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ABSTRACT. In this paper we propose and analyze a num-
ber of two-scale discretization schemes for integrodifferential
equations arising in finance. It is shown theoretically and
numerically that the number of degrees of freedom of the two-
scale discretization is significantly smaller than that of the
standard one-scale finite element approach while at the same
time preserving the accuracy of the one-scale discretization.
The main idea of these algorithms is to use a coarse grid to
approximate the low frequencies and then to use a fine grid
to correct the relatively high frequencies. As a result, both
the computational time and the storage can be reduced con-
siderably. A combination of wavelet and Lagrangian finite
element basis functions is applied to further reduce the com-
plexity arising from the non-locality of the integrodifferential
operators.

1. Introduction. In mathematical finance, consider a basket of
d > 1 risky assets whose log returns X; at time ¢ > 0 are modeled by a
Lévy process X = {X,;};>¢ with state space R?. By the fundamental
theorem of asset pricing [17], the arbitrage free price u of a European
contingent claim with payoff function ¢(-) and maturity T > 0 is given
by the conditional expectation

u(t,z) =E(¢(X7) : Xy =2),
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under an a priori chosen (risk-neutral) Martingale measure equivalent
to the historical measure (see, e.g., [16, 18] for measure selection
criteria). Deterministic methods to compute u(7, z) are based on the
solution of the corresponding backward Kolmogorov equation

(1.1) us + Au = 0, uli=r = g,

where A denotes the infinitesimal generator of X (see, e.g., [19, 36]).
For general Lévy processes X, A is in general the sum of an elliptic
second order differential operator which accounts for the diffusion part
of the process and a non-local integral operator which corresponds to
the jump part of the process. The pricing equation (1.1) has been
studied by several authors, e.g., [3, 10, 24, 31] for d = 1, and [19,
36] for d > 2, where the domain of the infinitesimal generator A
was characterized explicitly as an anisotropic Sobolev space and the
corresponding variational problem was shown to be well-posed.

In the present paper we will investigate some finite element schemes
for the elliptic integrodifferential equation

Au(z) = f(),

in Q@ C R? with suitable boundary conditions, and the backward
Kolmogorov (parabolic) equation

w(t, ) + Au(t, z) = f(t,x),

in (0,T) x Q with suitable initial and boundary conditions. In order
to solve these two problems using finite elements, there are two main
challenges that need to be addressed:

e The “curse of dimension”: The number of degrees of freedom on
a tensor product finite element mesh of width A in dimension d grows
like O(h~%) as h — 0.

e The non-locality of the underlying operator A: The finite element
stiffness matrix is dense and thus consists of O(h~2¢) non-zero entries.

To overcome these two challenges, wavelet based finite element dis-
cretizations of (1.1) were introduced in [19, 35, 40] based on a sparse
tensor product approach in combination with wavelet compression tech-
niques. The sparse grid method is a powerful tool in the numerical solu-
tion of classical partial differential equations (cf., [4, 5, 22, 46 and ref-
erences cited therein]) as well as high-dimensional equations arising in
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Finance (cf., [19, 40]). Under certain conditions on the wavelets’ num-
ber of vanishing moments, this approach yields asymptotically optimal,
essentially dimension-independent complexity O(h~!|log h|?(4=Y) (see,
e.g., [35]). For the analysis of general wavelet based finite element
methods we refer to [15, 39, 40] and the references therein. Construc-
tion techniques for arbitrary order spline wavelets on the interval with
prescribed number of vanishing moments can be found in [14, 33].

Even though a wavelet discretization of (1.1) is proved to be asymp-
totically optimal of complexity O(h~!|log h|?>(*~1D) for a very general
class of non-local operators, the constants involved in the complexity
estimates can be significant. More precisely, on rather low but practi-
cally important levels of refinement (h = 277 with j < 8, say), there
often occurs a computational overhead that, especially for local opera-
tors, can be reduced considerably by using classical (Lagrangian) finite
element basis functions. Following this observation, in this paper we
shall split the non-local operator A and its corresponding bilinear form
into a local and a non-local part. Then, to reduce the computational
complexity for solving the stationary part of the Kolmogorov equation
(1.1), we shall introduce several two-scale approaches, including a ba-
sic two-scale discretization scheme and a so-called combination based
two-scale discretization scheme (which is explained in more detail in
the following paragraph). The algorithms are motivated by the ob-
servation that, for a solution to some elliptic problems, low frequency
components can be approximated well by a relatively coarse grid, and
high frequency components can be computed on a fine grid using local
and parallel procedures. Note that the same observation is also cru-
cial in the theory of multigrid and wavelet methods (see, e.g., [9, 23,
45]). As we will prove below, from a financial mathematics point of
view, low frequency components correspond to the (non-local) jump
part of the underlying stochastic process, whereas high frequencies are
arising from its (local) diffusion part. The two-scale approach has been
used for solving a variety of partial differential equations and integral
equations with different types of discretization methods (see, e.g., 21,
27-30, 32, 42-44]). The main philosophy behind this paper is that
one should treat phenomena of different scales by different tools. In
multigrid methods, this kind of idea is used to devise iterative methods

for solving a given discretization scheme (see, e.g., [2, 23, 41]); while
in our approach, we employ this type of idea for designing discretization
schemes.
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Let us give a little more detailed illustration of the combination based
two-scale method on tensor product domains. The main idea of the
two-scale finite element combination method is to use a coarse grid to
approximate low frequencies and to combine univariate fine and coarse
grids to handle high frequencies by parallel procedures. For instance,
the complexity of the standard finite element solution up p, 5 is O(h™3)
in three-dimensional cases. With the same approximation accuracy, the
degrees of freedom for getting the two-scale finite element combination
approximation u%y .77 is only of complexity O(h™?) when H = O(h'/?)
is chosen for the corresponding univariate fine and coarse grids. This
approach turns out to be advantageous in two respects. First, the
possibility of using existing codes allows the straightforward application
of two-scale combination discretization to large scale problems. Second,
since the different subproblems can be solved fully in parallel, there is a
very elegant and efficient inherent coarse-grain parallelism that makes
the two-scale combination discretization perfectly suitable for modern
high-performance computers.

