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ABSTRACT. This paper investigates the basic properties of
the single layer potential for the time fractional diffusion equa-
tion (TFDE) in a bounded domain with Lyapunov boundary.
We prove the continuity of the single layer potential across
the boundary, that the normal derivative of the single layer
potential satisfies the usual jump relation known for the heat
equation and that the single layer potential is Holder contin-
uous. These properties are essential when investigating the
boundary integral equation corresponding to TFDE.

Although the results are well known for the potentials of
the heat equation corresponding to the case a = 1, the
proofs of the same properties seem not to be available in
the case 0 < a < 1. Also, even if the proofs follow the
same lines as in the case @ = 1, there are some additional
difficulties to overcome. First of all, there is no explicit
formula for the fundamental solution in terms of elementary
functions unlike in the case of the heat potential. Secondly,
the behavior of the Fox H-functions is different for small and
large arguments. However, the known asymptotic behavior of
the Fox H-functions allows us to prove the above-mentioned
properties.

1. Introduction. We are interested in the boundary integral
solution of the time fractional diffusion equation

00— A, @ =0 inQr=Qx(0,T),
(1) =g, onXr=Ix(0,T),
®(z,0) =0, z€Q,

with the single layer potential. In problem (1) the domain Q@ C R" is
assumed to be bounded with the boundary I' € C***, 0 < A < 1, and

1

2) o) = /0 (t = 7)="u/ () dr
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is the fractional Caputo time derivative of order 0 < o < 1. For a =1
the fractional derivative is interpreted as the limit limq+1 0fu(t) which

coincides with the usual time derivative dqfi(t) (see [4, page 68]).

The single layer potential is defined by

(S9) (1) //Gx—y,t—ﬂ (y,7) dor(y) dr,
€ (R"\T) xRy,

(3)

where G is the fundamental solution of the fractional diffusion equation.
It is known that

(4)

—n/24a—1|,.|—n g2 21— (o) n
G(:c,t):{” t | T HPR [Pt ] zeR" >0,

(n/2,1),(1,1)
zeR", t<0,

where H is the Fox H-function (see [6, 7, 9]).

In order to simplify the notations we introduce the following functions
defined for z > 0

(o, @)
(5)  Huy(z):=Hi |2 ,
L 1 (n/2,1), (L,1)
i (a,), (0,1)

(6) H(g)(z) :ZHg'g z
(n/2,1), (L,1), (1,1)

(a,), (0,1), (0,1)

(n/2,1), (1,1), (L,1), (L,1)

(7) H(g)(z) = Hgg z

The paper is organized as follows. Since the proofs are rather lengthy,
we prove the properties each in a different section. In Section 2 we
prove the continuity of the single layer potential in R™ assuming that
the density is in L*°(X). In Section 3 we prove that the gradient
of the single layer potential for density in C(X7) has a nontangential
limit when z tends to the boundary point. More precisely, we show
that (V,So¢(z,t),v(xg)) satisfy the jump relation when z tends to
the boundary point xy along nontangential directions. Section 4 is
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devoted to the proof of Holder continuity of the single layer potential
for L°° (X7 )-density.

2. Continuity of the single layer potential. In our analysis we
follow very closely the standard technique found, e.g., in ([3]). Now,
because the behavior of the Fox H-function is different for small and
large arguments, we have to treat them separately. Furthermore, the
behavior near zero is very different in different dimensions, which gives
us more subcases to analyze.

In our analysis the following properties of the functions (5)—(7) are
needed.

Lemma 1. For the functions H,) there holds:
(i) Differentiation formula -LH ,)(z) = —2*H,41)(2) forp=1,2.
(ii) The asymptotic behavior at infinity:

(8)

|Hy)(2)] < Cznt2rm200/2270) expy(— g2t/ 20)) g i= o/ (2—q),

forp=1,2,3 and z > 1.

(iii) The asymptotic behavior near zero:

2n/? ifn=2 orn=3,
(9) |Hip)(2)] < Cq 2%[logz| ifn=4,
22 ifn >4,

forp=1,2,3 and z < 1. Moreover,

2?|logz| ifn =2
10 H 2H =C ’
(10) [nHp)(2) + 2Hp1)(2)] < {z2 ifn >3,
forp=1,2 and z < 1.

The constants in (ii) and (iii) can depend on n,p and «.

