimate
10,0, G (z,t)| < Ot~ (n=D)/2=2Fey =27,

for any v > 0 in the case z > 1. If we choose vy = (n —1/2) + (2/ca),
we get

(21) 1010, G (z,£)| < Cla| ™ (W41,
Using (21) and the Mean Value Theorem we have
(22) [VG(z—y,t—7)—~VG(z—y,t1—7)| < Clt—ty||x—y| "~ @D+,

Notice that in this case |t — t;|*/2 < |z — y|, which gives |t — t;]| <
[t —t1|*/?|x — y|?/®)=1. Also, |t — 7]%/2 + |z — y| < 2|z — y| and the
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desired inequality follows from these observations and (22) in the case
z>1.

If z <1, then the Mean Value Theorem together with Lemma 2 gives

[VG(z,t — 1) = VG(z,t1 — 7)|
|z[>" if n >3,

<Clt—ty|(t —7)772
|zlog((t — 7)~%|z|?)| ifn=2.

In the case n = 2 we use the fact that 2z!/?log z is bounded near zero
and obtain

(23)  |VG(z—y,t—7)—VG(z—y,t1—7)| < Clt—t1|(t—7)" (/D72

Note now that |t —t;| < C|t —t,|*/?(t — 7)*~(*/2)  which together with
(23) and 277 > 1 implies the inequality (19).

We easily see that the inequality holds also in the case n > 3. Indeed,
the estimate (13) in Lemma 2 gives an estimate

(24) |VG(z —y,t — 1) — VG(z —y,t1 — 7)|
<Clt—taf(t — 1) 2w —y|
< C|t o t1|a/2(t _ 7_)7(3o¢/2)71|x _ y‘7n+3

and the claim follows, since (¢t — 7')*"‘/2 <2z —y| L 0

4. Properties of the operator J.. We need a proper condition
to guarantee the weak type (1,1) estimate [14, Theorem 4.1]. The
condition is given by the next result [14, Theorems 4.1 and 5.1].

Proposition 1. Define U, := U, (z,t) = {(y,7) € Zr | |z —y| + |t —
7|2 < r}. If (x1,t1) € U,, then the integral

/ IVG(z — y,t — 1) — VG(x1 — y,t1 — 7)|do(y) dr
Yoo \U2r

1s uniformly bounded independently of r.
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Proof. 1t is enough to prove the theorem in the case I' = R" ! x {0}
since for all z,y € T, z = (2/, o(2')) and y = (v, ¢(y')) we have

oSS ir s VoWl
wleRn—l

Denote M = sup,crn-1 |Ve(z)|. Then

dz’ <do(z) = /1+ |Ve(2')|]2rdz’ < +/1+ M2dz'.

Since the technique is the same in any dimension, we consider only the
case n = 2. Denote the integral by I. We divide the integral into two
parts I; and I, where the domains of the integrations are

(Zoo \ Uar) N{(%:7) € Teo | J& — yl(t —7) /> > 1}
for I; and
(Boo \ U2r) N{(%:7) € oo | l& —yl(t —7) /> < 1}

for I,. Then substituting 7 < t — |z —y|?/*u, we have 0 < p = 272/ <
1, and from Lemma 3 we get
1

mizor[ [ @) ey o) da

0 a—y|>(2r/(1+uer2)

1
SCT/
0 (

1
< 0/ (14 p) 1=F9au < C.
0

/ (1 + Na/?)—?—(Q/a)R—Q de/.L
+u

2r/(1+p2/2))

For I, we use the inequality |z — y| + (t — 7)*/? < 2(t — 7)*/? and then
make the same substitution as above, which again by Lemma 3 yields
an estimate

8

L) < Cr/ / (14 p2/?)>7 2= Gl g — y[=2 do(y) du
L Ja—y|>(2r/(14par2))

IN

Cr/ / (14 p/2)27=2=/@R=2qRdy

L (2r/(14n/2))

C/ Ma*/*(aﬂ)*l dp.
1

IN
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Since this is true for any v > 0, we can choose v < (1/2) and the proof
is complete. ]

Now we are ready to prove Theorem 1.

Proof of Theorem 1. The technique we have used can be found in [6,
Theorem 1.1] and [14, Theorems 4.1 and 5.1].

(i) Taking the Laplace transform in the time variable and using a
convolution property, we obtain

(25) L(Je)(,in)

= /F /:o On(y)G(x — y, t) exp(—int) dt(LY)(y,in) do(y).
Making the change of variables ¢ <> |z — y|2/o¢7_’ we have
(26) L(Je¥)(x,in)

_ / WHW — [P/, e — ) (L4) (v, 1n) do(y),

where

(27) H(e,n)

1 > : a—1 1 —a 1 —a
= m/s exp(—inT)T {nH(l) (ZT > +2H 2) <ZT >}d7’.