The remainder of this paper is organized as follows. In Section 2, we
describe the elliptic framework and the space discretizations by means
of finite elements and wavelets. In Section 3, we present some two-scale
discretization approaches for both elliptic and parabolic problems. In
particular, we explain how to combine the wavelets based grid with
the two-scale discretization. In Section 4, some numerical results are
presented to show the efficiency of the two-scale algorithms. Finally,
an appendix is provided.

2. Preliminaries. In mathematical finance, the underlying domain
is most often given by @ = R? (d € N) representing the log-price
space of the assets under consideration. For computation, however, Q
is chosen to be a bounded polygon domain, which is reasonable since the
financial problem on R can be localized to the bounded domain very
efficiently (cf., [36, Section 4.3]). We denote by L?(£2) the usual square
integrable functions with inner product (-,-). The standard notation
for Sobolev spaces WP () and their associated norms and seminorms
are used (see, e.g., [8]). For p = 2, we denote H*(Q2) = W*%(Q) and
the associate norm || - |[s,0 = || - ||s,2,0- Further, we define the space

(2.1) H*(Q) = {ulg : ue H(R?), ulgaq =0},



TWO-SCALE FINITE ELEMENT DISCRETIZATIONS 355

which is used for the integrodifferential operators. If s +1/2 ¢ N, then
H?(Q) coincides with H§(2), the closure of C§°(€2) with respect to the
norm in H*(2). For simplicity of notations, we will denote H*(2) by

H*(Q) and the corresponding norm by || - |5, afterwards. The space
H~1(Q), the dual of H}(Q), will also be used.

Throughout this paper, we shall use the letter C' (with or without
subscripts) to denote a generic positive constant which may stand for
different values at its different occurrences. For convenience, the symbol
< will be used in this paper. The notation A < B means that A < CB
for some constant C' that is independent of mesh parameters.

2.1. An integrodifferential equation. Consider the elliptic
problem derived from a Lévy copula process [19, 25, 36]:

{Au:f in Q,

(22) u=0  on 09,

where A is a non-local integrodifferential operator. The variational
form of this problem reads: Find u € H'(f2) such that

(2.3) E(u,v) = (f,v) for all v € Hy(Q),

where the bilinear form £(-,-) is given by:

(2.4) E(u,v) = (Au,v) = D(u,v) + J(u,v), u,v € H(Q)
with the diffusion part

1 ¢ ou Ov
(2.5) D(wv)=5 >, Q| 5@ (@)de,
1,j=1
satisfying that Q = (Q;j)1<i,j<a IS @ symmetric, nonnegative definite
matrix and the jump part

26)  J(uv) = — /Q /R (ula +2) — u(z)) v(z) do v(dz).

In (2.6), v(dz) is a Lévy measure v(dz) = k(z)dz, where the Lévy
density k(z) is given by a Lévy copula as in [36]. For the marginal
Lévy measures v; of v(dz) in each coordinate direction we assume:
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Assumption 2.1. The Lévy measuresv;, 1 = 1,...,d, are absolutely
continuous with densities k; that satisfy quasi-stable margins: There are
constants 0 <Y; <1 and cj,c; >0, c:r +c, >0,1=1,...,d, such
that

_ 1 1
ki(z) 2 ¢ W—eril{xo}(z) + CTW—Jml{ogz}(z) 0<lz[<1,

1

(2.7) .
ki(z) S wa—+ml{z<0}(z) + C?W—ml{ogz}(z) 0<[zl < 1.

Remark 2.1. Assumption 2.1 with ¥; < 1 (i = 1,...,d) on the
intensity of the margins’ singularities at the origin is required to prove
optimal convergence of our numerical schemes below. It is satisfied
by many Lévy processes used in financial modeling, for example Kou’s
model [26], Normal Inverse Gaussian processes [1], Meixner processes
[38], and tempered stable or CGMY processes [7] with ¥ < 1.

The well-posedness of (2.3) is ensured by

Theorem 2.1. The bilinear form E(-,-) satisfies a Garding inequal-
ity, i.e., there exist constants v > 0 and ¢ > 0 such that

(2.8) E(u,u) 2 llullf o —cllull§ o for all u € HY(Q),
and is continuous, i.e.,

(2.9) E(u,v) Sullrellvllie  for all u,v e Hl(Q)

Proof. See [36, Theorem 4.6]. o

Remark 2.2. Using the exponential shift in time u — e~y with ¢ > 0
in (1.1), we can erase the L%-term in (2.8). So we may assume that
E(+,-) is coercive on H'(Q) x H'(Q), i.e., the following holds

(2.10) E(uyu) 2 Jullfq for all u € H(Q).
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For our analysis, we also need to recall the following well-known
result:

Lemma 2.1. The following holds
(2.11) ||u||iQ < D(u,u) for all u € H (),
where D(-,-) denotes the Laplace-type bilinear form given by (2.5).

Additionally, from (2.7) we obtain the following crucial lemma.

Lemma 2.2. For any u,v € HY(Q) the following holds

(2.12) [ J(w,0)| S ullogllvllie, and [J(u,0)| S [lulls,allv

lo,0-

Proof. As shown in [19, Section 2] and [36, Section 2| (based on [37]),
in Fourier space the jump part J(-,-) given in (2.6) can be represented
by its so-called Fourier symbol ¢;(-) as follows:

J(uv) = — / 0 (€)a(€)7(E) de,
where
0s€) = [ (1= ile M gaen) vid:),

and u, v denote the Fourier transforms of v and v.