Proof. The property (i) is an easy consequence of the Mellin-Barnes
integral representation of the Fox H-functions and of the analyticity of
the functions H(,). The asymptotic expansions for H(,) are stated in
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([2, formulae (3.7), (3.14), (3.15) and (3.16)]). Note that the first terms
in the series representation of nH(yy + 2H () cancel out. For the proofs
see ([1, 6]). O

In the sequel we use the notation z := §|x|?t~*. Because the Fox H-
function depends only on z and the asymptotics are different for large
and small values of z, we treat the cases z > 1 and z < 1 separately.
We collect the asymptotic formulae in the following result.

Lemma 2. For G the following asymptotic formulae hold:
(i) If z > 1, then

(1) |G(o,0)] < Ot /D150 exp (- gpel @) 2/(2-e),

where o = 41/(@=2)q2/(2=2) (2 — @),

(i) If z < 1, then

¢t if n =2,
G<cd T s
to- (|log(\w| tf"‘)| +1) ifn=4,
tmo g7t if n > 4.

Proof. Because 0 < a < 1 and if z > 1, we may estimate
2(n+2p=20)/2(2=a) < ;1/2 in Lemma 1. If we use this in (8) for H(yy and
use the obtained bound in formula (4) for the fundamental solution, we
get (i). Case (ii) follows from using the bounds (9) for Hy) in (4). o

Remark 1. Although we have an exact and optimal value for the
constant ¢ in (i), in what follows ¢ may denote various positive
constants. The only thing that matters is that ¢ > 0.

Theorem 1. The single layer potential is continuous in R™ x R
for any bounded measurable function p. In particular, it is continuous
across the lateral boundary T.

Proof. The proof follows if we show that G is locally integrable (see
[3, Lemma 1, page 7]). Let us first consider the case z > 1. Because
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27 exp(—0z'/(2~®)) is uniformly bounded for any v > 0, we have an
estimate

(12) |G(z,t)| < Ot~ (an/D—1ratay =2y,

From (12) we see that G is locally integrable if v can be chosen such

that 2y < n—1 and —(an/2) + o+ ay — 1 > —1. Both of these
inequalities are satisfied for any

2
(13) n—<7<

If 2 <1, then 1 < 47¢%|z|~27 for any v > 0, and from Lemma 2 we
get the following estimate

t || =27 ifn =2,

Gy <o T T ifn=3,
X

= tam ity |p| =2y ifn=4,

felhar |y n -2 g s g,

In the case n = 4 we have used the fact that z7|logz| is bounded in
(0,1] for v > 0.

If we choose (i) v as in (13) for n = 2,3,4 or (ii) 1 < v < 3/2 for
n > 4, we see that G is locally integrable. ]

3. The jump relation. In this section we study the boundary
behavior of the gradient of the single layer potential. It follows from
the asymptotic behavior of the fundamental solution that if z € R™\T,

(14)  (VoSe)(a,t) = / / V.G(z -yt — 1)y, ) do(y) dr.

We are interested in what happens if + — x¢ € I' nontangentially.
This means that if K := K(z¢) is any finite closed cone in R™ with
vertex xp such that K(zo) C QU {z¢} the limit is taken in the sense
K > x — xp. The nontangential approach from the exterior domain
Q° is defined analogously.



442 JUKKA KEMPPAINEN

Here we need the partial derivative 9/0z; of the fundamental solu-
tion. A straightforward calculation shows that

1
— t —n/2 e lH e 2
0z, G(m ) = |z |n+2 (1)( ||
0z

d
—n/2 —nga—1
+ / ‘ZU| t EH(D(Z”ZZI/M—Q‘“Z - a—xj

Using the differentiation formula for H(;) in Lemma 1, we get
(15)

9 P 2 Ty a—1 —a —a

Before the proof of the jump relation, let us show that the integral

(16) /0 /Fc?u(z)G(w —y,t = 7)p(y,7)do(y)dr

is well-defined even if z € T' when ¢ € L>®°(Xr). We collect the
necessary estimates for the kernel of (16) in the following lemma.

Lemma 8. Let z = (1/4)|z — y|*t™* with x,y € T. IfT € C'*A, we
have the following estimates for the normal derivative of G:

(i) If z > 1, then

10, ()G (z—y,t)| < Ct™*"/>7 gz —y M exp {_ Ut_m_“lr—ylzﬂ_a}‘

(i) If z < 1, then

By Gla—y )| < 0 {17 =yl log(lz —y )] ifn=2,
v(zx) ) = t_a_1|$— y|)\+3—n an Z 3.