We split the integral over I' into two parts depending on whether
|z —y| > €*/? or |z —y| < €*/2. Denote the resulting integrals by
Ii(z,n) and Iz(z,n). Let us first study the integral Io. Now, because
e/|x —y|?/® > 1, the lower bound in the integral of H in (26) is greater
than 1, so in the case n = 3 we have the following bound for ¢ > 1

(28) [H(e,n)| < Ce™
because the behavior of nH(1)((1/4)77%) +2H2((1/4)7~%) is of order

7722, The other cases for n’s are treated similarly. From (28) we have

B <cs [ ) windo)

le—y|<e=/2

< CMr(LP)(-5n)(x),

(29)
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where Mr denotes the Hardy-Littlewood maximal operator on I, i.e.,

60 M@ =swr Y [ j(y)ldoty)
r>0 lz—y|<r
For the integral I; we use a cut-off function ¢ € C§°(R) such that
e(t) =1 for |t| < 1 and ¢(t) = 0 for |[t| > 2. Set H(n) := H(0,7n)
and, to shorten the formulas below, we denote & = ¢/|z — y|*/* and
7 = |z — y|?/*n. Tt is clear from the asymptotics of the Fox H-function
that H(n) is finite. We divide the integral I into four parts as in [5]:
(31)
z—y,n - .
o= [ SR EED - H@D )@ o)
le—y|>e/2
r—Y,n ~ :
v [ SRR ) - HO)e@) o) e o)
lz—y[>e/2

wro)- [ SR ) v o)
|lz—y|>e/?

le—y|>1/|n|*/?
L H(0)- / @=5m) ) do(y)

|z —y|™
1/In] /2> o —y|>ex/2

:Ill+..._

In the first integral I;; we proceed as in the proof of Lemma 2 and
choose 0 < 6y < & := 41/(@=2)o2/(2=2)(2 _ ). Then we have an
estimate

Lia(z,m) SC/ z —y|

|e—y|>ex/?
e/|lz—yl*>/ ™
X / 7 (en/2)—1 exp{—07"%/(2 — o)} dr
0

X [(LY)(y,m)| do(y)
< Cs—(“”/”/ @ — y|exp{—do|z — y|*/e*}

lz—y|>ea/2

1
X (L) (y,m)] do(y) / rLexp{ (6 8)r ¥/} dr
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< Qe (aln- 1))/2/| exp{ Solx — y|?/e*}

x [(LY)(y,m)| do(y)-

The last integral is of convolution type (¢.a/2 * L1)(x), where ¢ is
integrable and .(z) = e""'p(z/e). Therefore we can use the same
argument as in [6] to say that I;; is bounded by CMr((LY)(-,n))(z)
[16, Theorem 2 (a), pages 62-63]. Now, it follows from the asymptotic
behavior of the Fox H-functions that H is the Fourier-transform of an
integrable function and n*(F~1H)(n) is integrable for any 0 < u < a.
Therefore H is Holder-continuous with exponent u. This implies that
the second integral is bounded by

(32) Cdiam ([)?#((1/)=D|p|(n=1)/2
/ (Inlle — 92"~ "2 |(£y) (v, m)| do(y),

where 0 < g < «. Since this is valid for any n, we can choose
n = 1/e and use the same argument as before [16, Theorem 2 (a)]
to have a bound CMr((LY)(-,n))(z). The same argument applies
also for the third integral. Finally, the last integral is bounded by
CR((L$)(,7) (), where

(33) K(g)(z) = sup

z —y|"

/ | wg(y)da(y)-

The Hardy-Littlewood maximal function is bounded in LP(T") and
boundedness of K in L2(T') follows from [3, Theorem 9, page 382]
and [5]. These results, together with Parseval’s theorem, imply that
J. is bounded on L?(X.,) with a norm independent on e. The fact
that J; is of weak type (1,1) follows from Proposition 1 [14, Theorem
4.1]. Then the Marcinkiewitz interpolation theorem and the duality
argument finishes the proof of (i).