By [19, Theorem 3.4] and [36, Proposition 3.5], assumption (2.7)
implies that ¢ is equivalent to an anisotropic distance function that
satisfies ¥7(£) > 0 for all £ € Q and furthermore

Yy (&) S &+ €Y+ 1

with Y1,...,Yy given by (2.7). Denoting Y = max{Yy,...,Y;}, we
thus obtain

V() S L+ 622 < 1+ [€)Y? forall € € RY,
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where the last inequality follows from (2.7). Hence, using the Cauchy-
Schwarz inequality and Plancherel’s theorem, we obtain

1 (u, )2 < /Q ae) e - /Q [ (€38 P
(2.13) Slala- [ (+1P)E) e
Q

S llu

5.0 Iv]l% o-

Note that even though the bilinear form J(-,-) is not necessarily
symmetric, one may still interchange u(§) and v(¢) in (2.13) to obtain

I (w,0)* S Jlu

|§Q : HU”(ZJQ

This completes the proof. a

2.2. Finite element approximation. In order to discretize
the variational equation (2.3), we employ a sequence of piecewise
polynomial finite element spaces associated with a shape-regular finite
element mesh. Assume that 7"(Q) = {7} = {r;}; is a mesh of Q with
mesh-size function h(z) whose value is the diameter h., of the element
T containing . One basic assumption on the mesh is that it is not
exceedingly over-refined locally, namely,

Assumption 2.2. There exists a o > 1 such that
(2.14) hy S h(z), zeQ,

where hg = max h(z) is the (largest) mesh size of T"(Q).

This is obviously a very mild assumption from the theoretical point
of view. Usually, we will drop the subscript and simply write h instead
of hq for the mesh size on a domain that is clear from the context.

Let T"(Q) consist of shape-regular simplices, and define S™"(2) to
be a space of continuous functions on €2 such that for v € S"" (1), the
restriction of v to each 7 € T"(Q) is a polynomial of total degree < r,
namely,

(2.15) ShrQ)={veC@):v|,c Pr forallreT'(Q)},
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where P] is the space of polynomials of degree not greater than a
positive integer r. Set Si"(Q) = SMr(Q) N HL(Q). These are the
Lagrange finite element spaces, and we refer to [8, 43| for their basic
properties that will be used in our analysis. For simplicity, in this paper

we shall focus our study only on the piecewise linear Lagrange finite
element approximation. Let S*(Q) = $"1(Q) and SH(Q) = St (Q).

Note that the analysis of this work does not depend on the particular
choice of piecewise linear basis functions for S(Q2). For instance,
one may choose a classical Lagrangian (“nodal”) finite element bases
(see, e.g., [8, Section I1.7]) or piecewise linear wavelet basis functions
(see, e.g., [9, Chapter 1]). In particular, if Q is a tensor product
domain, choosing a wavelet basis for S#(£2) allows for the very efficient
discretization of the non-local part J(-,-) of £(-,-) as described in [19,
35, 39, 40].

The (standard) one-scale finite element discretization for (2.3) reads:
Find uy, € S (Q) such that
(2.16) E(up,v) = (f,v) forall v € SH(R).

We also require the Galerkin-projection Py, : H3(2) — S(Q), defined
by

(2.17) E(u — Pyu,v) =0 for all v € SH(Q).

Using the coercivity (2.10) of £(-,-) and (2.9), one obtains the following
well-known error bounds (see, e.g., [8, Chapter III]):

Theorem 2.2. If u, € SH(Q) is the solution of (2.16) and u €
H?(Q), then

(2.18) lu — unll1,0 S hlul2,0;
(2.19) Ju—unlloge S R*lul20.

2.3. Wavelets setting. We briefly illustrate how one may use a
wavelet basis to discretize the problem. Assume that any meshwidth
under consideration can be represented by a negative power of two,
and we therefore can associate a level index j > 0 to each meshwidth
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h = 277, Denoting hg = 2°,h; = 271, ho = 272,..., one obtains that
the spaces

Spo(Q) € 8§ (Q) € S2(Q) € --- € LA(Q)

define a multiresolution in the sense of [9, 12]. The spaces Sg Q) =
span (®;),j =0,1,2,..., are spanned by single scale bases ®; = {¢, 1 :
k € Aj;} consisting of the Lagrangian finite element (“nodal”) basis
functions ¢; , where A; denotes a suitable index set of cardinality

dim (Sy? (2)).

Using the methodology of [14, 33] to the collections ®;, one can
associate a set of dual bases ®; = {@;r : k € A;}, ie., one has
(¢j,k7¢j,k’) = (Sk,kl, k,k‘, S Aj. With v]' = Aj+1\Aj, for these
single-scale bases one can then construct a biorthogonal complement
or wavelet bases ¥; = {¢;, : k € V;}, ¥; = {¢; : k € V,}, ie,
(Vi Vi k1) = 85,0), (5 k)

Denoting by W7 the span of ¥; the following holds

(2.20) Se7(Q) = W @ 8;7(Q), j>0.

Thus, for any j > 0, the finite element space ng (2) can be written as
a direct sum of the wavelet spaces Wj’, j' < J, (using the convention
WO = Sho(q)).

By (2.20), for any u; € S’g () one has two equivalent representations

j—1
(2.21) ui = > diptie =Y ki

J'=0k/EV ;s kEA;

The corresponding arrays of single-scale, respectively wavelet coeffi-
cients ¢, d are interrelated by the explicitly known multiscale transfor-
mation T; : d — c (cf., e.g., [12]). Based on the constructions in [14,
33| one readily infers that (J; ;¥ (j > 0) forms a Riesz-basis in
L?(Q), i.e., the following holds

j—1
g2~ 3" ST d e for all uj € S57(9).