Proof. Tt follows from (15) that 0,(,)G(z — y,t) can be written in a
form

—n r—Y,V\x a—
(17) Oy()G(z—y, t)=—7 /ZWt l{nH(l)(z)+2H(2)(z)},
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where (-,-) denotes the inner product in R™. Then case (i) follows by
using the asymptotic estimate (8) in Lemma 1 for the Fox H-functions
in (15) and from the fact that |(z —y,v(z))| < Clz —y|Mif T € C1HA
and z,y €T

The second case follows from the same observations as above and
from estimate (10) in Lemma 1. O

By using the same arguments as in the proof of Lemma 2 we may
conclude that the integral in (16) converges absolutely. As an example
we consider case (i). Because 27 exp(—oz'/2~®) is uniformly bounded
for any v > 0, we have an estimate

(18) |0y Gla —y,t —7)| < Ot — 7) 7o/ 2714V |g — | 727 FAHL,

From here we see that 0, (,)G(z —y,t —7) is locally integrable if v can
be chosen such that 2y —A—1<n—1and —(an/2) + ay—1> —1.
Both of these inequalities are satisfied for any

n n+ A
19 - —_—

(19) 5 <7<

Choosing v as above we find that the integral in (16) is finite if
p € L™(Zp).

Now we are ready to state the jump relation of the single layer
potential (see [3, Theorem 5.2.1, page 137, and its proof]).

Theorem 2. Let I' € C*** for some 0 < X\ < 1, and let ¢ € C(X7).
Then, for any xo € T, 0 <t < T, the following jump relation holds

(20) Zli_>nz10 (VzSp(z,t),v(zo))

1 t
= 5(,0(:100,t) + / /Fal,(mo)G(wo —y,t—1)p(y,7)do(y)dr,
0
where (-,-) denotes the inner product in R™.

Proof. We start with showing the limit along the outward normal
v(zo). We have shown that the improper integral on the right-hand
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side of (20) exists and is absolutely convergent. Denote by T'(zo) the
tangent hyperplane to I' at 2y and I's := B(xo,8) NT. Since I' € C1*+*,
it follows that the orthogonal projection 7 : I's — T'(xq) is one-to-one
if § is small enough. We denote its image by I'j = 7(Ts).

Write
(21) (VaSe(z,t),v(z)) = Is(z,t) + Js(z,t),

where

(22) Iyl t) = / / (VaGlz — y,t —7),w(z0))ply, ™) do(y) dr

and Js is its complementary part.

Also, denote
t
(23) I5(x,t) = / / (VoG(x =y, t — 7),v(z0))p(x0,7) do’ (') dr,
0 /I

where do’(y’) is the surface element on the hyperplane T'(zp).
We prove (20) by showing that

. ] _ 1
(24) zlgTwlO Is(z,t) = 2(,0(:1:0,75),
(25) lim Js(z,t) = Js(zo,1),
T—rTo
(26) lim (Is(z,t) — Ij(z,t)) = Is(zo,t).
& o

Proof of (24). With the change of variables 7« p=|z — y/|>/4(t—7)*
in the definition of I§(x,t) and integrating with respect to 7, we get

27)  Ii(zt) = /F wH|z,y/|z/4ta(a:,y',t)da'(y'),

A T
where

(28) He(z,y',t)

_ 1 R [z —y'|*/
__W/e P {"H(l)(P)‘FQH(z)(P)}@(??o,t—W dp.
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Since the integral Hy(z,y',t) exists by Lemma 1 and the continuity
of ¢, we see that H(x,y',t) := Hjy_y2/se(x,y',t) is a continuous
function of (z,y’) for all z = xg — hv(xo) with A > 0 small enough and
for all y' € T'5. In particular,

Zli_{Ile H(.’L‘,y,t) = H(.’I,‘(],xo,t)

y' =@

(29)

o(xo,t) [ _
—ﬁ/{) p 2{nH(1)(P)+2H(2)(P)}dP-

We divide ' into two regions, I'| 5, which contains x( in its interior,
and its complement R; = I'j \ I'|; exactly as in the proof of Theo-
rem 1 of ([3, Section 5.2]). In I'{; we substitute y"" =y —z/|y’ — |
and denote the resulting domain of the integration by I'{; and the
corresponding area element by dw(y”) at y”. Then, because (x —
Yy, v(zo)) = —|z — y'| cos(y’ — z,v(zp)) and cos(y’ —z,v(zg)) do’(y') =
|z —y'|" "t dw(y"), we have

Bt = 22000, [ duty)

4amn/27"

¥

where we have denoted the integral on the right-hand side of (29) by
I,.