(ii) Next, we are going to show that sup,.q|J-¢| is bounded in
LP(X). To show that, we take ¢ to be a simple function with compact
support and start with the following term

(34) /Ot/F

an(y)G(x -y t— 7'){th7'>5(7')

X\z y|2/ e+ (t—1) >E }¢ YT ‘ ( )dT
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Now, the difference of characteristic functions is nonzero if and only if
t—7 <cand |z —y|**+(t—7) > e. We consider two cases: (a) t—7 <
(¢/2) and (b) (¢/2) < t—7 < ¢. In the first case |z — y|?/* > e—(t—7) >
(e/2) > t — 7. It follows that |z —y|?(t — 7)™ > 1, and we can use
Lemma 1. We choose 0 < 0p < o and estimate the exp(—(c — 09)-)-
term in Lemma 1 from above by C(|z — y|?(t—7) %) (@7+2)/(22) which
implies the upper bound

2 t
@) o2 oyt
€ Jies2)jo—yl> (/20202

x exp{—00z"/ =} (y, 7)| do(y) dr.
Further, this can be bounded by

C [t (@/2)(1—n)
o 2J.6)
€ Ji—e/2 2
2a/2|$_y| 2/(2—a)
<[ e { oo 2 )
le—y|>(e/2)~/2 €

[v(y, )| do(y) dr,

which, by the same argument as before, is bounded by C(M;(Mry))(z,t),
where M, is a one-dimensional Hardy-Littlewood maximal function and
Mr is as before. This shows that this term is bounded in LP(X.). In
case (b) we have to consider two more subcases depending on whether
z=|lz—ylP(t—7)"*<1lorz>1 If 2 > 1, we have from Lemma 1
and formula (14) a bound

@ t—e/2
(37) o2V2 o~ (a(n=1))/2

ECX

€ t—e
_ _ 2
< [ e - o2 by n1dot ar
r €%

which is bounded by C(M;(Mrv))(z,t) and therefore bounded in
LP(X ) [16, Theorem 2 (a), pages 62-63]. If z < 1, then |z —y| <
(t —7)*/? < %/? and from formula (11) in Lemma 1 in the case n = 3
we have a majorant

2 t—6/2
(38) o / oy, 7)| do(y) dr,
le—y|<ex/2

€ Jt—¢
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which is bounded by C(M;(Mrv))(z,t). The estimates (35), (37) and
(38) imply that (34) is bounded in L?(X).

Finally, we are left to show the boundedness of

(39)  sup | 7. (¢)(x,1)]

e>0

t
:Sli% //Fan(y)G(ac—y,t—T)X‘z,y|z/a+(t,T)>E(y,T)1/J(y,7')do(y)d7'.

e 0
We define the neighborhood U, of 0 in R® x R by U, = {(z,t) € R" x
R | |[z|>/* 4+ |t| < €} and denote U, (z,t) = {(y,7)| (y — z, 7 — t) € U.}.
Then {U.,e > 0} is a Vitali family [14, Definition 2.1]. In particular,

we note that if (z,t), (y,7) € U then

@ =y [t — 7 < 220 (|2 4 [y + [t + |
< 200 (P 4 ]+ [yl 4 Ir]) < 2%,
so we have U, — U. C Ug(.) for ®(t) = 22/2t. On the boundary T’
we have (on local coordinates) y = (y', ¢(y')), where ¢ is a compactly

supported Lipschitz-function with ¢(0) = 0 and y’ € R"~!. Therefore
ly| ~ |3'| and we have to integrate in the domain R"~! x R.

We split the integral in (39) into three parts. For that, recall the
definition of the operator

(JY)(,1) = lim(Jey)) (2, 1).

The fact that the operator J is well-defined is proved later when we
prove pointwise convergence. Choose (z1,t1) € Ug-1(o)(z,t) N Yoo
Then we write jg as follows

(Jo) (. t) = (J¥)(z1,t1) — (JYXU, (2,0) (21, 1)
(40) n / / By (Gl — gt — 1)
= G(z1 —y,t1 — 7)Y (y, 7)Xve do(y) dT

and average the expression for jsw in the variables (z1,t1) over the set
Up-1(c)(2,t) N Eoo, and take the supremum over all 3 = &~ *(¢). Then
we have

(41) |(Tew) (2, )] < (L) (2, ) + (T2¥) (x, 1),
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where
(42)
1
(1) (z,t) = sup —— (J) (21, t1)| do (1) dty
B |Uﬂ| Upg(z,t)NZ0o
1
sup |(JYXv. (0,0) (21, t1)| do (1) dts
s |Usl Ju,(@nnsa
and

(43)  (L29)(=,1)

1
= sup {/ Ou) (Gl — 3yt~ 7)
s |Usl Juyaiynze Usa\v. @

—G(z1 —y,t1 —7))¢Y(y, 7)|do(y) dT} do(z1) dt.