J'=0k'EV
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Thus, by [6, 11], the following holds
IT51, 15 ) = O(1),

which is crucial for the realizations of the Wavelet-Lagrangian two-scale
schemes that we describe in Section 3.

2.4. Example of wavelets. As illustrated in [9, Section 2.11]
and [14, 33|, one can construct several different wavelet bases for
Sg () (j > 0), depending on which properties are desired. For
example, one may obtain wavelets with an arbitrarily large number of
vanishing moments, which is very desirable for the compression of non-
local operators (cf., e.g., [13, 35]). Increasing the number of vanishing
moments however expands the wavelets’ supports.

Wavelets of arbitrary order on the interval have been constructed in
[14] in a very sophisticated way; we refer to this source for further
details. Furthermore, to illustrate one possible choice of wavelet basis,
in dimension d = 1, we give an explicit example of a piecewise linear
wavelet basis with two vanishing moments which has turned out to be
very useful in practice (multivariate wavelets on [0, 1]¢ can be obtained
as suitable tensor products of these).

The wavelets are comprised of piecewise linear continuous functions
on [0, 1] vanishing at the endpoints. The mesh for level j > 0 is defined
by the nodes z; := k27U*Y with k € A; := {0,...,27"1}. There
holds N; := dim (ng (Q)) = 271 — 1 and therefore M; := dim¥; =
dim (S (9)) — dim (S{7* () = 27.

On level j = 0 we have Ny = My = 1 and %y, is defined as the
piecewise linear function with value co := v/3/2 > 0 at zo; = 1/2 and
0 at the endpoints 0, 1. This choice of ¢y ensures the L? normalization
of the wavelets. For j > 0 we firstly define ¢; := ¢p2//2. Then
the boundary wavelet 1 is defined as the piecewise linear function

such that ’(/ijo(il?jyl) = QC]', ’l/)j’o(il,'jg) = —Cj and ’(/Jj,o(:l?jys) = 0 for
all other s # 1, 2. Similarly, the boundary wavelet ; rs, 1 takes
values ¥; n,—1(zj,n;) = 2¢j, ¥jm,-1(xj,n;—1) = —c; and zero at all

other nodes. For the remaining location indices 0 < k < M; — 1
the wavelet wj,k: is defined by ¢j,k($j,2k) = —Cj, ¢j,k(xj,2k+1) = 2Cj,
Y k(xj264+2) = —c;j and Y k(z;s) = 0 for all other s # 2k, 2k + 1,
2k + 2.
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¢4,2

= J0R00000000000

WO,O
WU /\

W1A
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FIGURE 1. Schematic of single-scale space ng (©2) and its decomposition into

multiscale wavelet spaces W7 "

Since the corresponding dual wavelet bases \T/j (j > 0) are solely of
analytic importance and do not have to be computed in practice, for
the sake of brevity we refer to [9] for their illustration.

Figure 1 shows the decomposition of the finite element space Sg Q)
(7 = 4) spanned by continuous, piecewise linear (“nodal”) Lagrangian
basis functions ¢; into its increment spaces Wj’, i =0,...,3,
spanned by the wavelets defined above.

3. Two-scale discretizations. Due to the non-locality of £(-,-),
the straightforward finite element discretization of (2.16) yields a dense
matrix of substantial size, which usually is not practicable to implement
when 2 has a high dimension. In order to reduce the computational cost
of solving the elliptic problem (2.3) and further the parabolic problem,
we may introduce some two-scale discretization algorithms.

3.1. A basic two-scale discretization. In this subsection, we
may introduce a so-called basic two-scale method. The main idea is to
use a coarse mesh of size H, to approximate the low frequencies and
to use a fine mesh of size h (h < H) to handle the high frequencies
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(cf., [42, 43]). Based on (2.4), Theorem 2.1, Lemmas 2.1 and 2.2, we
may indeed treat J(-,-) as a low frequency perturbation of the high
frequency part D(-,-) of £(-,). More precisely, for h < H our basic
two-scale algorithm is defined as follows:

Algorithm 3.1.
1. Solve (2.3) on a coarse grid: Find ug € SE () such that

E(ug,v) = (f,v) for allv e SF(Q).

2. Solve a linear boundary value problem on a fine grid: Find
ul € SH(Q) such that

D(u", v) = (f,v) — J(ug,v) for all v € SE(Q).

3. Find a further coarse grid correction ey € SE(Q) such that
Eler,v) = (f,v) — E(ul,v)  for all v € SF(Q)

and set T = uh + ey in Q.

Theorem 3.1. Assume that u" and W" are obtained by Algo-
rithm 3.1. If u € H?(Y), then

(3.1) [u" = unll 0 S H?|ul2,0,
(3.2) " = unlloo S H?|ul2,0,

where up, denotes the solution of the one-scale discretization (2.16).
Consequently,

(3.3) lu ="l < (h+ H?)|ulz0,
(3-4) lu —@"lloo < (h* + H?)|ul20.

Proof. From (2.16), we have

D(up,v) + J(up,v) = (f,v) for all v € SH(Q),
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which together with Lemma 2.2 implies

D(u" —up,v) = —J(umr — un,v) S lurr — unllo,ellvllie,
for all v € SF(Q).

Using Theorem 2.2, we then obtain

[u" = unllf o € D(u" — un, u" — up)

S llum = unlloellu® — unl|1e
S H2ulzqllu — unll0.

Hence, we get (3.1). Note that the following holds

[@" — unllon = |(I = Pu)(w" — un)loa
S HHUh —unll,e
S H3|u|279,

where I denotes the identity operator. By Theorem 2.2 and the triangle
inequality, we obtain (3.3) and (3.4). This completes the proof. o

Remark 3.1. 1If, instead of the finite element space SZ(Q2) with
piecewise linear basis functions, one chooses a higher order basis, i.e.,
SPT(Q) (r > 1) with the mesh of size h, then it can be seen from the
above arguments that the solutions u” and " of the corresponding
basic two-scale Algorithm 3.1 satisfy

lu—u"ll10 S (A" + H ) |ulrir 0,
lu—a"|oa < (R + H™?)|u)rs1.0,

when v € H"t1(Q). Naturally, in this case one may choose La-
grangian finite element basis functions of order r or piecewise poly-
nomial wavelets of degree r to generate St () (see, e.g., [14] for the
construction of higher order wavelets on the interval).