Since H(z,y',t) is a continuous function, the second integral in (30)
can be made arbitrarily small. In Rs(z,t) we note that (z—y', v(x)) —
0 as ¢ — zp and that |z — ¢’| is bounded away from zero if ¢y € Ry,
which implies that this term tends to zero as well. For the first term,
we observe that I'{'; tends to a unit hemisphere, so the first term tends
to (wnln/8am™?)p(zo,t).

Now we have shown that lim, ., I}(z,t) = (w,I,/8ar™?)p(zo,t).
Although we cannot calculate directly the exact value for the constant
wn I, /8ar™? we prove that it must be 1/2 in Remark 3 after the proof.

1,
16

(30)
(H(x, y'\t) — H(zo, zo, t)) dw(y") + Rs(z, 1),

1,
16

Proof of (25). It follows from the definition of Js in (21) that
|z —y| > 6/2 > 0for |z — zo| < §/2. Hence, the integral is a continuous
function, which implies (25).
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Proof of (26). The proof of this part is the most technical one. First
of all, it should be noted that Ij§(zo,t) = 0 because v(zo) L (zo — ¥').
Now, take 6; < § and write

L;(.’l?,t) = I51 (Qﬁ,t) + 751 (Qﬁ,t),

(31) , , =
I(s(ﬁ;,t) = 151 (CL', t) + 161 (CL', t),

where the integration in I, (T:;l) with respect to the spatial variable
is taken over the set I's \ I's, (I's \ I's,, respectively).

We prove that for any € > 0 there exists a ; > 0 such that

(32) |5, (x,t) — Ij (z,1)] <&,
(33) |T51 (I,t) - T<51 (IO)‘ <g,
(34) | Is, (0, t)], s, (2, 1)] < e.

Proof of (32). We write (V,G(z — y,t),v(zg)) as follows

(V.G —pt)v(e) i
= (' =y (@) Gl = 1,0 + (o = o/, (@) Gl = 1,1).

Because I' € C'** we have |y —y'| < Clzo —y[*** < Clz — y|'A
(see [3, formula 5.1.7, page 135]). Then we obtain the same bounds as
before for the first term. When z > 1, for example, the first term is

bounded by (see (18))

C(t — 1)~/ =1Fay g _ g =27 +A+1

where n/2 <y < (n+X)/2.

For the second term we proceed as follows. We denote z = (1/4)|z —

y|?(t —7)"® and 2’ = (1/4)|x — y'|*(t — 7). Let us decompose G as
follows

(35)

a—1
n/2 - - _ (tiT)
Gz —y,t —71) = 7@ [

B <(t—7')°‘—1 (t—T)o‘—l>{nH(1)(z)+2H(2)(Z)}

"=y e =y

{nH(l)(z) + 2H(2)(z)}
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+ ﬂ{nml)(z) ~ nH) () + 2He (2) - 2Hs) () |

t — a—1 N _ _
|($ _ ;/)m-z {nH(l)(z’) + 2H(2)(ZI)} =G+ G2+ Gs.

Therefore, we need estimates for the differences of the Fox H-functions
and of the power functions. For that we use the Mean Value Theorem.

For the difference of the power functions we get

1 1

B [(z =5,y —y)|
‘23 _ y|n+2 |LE _ yl|n+2

|z — g+t

(36) =(n+2)

for some g on the line between y and y'. Because |z — y| ~ | — 7] and
I is of class C'**, we have

1 1

37 —
(37) T ey

< C|l‘ _ y|7n72+)\‘

Then, using Lemma 1, we get the same bounds as before. If n = 3
and z < 1, for example, then by the estimates (10) and (37) we have a
bound

(38) Gh| < Cla =y (=),
which implies
(39) (@ =y, v(20))Gh| < Cle —y* P (t—7)7 > L.