By Proposition 1 we have || L29||o < C||¥]|co, and I; can be estimated
as in [6, page 182] and [14, proof of Theorem 5.1] to get

(44) (Ly)(z,t) < CLMU(Mr(JY)) (2, t) + Co My (Mr(|9]7) (z, 1)1/,

where 1 < ¢ < p. The boundedness of J follows from the proof of [14,
Theorem 5.1].

(iii) For the pointwise limit we first show that the limit exists for
simple functions with compact support. It is enough to prove the
existence of a limit

t—e
(45) lim/ /F On(y)G(xz —y,t — 7)do(y) dr.
0

el0

For this we use the Gauss divergence theorem and the fact that
On(y)G(z — y,t — 7) solves fractional diffusion equation, when x # y
and t # 7, to write it in a form

t—e
/ /AyG’(m—y,t—T)dydT
0 Q

_/OtE/QAwG(x—y,t—T)dydT
:/Otg/ﬂ(a,f‘G(xy, Nt 7) dydr.
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Using the asymptotic behavior of AyG(z — y,t — 7) we see that it is
absolutely integrable over the domain Q x (0,t —¢) by Lemma 2, so we
may change the order of the integration.

Because G(z,0+) = 0 for any = # 0, the Caputo and Riemann-
Liouville derivatives coincide and the last integral can be written in a
form

) [ [ 05,6 (e ) dydr
:/Q/:wl(«f&ﬁm)(ﬂ dydr
= /Q (J(};“G(t) - J&;“G(6)> dy,

where Df, is the Riemann-Liouville fractional derivative and J&;O‘ is
the Riemann-Liouville fractional integral. Denote by E the parametrix
of the fractional diffusion. Then Dé;aE(t) = G(t) [4, formula (3.6)].
Moreover,

(DN = 1)~ U5 NO o

[12, formula (2.108)]. An easy calculation shows that
Jg Hoy(wt ™) = D)t [wt— UE .

(3,1) (1,1

The asymptotic behavior of this function shows that the initial value
is 0 and that is why J&;O‘ and Dé;a commute for E. This observation
implies that the last integral in formula (46) can be written in a form

(47) [ (Bt~ B~ e)) dy,
which can be dominated by
(49) | (B -0+ Be -y dy.

But this integral converges and the value is independent of € [4, formula
(4.13)]. This finally shows that the pointwise limit exists for simple
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functions. In particular, this implies that J is well-defined and, further,
Proposition 1 implies that J can be extended by continuity to the whole
class LP (o).

The existence of a pointwise limit follows now from [14, Theorem 5.2].
Also, the limit in LP(3,) exists by Lebesgue’s dominated convergence
theorem. Hence, in particular, J is a bounded linear operator in
LP(X). O

5. Proof of Theorem 2. The technique used for the proof is
identical to the one used in [6]. By using a partition of unity we may
assume that supp ¥ C B(yo,0)NI, where § > 0 and yy € I". To simplify
the notation, we also assume that ¢ > 0. Then, if 2o ¢ B(yo,26) N T
and |z — z¢| < J, we have |z — y| > 6. From (14) we get the following
bound for the kernel of the double layer potential

(49) ‘8n(y)G(l‘ —y,t— T)|
)a—l

t—

=Clz - y|n—1+(2/a)z—1+(1/a){nH(l)(Z) +2H(5)(2)}.

The asymptotic behavior of Fox H-functions guarantees that the func-
tion

2 2 T H ) (2) + 2H 2 (2) }

is uniformly bounded in R, which implies an estimate
(50)  [(D¥)(z,b)] < O8] 11 sy < Csl[WllLocsn),

where we used Holder’s inequality. Hence Di)(zg,t) < Cs||Y||Le(n)-
Now, since time is finite and T' is bounded, the desired result follows
after integration.

We are left with the case xo € B(yo,26)NI". We write the kernel of the

double layer potential in a form 9,,(,)G(z—y,t) = (z—y,n(y))G(z—y,t)
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and split D as follows
(DY) (z,t) = J)y_yy2/a (T0, t)

+ / / (@ — 20, n()) Gz — y.t — T)b(y,7) do(y) dr
+ t

/tmolm /< ~yn(y)

x Gz —y,t —1)Y(y,7)do(y)dr

+/Ot_|z_102/a/r<mo—y,n(y)>{5(aﬁ—yat—7)

— G(zo —y,t — 7)}9(y,7) do(y) dr
= Jjg_go|2/a(T0, t) + T2 + Iz + I.