Remark 3.2. Based on the two-scale discretizations, we can construct
certain local and parallel algorithms to reduce the computational cost
even further (see, e.g., [29]).
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3.2. A combination based two-scale discretization. In this
subsection, we shall discuss a combination based two-scale finite el-
ement discretization to reduce the computational complexity further
over tensor product domains. For the sake of brevity, we only give
a detailed description of three-dimensional problems over the domain
Q = [0,1]® here. The extension to = [0,1]¢ (d > 2) is addressed
at the end of this section. The results in this section can easily be
generalized to domains like [-R, R]* (R > 0). Note that such tensor
product domains arise in most of the classical asset pricing problems
(cf., e.g., [10, 19]).

In our discussion, we require a so-called mixed Sobolev space (see,
e.g., [28, 34]):

Wy (Q) i={w € H*(Q) : 0,,00,0,, (w) € L*(Q),i,5,k=1,...,

d, z; # xj or x; # w1}
with its natural norm || - ||WG’3(Q)' In this notation similar spaces have
2
already been introduced in [34].

Furthermore, we shall introduce a two-scale finite element combi-
nation approximation for the three-dimensional case. Assume that
T"=:([0,1]) is a uniform mesh with mesh size h,, on [0,1] where
i =1,2,3. Set Theilezshes () = The1 ([0, 1]) x The2 ([0, 1]) x T"=s ([0, 1])
is the tensor product mesh. Let Sg”’hmz’h” () € HL(Q) be the

standard trilinear finite element space associated with the finite ele-

ment mesh 7"=1:h22"=5 (). Then the standard trilinear finite element
Ry g B
. €5

scheme on Q is: Find up, “2773 () such that

m2ahm

h

(3.5) S(uhzlthmhws,v) =(f,v) forallve Sg”’hzz’ “(Q).

Following [28, 29], we may define a two-scale finite element combina-
tion approximation uﬁ, H,u by

h
(3-6) Uy, H,H = Wh,H,H + UH . H + UHHK — 2ung,H,H-

Theorem 3.2. If u € HL(Q) N WE3(Q), then
(3.7) tnnn — uhr g allie S H2||u||W2G’3(Q)’

(3.8) lean o = el o2 S ¥ lullpe -
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Consequently,
(3.9) lu—w g alie S (h+H2)Hu||W2G’3(Q)’
(3.10) lu— vy g mlloq S (h2+H3)HuHW2G'3(Q)'

Proof. The proof and the relative two-scale analysis are referred to
the Appendix. ]

It is concluded from Theorem 3.2 that the two-scale finite element
combination approximation u’}{ o s a much more efficient approxi-
mate solution in terms of computational cost as compared to up p n. In
fact, with the same approximate accuracy, the degrees of freedom for
getting u’}{,H’H is only of O(h=2) when H = O(h'/?) is chosen while
that for the standard finite element solution up, p p is of O(h=3). In ad-
dition, it may be efficient that the two-scale finite element combination
approximation u’}l g, g can be carried out in parallel. As a result, both
the computational time and the storage can be reduced. We there-
fore propose a refined two-scale finite element combination algorithm
as follows.

Algorithm 3.2.
1. Solve (2.3) on a coarse grid: Find ug g € Sg™""(Q) such that

E(um,mm,v) = (f,v) forallve Sé{’H’H(Q).

2. Solve linear boundary value problems on partially fine grids in
parallel:

Find ep g1 € Sg’H’H(Q) such that
D(en,u,m,v) = (f,v) — E(un,bu,m1,v) forallve Sg’H’H(Q);
Find ey i € Se"M(Q) such that

D(emn u,v) = (f,v) — E(um,a,m,v) foralve Séq’h’H(Q);
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Find eg g n € SgI’H’h(Q) such that

D(en,mn,v) = (f,v) — E(um mm,v) forallve S(I)LI’H’h(Q)-

3. Set

~h .
Uh g =vHHHt‘tEeLHHE+EemnH temmn il

4. Find a further coarse grid correction gy € Sgo"" () such
that

Emmm,v) = (f,v) — E@y g pg,v) for allv e ST (Q).

/\h _~h ~ -
5. Set Up g g = Uy g p T CH.HH N Q.

Theorem 3.3. Assume that ﬂ}ﬁ’H’H and ﬁ’;LH’H are obtained by
Algorithm 3.2. If u € W5 3(), then

(3.11) lunnn = @ llne S Hlullyes g,
(3.12) llwnnn — aZ,H,H lo.o S HSH“”W;’"‘(Q)‘
Consequently,

(3.13) lu =@ g mlle S (h+ H)lullyesq),
(3.14) lu—8% galloe S (h2+H3)||uHW2G’3(Q)'

Proof. Set uMHH — UH,H,H + €h,H,H, uthh i — UH,H,H t €H,hH

and yTHhP — UH,H,H + €H,H,1, then from the definition, we obtain

ﬂl}-I,H,H =y H 4 o HhH 4 o HHhR _ 2upg g . Hence,

etn,nh — Whr g 1.2

S [l g Iy Oy g — g — w10

+ [|up, g5 + UE L HE + UH EL — 2UH H H — Unhhl1,0
S =y gl + (lu™
+ ||uH,H,h

—umgn L

—um,mnll,e + s e E + YELE + UHHR

— 2upg,H.H — Uh,hhl1,0-
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Note that Theorem 3.1 implies

[ H —up 1,0+ W™ —wpp e lhe
(3.15) S G I
S H?|lull2.0.