Choosing 1 < v < (2 + A\/2) we see that this term is integrable.

For the estimation of (z — y/,v(z9))Gy we use the Mean Value
Theorem for the function nH(;) + 2H(,) and differentiation formula
in Lemma 1 to obtain

(40) nH(l)(z) — nH(l)(z') + 2H(2)(Z) — 2H(2)(Z/)

2<$ B ga yl - y>
= —W{HH@)(E) + 2H(3)(2)}

for some Z = (1/4)|z — §|*(t — 7)~* with § between y and ¥’
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Then we use the asymptotic formulae in Lemma 1. Finally, noting
that [y’ —y| < Clz — y|*™* and |z — y| ~ |z — 7|, we get an integrable
upper bound. In the cases n = 3 and z < 1, for example, we have the
following estimate
(41)

|C:12| — 2ﬂ_—n/2 (t — T)a_l <m — g: Z/' -

y)
|z — y/|n+2 1z — 7|2 {nH(Q)(E)+2H(3)(E)}‘

SCt =)=y |Ple =gy —yle -7 - )7
<Ct—r) e -yt

Multiplying the previous upper bound by |(z —y',v(zo))| we have a
majorant

Ot =)~ o —y* <Ot — 7)o -y,

which is integrable when we choose 1 < v < (24 A\/2). The other cases
for n’s are treated similarly.

The last difference
t
| / (& = y,v(@0))Ga (e — ¥/t = T)p(y,7) do(y) dr — If, (2, )
0 51

can be estimated similarly as above.

Putting all of this together, we have proved that

(42)
, t 1 1
B@o-neo<c | [ T W
“u ply,r)
I foslutan) ) )

X

¢
/ / Ov(ze)Gx —y' st —7)do’(y') dr
0 Jry

for some p < 1 and p' > 0.

The integrand in the first term of (42) is integrable, so the corre-
sponding integral can be made arbitrarily small by choosing §; small
enough. The second integral is bounded independently of 6; since it
coincides with I as § = 61 and ¢(zg,7) =1, and limg_,,, I5(x,t) was
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shown to exist. Also, the expression sup]| - | tends to zero as §; — 0
because ¢ is continuous and cos(v(zo),»(y)) — 1. Hence, for any ¢ we
can choose d; such that |I5, (z,t) — I3 (z,t)| < ¢ and the proof of (32)
is finished.

Proof of (33). This term can be proved to be small by the same
technique as (32). Indeed, using the Mean Value Theorem as above
and noting that, for fixed d1, the terms |z — y/, |zo — y| in Is, (x,t) and
Is,(z0,t) are bounded away from zero. Then we can follow the same
lines as in the proof of (32).

Proof of (34). Since the term (z¢ — y,v(xp)) in the integrand of
Is, (g, t) is bounded by |zg — y|*T!, we see, as before, that the kernel
is locally integrable. This implies that

(43) |I5, (zo,t)| < &

if §; is small enough. Furthermore, since |z — y'| in 7:;1 (z,t) is bounded
away from zero, if d; is now fixed, and since cos(v(zg),y’ — z) — 0 if
T — o,

(44) |Z5, (2, )| <e
if = is sufficiently close to xg.

Gathering everything together, we have proved (20) in the case where
x — xo along the normal v(zg). The general case where K 3 = — x
can be proved as in ([3, pages 143-144]). o

Remark 2. Exactly the same proof applies also for the outward limit
of the normal derivative. Note that in this case v(zg) is the inward
normal and we have

(45)
lim (9 (a0)S0) (1) = —5 9(a0, 1)

T—rTQ
zeK'

t
+ / / Bao) G0 — 9>t — T)p(y, ™) dor(y) dr,
0 I

where now K’ := K'(x¢) C QU {x¢}.

Remark 3. Actually, we haven’t proved that the constant (w,I)/
8an™? is 1/2. The same proof as in Theorem 2 gives the constant



450 JUKKA KEMPPAINEN

—(wnI,)/8am™? when the limit is taken outside 2. However, it is
proved in ([5, Theorem 2]), using a different technique, that the jump
across the boundary is —p. Then the proof of Theorem 2 and the
previous result imply

Jim (Ve Sp(2,1),v(20)) — lim (Va2 Sp(z,t),v(z0))
zEK'’ rzeK

wnln
= _28a7r”/2 go(a:o,t) = —np(a:o,t).