We split the integral I; into two parts and have an estimate
(51)

t
I < |z — o / / Gz — y,t — 7)(y, )| do(y) dr
0 J|zo—y|<2|z—2x0]
t
P / / Gz =yt — T)(y, 7)] do(y) dr.
0 J]|zo—y|>2|z—z0|

As usual, we have to treat the cases z < 1 and z > 1 separately. If
z > 1, we have a bound

(52) |G(z —y,t —7)| < C(t — 1)~ (/D= exp{ =02/ (2=},

For the small arguments we have to treat different n’s separately. As
an example, we consider n = 2. In this case we have a bound

(53) Gz —y,t —7)| < C(t— 1) Ylogz]|.
It is enough to consider the case I' = R"~! x {0}. Also, noting that

|z —y| > (1/2)|zo — y|, we have the following bound for the second
integral in (51),

t
(54) / (b ) @ T i) (o) dr,
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where ¢.(z) = 1/(e" ')p(x/¢c), and a decreasing integrable majorant
is

C1(1 + | log|el)) if 2] < 1
Cy exp{—oo|z[*/~™} if |z > 1

(55) o) =

for some positive constants C7,Cs and oy < ¢. Then, using the result
[16, Theorem 2 (a), pages 62-63], we have

t—r2/o
(56) 7'/ / Gz =yt — )(y, 7)| do(y) dr
0 o —y|>T
t—r2/o

< C’r/ (t = 1)@/ (M-, 7)) (o) dr
0
< OMy (M) (z0,1).
When t—r?/% < 7 < tand |zo—y| > r, we have z = |z — y|?/(t — 7)* >

1/4. Using the asymptotic behavior of the fox H-function for large
arguments, we have in this case an estimate

(57) r /t o /|y> Gz -y, t — 7)(y, 7)| do(y) dr
C t

< plt2/a / _ YD) o) dr
N ,,n2/o¢ ~/tfr2/°‘ |zo—y|>r ‘mO - y|n+(2/a) ( )

< OMy(Mry)(zo, t).
For the first term on the right hand side of (51) we use the inequality

|z —y| > (8/2)]x — zo|, which holds for § sufficiently small, and get an
upper bound (in the case n = 2)

(58) Pla—zo[2/e * (Mry)(z0,-)(t) < CM1(Mry)(zo,t),

where we have used [16, Theorem 2, pages 62-63] and ¢.(t) =
(1/e)¢(t/e) with an integrable majorant

1+ |logt| ift>1,
p(t) = Ct™7' S exp{—at /@ ™} ifo<t<1,
0 ift <0
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for some positive constants C,o.

Similarly, as above, the spatial integral in I5 is divided into two parts
depending upon whether |zg — y| > 2|z — zg| or |zg — y| < 2|z — x0|. If
|zo — y| < 2|z — x|, we obtain

t
/tmxo|2/°‘ /Z‘oy|<2|wmo| |<x0 B y,’l’l(y)>
X Gz —y,t — 7)¢Y(y,7)|do(y) dr

t
< 2|z — o) |G(z —y,t — 7)¢Y(y, 7)|do(y) dr,

t—|z—zq|2/

which can be estimated similarly as for I;. On the other hand, if
|zo — y| > 2|z — xo|, then z > 1, and we get an upper bound

t
/ / |z -yl
t—lo—wo|2/* J [z—y|>|o—z0|

< |G(z —y,t — 7)¥(y, )| do(y) dr
c [ 7.2/04/| ¥(y,7) do(y)dr

< —
— n2 2 —1
r /o t—r2/e xo—y|>T ‘IO - y|n+( /@)

< CMy (Mry)(zo, t).

Finally, we use the Mean Value Theorem for the difference in I3 to get

t—|z—mzo|?/ _
I < |x—wo\/ /\wo—y||va<5c—y,t—r>|do<y>dr,
0 r

where 7 is some point between x and . When ¢ is small enough, then
|Z — y| is comparable with |z¢ — y|, and we get an upper bound (in the
two-dimensional case)

Clz — x| (t —7)~ (/21
t—7r>|z—wo|?/ >
< [ tryers(an ~ y)uly ) doty) dr,
r
where the least decreasing majorant for ¢ is integrable. Hence [16,

Theorem 2 (a), pages 62-63] and the same argument as before leads to
the majorant C(M;(Mr))(xo,t).
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Putting all this together we have proved that

N(Dy)(ao,t) < C{sup[(Jov)(zo, )| + (M1 (Mr¥)) (o, £)}-

Hence ||N(DY)l|zo(sr) < CllYllLecsr)-

The pointwise limit may be proved first for smooth functions and
then using the first part of the proof and [5, Theorem 1.3]. See also [9,
Theorem 2]. u]
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