Therefore, combining (3.15) and Theorem 3.2, we get (3.11) and then
(3.13). The following holds

lnnp — Wi g s lloe = (I = Pr,i) (unonn — Wt ) |lo,2

< Hllunnpn — U g g 1,0

This completes the proof. a

Remark 3.3. We may also develop some local and parallel algorithms
for the combination based two-scale finite element method (cf., [29]).

Remark 3.4. The combination based two-scale discretization ap-
proach can be generalized to any dimension. For Q = [0,1]¢ (d > 2),
recall that the standard Galerkin projection P, : HE(Q) — S&(Q) is
defined by

(3.16) E(u — Pyu,v) =0 for all v € SP(Q)

for h = (hy, h2,...,hq). Then we can construct the two-scale finite
element Galerkin projection as follows:

d
Bl Prou = Z Py sne,t — (d = 1) Pueu,

i=1
where e = (1,...,1) ¢ R4, &, =e—e;, e, = (0,...,0,1,0,...,0) €
R¢ whose i-th component is one and zero otherwise, and ha =
(hiai,...  hgag) for a; € {0,1}, i € {1,2,...,d}. For instance,
BI}-LI,H,HPh,hﬁu = PhvaHu—}-PH,h’Hu—}-PH,H’hu — 2PH,H,HU- FOHOWiIlg
[20], we can expect similar results for d—dimensions. For instance, if
uw e HHQ) N WE3(Q), then

(3.17) || BYeProu — Pretullo.q + H|| B Prhet — Phou
5 H3||UHW2G'3(Q)‘

1,0
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3.2. Wavelet-Lagrangian two-scale discretization. In this
subsection, we will briefly describe how the advantages of wavelet-based
methods can be combined with the two-scale algorithms presented
before. As already indicated in the introduction, the basic idea behind
this approach is the following: At first, a wavelet discretization yields
an almost sparse representation of the non-local form J(:,-) defined by
(2.6) (see, e.g., [13, 35, 39]). Secondly, as illustrated in the above
sections, the local form D(-,-) can be discretized very efficiently with
significantly less computational overhead using plain Lagrangian basis
functions or, alternatively, single scale bases made up by splines. In
order to minimize the computational overhead these bases should be
chosen as simple as possible.

In order to exploit both the advantages of the wavelet basis and the
classical Lagrangian basis, Algorithms 3.1 and 3.2 can be realized by

Algorithm 3.3.

1. For the coarse grid discretization of the form
Find ugy € SE(Q) such that &(ug,v) = (f,v) for all v € SE(Q),

employ the sparse tensor product wavelet methods of [19] with ad-
ditional wavelet compression as in [31, 35] to efficiently obtain the
wavelet representation

J
ug = dj’,k’¢j’7k’7

J'=0k/EV

where H = 277,

2. Employ the multiscale transformation TjdH to obtain the corre-
sponding single-scale representation of ug in terms of Lagrangian basis
functions with coefficient vector ¢t as in (2.21).

3. Proceed with the two-scale discretization algorithm from Step 2 in
Algorithms 3.1 or 3.2. In particular, use existing methodology of, e.g.,
[20, 28, 29] to efficiently discretize the local form D(-,-) on the fine
grid.

4. Make further corrections on the coarse grid by using the inverse of
multiscale transform and sparse tensor product wavelets methods.
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The main reason for combining wavelet methods with classical finite
element methods in the above algorithms is the non-locality of the form
E(+,-) due to existence of the jump part. Even on the coarse grid, stan-
dard finite element schemes are of complexity O(H ~2¢) and therefore
hard to apply even in moderate dimensions. It is known however that
sparse tensor product wavelets yield a quasi-sparse representation even
of non-local bilinear forms resulting in asymptotically optimal com-
plexity O(H !|log H|[*®~V) (see, e.g., [19, 35]). For the fine-grid
discretization of D(-,-) one may still employ the same wavelet meth-
ods, but, since the form is local, for moderate dimensions one obtains
an efficient discretization with well structured sparse stiff matrix and
significantly less computational overhead by using Algorithms 3.1 and
3.2 with Lagrangian finite element functions (or, alternatively, single
scale bases made up by splines).

3.4. Parabolic problems. In this subsection, we briefly illustrate
how to discretize the time-dependent problems derived from Lévy cop-
ula process in finance. We consider the following backward Kolmogorov
equation:

ulta) | pu(t,x) = f(t,x) in (0,T) x Q,
(3.18) u(t,z) =0 on (0,T) x 99,
u(0,z) = up(z) in Q,

where A is the (integro-differential) infinitesimal generator of the Lévy
process.

The variational form of the parabolic problem (3.18) reads: Find
u € L2((0,T); HY(Q)) N HY((0,T); H1(Q)) such that

<%av> + E(u,v)=(f,v) in (0,T)xQ,
(3‘19) (H=Y(Q),H'(Q))
for all v € H}(Q),

u |t:0: Uo,

where £(u,v) is given by (2.4).

Assume that a finite-dimensional space V* C H'(Q) corresponding
to a given meshwidth A > 0 has been fixed, we can then use the 6-
scheme for time discretization. Let 0 < § < 1. For T < oo and M € N
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define the time step k = T/M, and t™ = mk, m = 0,1,... ,M. The
fully discrete 6-scheme reads:

Algorithm 3.4.

1. Find u) € V" satisfying u) = ugp. The approzimation of the
initial data could be chosen as a finite element projection uyn = Prug
or as an interpolant of ug.

2. Form=0,1,... ,M — 1, find uZ”l € V" such that

m+1 m
Up — — Up

(3.20) <T’Uh> + S(UZLW’Uh) = (f,vn) for allv, € VP,
where u" 0 := gu T 4+ (1 — O)up.