Hence the constant is 1/2.

Remark 4. Although we consider in this paper the single layer
potential, this remark concerns the double layer potential. The same
technique as in the proof of Theorem 2 applies also for the proof of the
boundary values for the double layer potential. We can prove that the
double layer potential with continuous density ¢ can be continuously
extended from Qr to Q x (0,7T) with limiting values

1 t
U(l‘,t) = 75()0(1"” + /) Aau(y)G(x —y,t— T)(p(yaT) dg(y) dTa
(ZL‘,t) S ET,

where the integral on the right hand side exists as an improper integral.

4. Holder continuity. Finally, we concentrate on the proof of
Holder continuity of the single layer potential. We use the same
technique as in Theorems 2 and 3 of [8].

Theorem 3. Let ¢ € L>(Xr). Then the single layer potential is
Hélder continuous in Qr for any 0 < k < 1, i.e.,

(S@)(x,t) = (Se)(@1,t1)| < Csup lg|(Jx — 1" + [t — ta]*/?)
fO’I“ all (xat)v (.’131,t1) € @
Proof. As in ([8, Theorems 2 and 3]), we divide the proof into two
parts. At first we show that
(S¢)(@,t) = (Se)(z1,8)| < Csup o] - & — 21|
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and then that
|(S)(x,t) = (Sp) (@, t1)| < Csup|g| - [t — 1]/

forany 0 < k < 1.

We denote the distance between x and z; by 6. Let xg be the
closest point to  on I'. It is enough to prove the result for z,z;
in a neighborhood of I'. Also, we may assume that § is so small that
the orthogonal projection 7 : I's = B(z,2§) N\T" — T'(zy) is one-to-one.
Let Is and Js be as in the proof of Theorem 2. We write
(46) (S<p)($7t) :I5(m7t)+J5(xat)a
(47) (S@)(@1,8) = Is(w1, 1) + Jy(a, 1)

Again, we have to prove the estimates for small z and for big z
separately. If z > 1, we use the estimate (12) and get

—(an ata dO’
(48) Is(z,t)| < Ct~(@en/Dretar gyp o i)z
r; 1z —y*

where we have chosen 7y as in (13). We suppose that § is so
small that cos(v(y),v(z9)) > 1/2. Then, noting that do(y) =
1/[cos(v(zg), v(y))] do’(y"), we obtain
d ! !
(0] < 2080 D suppf [ AT
L T

49 2
( ) S 20/{/_((1/2)(175) sup |SO| / wn_l’f‘nil dr
0

< oT(/2)(=K) sup |o| - |z — z1]",

where we have denoted k = —2v +n — 1. Note that (13) is equivalent
with the condition 0 < x < 1.

When z < 1, we use the same majorants for the kernel as in the proof
of Theorem 2 and get the same bound as above.

Similarly for I5(xy,t) we have

30
|I5($17t)‘ < o/ 1=k sup |Q0|/ wn_lrnfl dr
0

< CTWD=R) sup |l - |z — z1|".
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For the first part of the proof it remains to show the same bound
for |Js(z,t) — Js(z1,t)|. We divide this difference into two parts: I
and I depending on whether z > 1 or z < 1. We start with the case
z > 1. An application of the Mean Value Theorem gives the following
majorant for the difference |G(z — y,t —7) — G(x1 — y,t — 7)],

(50) C|Z—y|-|lz—ax1|(t—7)" /D" exp{—ot(@/270) g —y|?/ (=)}

where T lies in the line between (z and z;. If y € '\ T's5, we have
|Z — y| ~ |z — y|. This fact, integration and substitution 7 + py =
|z — y|?/ =) (t — 7)=2/(2=) give us

(51)

LI <Clo— mifsuplpl [ u® /A" Texp{-oup} s
0 r

do(y)
nry |7 —y["!

do(y)
\ry |7 =yt

=Col'((2 — a)n/2)|z — x|

Then, proceeding as in the proof of Theorem 2 in [8], we get the desired
result |I1]| < Clz — z4]".