For # = 1/2, the scheme in (3.20) coincides with the Crank-Nicholson
scheme, whereas for # = 0 one obtains the explicit and for # = 1 the
implicit Euler scheme. For stability and convergence considerations
we refer to [31, 39]. In practice, more sophisticated tools, e.g., hp-
DG time-stepping (see [24]), can be applied to obtain exponential
convergence in time.

Note that for each time step m of the fully discrete f-scheme, (3.20)
is equivalent to solving an elliptic problem: Find u™*! € H}(Q) such
that

~

(3.21) E@™,v) = (f(u™),v) for all v € HL(),
where the bilinear form & (+,-) and (}\, v) are given by:

E(u™ v) = (W™ v) + %(um“, v),
(Flm),0) = ™,0) = (1 = O™, ) + (£,0).

Therefore, we have to solve an elliptic problem (3.21) at each time step,
and the algorithms presented in subsections 3.1-3.3 can be applied to
reduce the computational cost.

4. Numerical experiments. In this section, we will present
some numerical experiments which support the theories in the previous



372 CHEN, LIU, REICH, WINTER AND ZHOU

—©&— numerical —©— numerical
theoretical theoretical

"llo.o

h

I
)

Jlun

slope = 2.0 slope = 3.3

107 T 107 n

10° 107 10 10° 107 10
H H

FIGURE 2. Basic two-scale scheme for one-dimensional elliptic problem.

sections. In order to compute the error, we consider the function,
w:R — R,

w(z) =

{:p5—:p4—:p3+m2 if z € (0,1),
0 else.

Clearly w € H?(0,1) in the sense of (2.1). In the numerical experi-
ments, we use the piecewise linear Lagrangian finite element described
in Section 2.2. All computations are performed in double precision
arithmetic on a PC with 2GB in Matlab 8.0.

Example 1. Consider a one-dimensional elliptic problem

E(u,v) = (f,v) for all v € Hy(Q),

where @ = (0,1), D(u,v) = [} u'(z)v'(z) dz,

J(u,v) = — /0 1 /R (ulz + 2) — u(2)) v(z) dz k(=) dz.

TABLE 1. Basic two-scale scheme for one-dimensional elliptic problem.

Lh=22L, 0 =2"L) Ju—unlre] lu-e"lio |l%-unlon] lu-a"loa

2 0.03656280 0.04728101 0.00129277 0.00053462

3 0.00906203 0.01247740 0.00008560 0.00005595

4 0.00225810 0.00315163 0.00000544 0.00000707

5 0.00056399 0.00078517 0.00000032 0.00000084
convergence rate O(h) O(h) or O(H?) O(h?) (’)(ha/z) or O(H?)
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and k(z) = |z|717®. We take @« = 0.8 and choose f such that
u(z) = w(z) is the exact solution. To illustrate the convergence rate
in Theorem 3.1, we compute [up — u”||1.o and ||up, — a"||oq at each
level, and plot them in Figure 2. We see from the pictures that the
convergence rates are exactly the same as that of our stated theory.
Table 1 compares the errors between two-scale and one-scale schemes,
which suggest that the two-scale discretization can achieve the same
accuracy with lower computational cost.

Example 2. Consider a two-dimensional problem, and choose f
such that u(z,y) = w(z)w(y) is the exact solution of
E(u,v) = (f,v) for all v € Hy(Q),
where Q = (0,1)?,

D(u, v) / / Ou Ov 8u8v ded
020z | 0y oy v
Huw) == [ [ (ot 2.9) = ule.n) o) dedy ks () dz
- / / (w(z,y + 2) — u(z,y)) v(z,y) de dy ka(z) dz,
QJ/R
and k;(2) = |z|717%, i = 1,2. Letting a; = 1.1 and ap = 1.2, we dis-
play the convergence rate of ||u, —u”||1 o and ||uj, — "o, in Figure 3

and compare the errors between the two-scale and one-scale schemes
in Table 2. Note that in this example o; > 1 (¢ = 1, 2), which does not

—&— numerical —&— numerical
—— theoretical —— theoretical

[l

slope=1.9 slope =2.9

107 107 10° 10° 107" 10°
H H

FIGURE 3. Basic two-scale scheme for two-dimensional elliptic problem.
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TABLE 2. Basic two-scale scheme for two-dimensional elliptic problem.

Lh=2"""" H=2"") | Ju—unlh, | lu—v"l0 | lu—unllog | lu—@"[lo.q
2 0.004220 0.004723 0.000189 0.000185
3 0.002130 0.002204 0.000047 0.000043
4 0.001067 0.001078 0.000012 0.000011
5 0.000534 0.000535 0.000003 0.000003
convergence rate O(h) O(h) O(h?) O(h?)
107 107°
—6— numerical —6— numerical
theoretical theoretical
107
-1 1073 G
= 10" =
10°
slope = 2.0 slope = 3.0
107 — 5 107 ~ )
10 10 10 10 10 10

H H

FIGURE 4. Combination based two-scale scheme for two-dimensional elliptic
problem.

TABLE 3. Combination based two-scale scheme for two-dimensional elliptic problem.

Lh=27"1,0=270) | lu—uppllie | lu=i} gl | llu—unmloq | llu—ik glloe
2 0.004220 0.004991 0.000189 0.000202
3 0.002130 0.002220 0.000047 0.000043
4 0.001067 0.001079 0.000012 0.000011
5 0.000534 0.000536 0.000003 0.000003
convergence rate O(h) O(h) O(h?) O(h?)

satisfy Assumption 2.1, but we still get reasonable results which illus-
trate the efficiency of our two-scale discretization scheme.

The combination based two-scale methods are also implemented
in this two-dimensional example. The convergence rate of ||upp —
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ﬂ’}LHHLQ and ||up p — ﬂ}ﬁ,HHQQ are shown in Figure 4, which is consis-
tent with Theorem 3.3. We also compare the errors of the combination
based two-scale scheme and the one-scale scheme in Table 3.