When 2z < 1, we have to treat the cases for different n’s separately.
As an example we take n = 3 (the other cases can be handled by the
same way). Note that in this case 7 <t — |z — y|?/* <t — (26)%/®. As
before, an application of the Mean Value Theorem, formula (15) and
the asymptotic behavior of the Fox H-functions yield the estimate

t—(28)%/
Bl <Cle-alswlel [ [ (-7 drdot)
0 I'\Ts

where we have used the fact that |2 — y| ~ |z —y| for y € '\ T's. Since
2z <1, we have (t —7)™® < |z — y|~2 and t > (26)?/®, which implies

do
|I5| < C'sup \<p|(5log(25)/ i)z
rr; |7 =yl

Then, proceeding as in the proof of Theorem 2 in [8], we have

|I5] < C16(] 10g(5\)2 + Cs6|logé|,
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which finishes the first part of the proof since 6°|log§|® — 0 as § — 0
for any 8, > 0.

For the second part of the proof we take z € Q and 0 <¢; <t < T.
We write the difference of the potential at points (x,t) and (z,t1) as
follows

(Sp)(z,t) — (Sp)(z,t1)

/ | Gt = r)ply. ) dotu)ar
t1
+/ /(G(m—y,t—T) -Gz —y,t1 — 7))oy, 7)do(y) dr.
o Jr
Denote the integrals on the right hand side by I; and I5. For the first

integral an application of formula (12) gives an estimate

/ 3
|L| < Csuplollt —t1|", a<k' < 70‘,

in the case z > 1. The case z < 1 can be treated similarly. We fix
d > 0 and divide the second integral into two parts as in the proof of
the first part of the theorem, Iy = I5 + Js5. Similarly as (49) we get

(52) |15] < Csup ||t/ —)6",
For Js we use the Mean Value Theorem with respect to the time
variable. Again, we have to treat the cases 2 := |z—y|?/4(t;—7)7* < 1

and z; > 1 separately. The time derivative of the fundamental solution
is

(53)  9,G(z,t) =m "2t x| "{(a — 1)Hp1y(2) + aH2)(2) }.

In the case z; > 1 Lemma 1 implies the estimate
|6tG(£E, t)| < Cta—Z‘x|—nz((n/2)+1—a)/(2—a) eXp{_o_Zl/(2—a)}

with ¢ < a®/72)(2 — a). We estimate ((n/2) +1 — a)/(2 — a) <
(n/2) + (1/2) and use the fact that z7 exp{—cz'/ (2~} is uniformly
bounded for any v > 0, which implies

(54) 10.G(, )| < CteTHE/D=(an/2)=2|gj1=27,
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Now z; > 1,50 7 > t; — |z — y[*/*. We divide the time integration
. . t t—|z—y|?/ ™ ty .
in Js into two parts |;° = [, +ft1—|z—y\2/a' Denoting
the corresponding parts by J(gl) and J §2) and using the Mean Value
Theorem we have

921 < Cswlple -t [ o=y o)
(55) I\Ts

< C'sup |||t — ty 613/
where we have chosen v as

l_’_nfl< <2+n71
« 2 7 « 2

guaranteeing the convergence of the integral with respect to the time
variable.

Next we choose § = c|t — t1|¢, where ¢ is taken so small that the

orthogonal projection 7 from the surface neighborhood to the tangent
hypersurface is one-to-one. Moreover, we choose ¢ such that (compare
(52) and (55))

8% =Clt — t1]" = Clt — ;|1 =2/ 1),

Then we have e = 1/(2/a+ k — 1) > (/2), which implies the desired

estimate for J§2).

InJ él) we have to treat the cases for different n’s separately. As an
example we take n = 3. Then (9) in Lemma 1 and (53) give us

18,G(z,t)| < Ct—(@/D=2,

Using this and the Mean Value Theorem we get

ty—|o—y|*/ >
I < Clt — ] / / (b — ) ©/D2dr do(y)
I'\I's JO

< Clt —ti] |z —y|7¥* " do(y).
I\Ts

Similarly as (55), we obtain

(56) T < Ot — )63/,
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Choosing § = c|t — t1|° and choosing ¢ such that 1 — (2 — 1) = ek,
ie,e=1/(2/a+k—1) > («/2), which finishes the proof in the case
n = 3. The proof for the other cases of n’s are similar. o

Remark 5. Note that the proof of Theorem 3 shows actually that the
ratio between time and spatial regularity is 1/(2/a + s — 1) which is
greater than /2. Compare this result with the fact that in the case
of the single layer potential for the heat equation this ratio is always
1/2. o
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