Example 3. A three-dimensional problem is calculated in this
example. We choose f such that u(z1,z2,z3) = w(z1)w(z)w(zs) is
the exact solution of

E(u,v) = (f,v) for all v € Hy(Q),

3
Ou Ov
_ 3 =
where Q = (0,1)°, D(u,v) = ;/Q Ox; Ox;’

—//(u(:c1+z,:v2,:v3)

— u(z1, T2, x3))v(21, T2, T3) dr1 dve drg k1(2) dz

// u(zy, 22 + 2, 23)

—u(@y, T2, x3))v(21, T2, x3) doy dae das ka(z) dz

/ / $1,$2,$3+Z)

—u(xy, 2, x3))v(x1, T2, 23) dxy dae das k3(z) dz,

and k;(z) = |z|717%, i =1, 2, 3. We take a; = 0.5, ap = 0.8,
a3z = 1.2 and briefly examine the basic two-scale and the combination
based two-scale scheme respectively by displaying the convergence rate
of |lup—u"||1.0 and |upn.n =T g gl in Figure 5, which is consistent
with Theorems 3.1 and 3.3.

—&— numerical —&— numerical
theoretical theoretical

S\

lwnnn =T 10

slope=2.1 slope=2.3

107 107" 10° 10° 107 10f
H H

FIGURE 5. Two-scale scheme for three-dimensional elliptic problem.
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FIGURE 6. Two-scale discretization scheme for parabolic problem.

Example 4. Finally, consider a two-dimensional parabolic problem:
{ (9%, v) + E(u,v) = (f,v) in (0,T) x €, for all v € H}(Q)
ult=o0 = uo in €2,
where Q = (0,1)2,

Oudv  OuOv

J(u,v) = — /Q /R (u(z + z,y) —u(z,y)) v(z,y) de dy ki (2)dz
- [ [ (et 2) = o) vl dedy b d

and k;(z) = |z|717 %, i = 1,2. We take a; = 0.8, ap = 0.9 and
choose f(t,z,y) such that u(t,z,y) = etw(z)w(y) is the exact solution
of the problem. Letting & = 0.01 and 6 = 0.5 in (3.20), we display the
convergence rate of ||uf* — u"™||; o at time T = mk (m = 10,100) in
Figure 6, which supports that our two-scale algorithm is also efficient
for time-dependent problems.

APPENDIX

Let Ihml,h
tensor product mesh T"e1-hezhes (). One sees that Ip, 0,0 is the

2g-hs, D€ the usual trilinear interpolation operator on the
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interpolation operator which interpolates only in the z;-direction on
lines of mesh size h,,, etc. Obviously,

Iy, hey hey = They 0,0 L0,hey,0 - 0,0,hy, -

It is shown in the following lemma that a one-scale interpolation on a
fine grid can be obtained by a combination of two-scale interpolations
asymptotically. Let H > h, and define the two-scale interpolation by

II@,H,HU = Ingau+ Ignau+ Ig gau— 210 g HU.
From the identity

I'=1Inpn+ = 1Inoo)+ (I —1Tono)+ I —TLoon)
— (I =TInoo)I —Ion0) — (L = Ino,0)(I —Ioo,n)
— (I =TIono)I —To0n) + (L = In0,0) (I —Iono)I — Lo.n),

we obtain the following two results (see [28] for details).

Lemma A.1 [28]. Ifuc W3 (), then
(A.1)

H|| I} g g — Innnullne + g g — Innpu

o6 S B¥lullyes)-

Lemma A.2 [28]. Ifu € HL(Q)NWS3(Q), then
(A.2)
D((I = Ingy hay by )5 0) S (max{ By, By, By })? [l 6.0 g 01,0

h

forallv e Sg”’h”’ “3(Q).

Proof of Theorem 3.2. Recall that the two-scale finite element
combination approximation (3.6):

h
Wy H,H = WhHH T UHhH+ UHHK— 2UHHH-
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By the triangle inequality, we have

(A3)  lun,hn =y g el
Sllun e — Inmaullie + lugne — Innmulo
+ lum,m.h — Lo, pul,0 + 2|um a,e — e H HU]10
+ lun,nn = Innpullie
+ [ In,m,5u+ Igpav+ I ape — 21 g,pw — Inppul|io.

Next, we want to estimate ||up mm — Inmmuli,0. For all v €
SeHH(Q), the following holds

E(un,mg — Ingau,v) =E(U — In g HY, V)
=D(u— Ip g, uau,v) + J(u— In o au,v).

Using Lemma 2.2 and Lemma A.2, we then obtain

E(un, im0 — In,o,HU, V)

< H[lullyes g v

I + v — Inmmuloelve

< H[ullyon g ol

Choosing v := up,u, i — In u,mu and applying (2.10), we get
(A.4) lun, iz = Inmrullue S H? [ullyes ),

which together with Lemma A.1 and similar estimations of the other
terms in (A.3) yields (3.7).

For the L?-norm error estimate, we use a duality argument. Let
w € HE(2) such that

E(w,¢) = (unpp — uly g g, ¢) forall ¢ € Hy(Q).
Let ¢ := upnn — upy g g € H(Q). Then we have
(uh,h,n — u’Ili,H,Hv Uh,h,h — u}IZ{HH)

= E(w, unh,n — uFIfI,H,H)

= 5(uh7h7h — UI}J,H,Ha w — IH,H,HU})

S lwnnn — ulr g glhellw — In g awlio.
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Since ||lw— Ig g awlie S Hlwlze S Hllunhn —uly g glloe, we arrive
at

lunnn = vl g alon S Hlunnh — vl g allie S H lulyes -

By the triangle inequality, we complete the proof. ]
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