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ABSTRACT. The authors introduce a new procedure for
the numerical treatment of Fredholm equations of the second
kind on the real axis, based on a Nystrom method. The
convergence of the method is proved and a priori estimates of
the error are given. The case of kernels containing a Hilbert
transform is also considered.

1. Introduction. This paper concerns the numerical treatment of
the class of integral equations defined by

L) @) s /R T(e,y)f(e)w(z)dz = gy), e R,

where

(1.2) C(o,0) = bleo) +o [ n@, )velt) 4,

R t—vy

u and v are real parameters, w is a Freud weight, k£, 7 and g are given
continuous functions, f is an unknown function. The integral in (1.2)
is understood in the Cauchy principal value sense, i.e., it defines the
Hilbert transform of the function 7(z, -)y/w(:).
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In the literature a first natural approach was to consider this equation
in LP-spaces, because the Hilbert transform is bounded in such spaces
(see, for instance, [4]). On the other hand, until now also the Fredholm
equations on the real line have been studied only in L? (see [11]).

In this paper we consider equation (1.1) in a space of continuous
functions equipped with a weighted uniform norm. We believe that
in numerical analysis this approach is more suitable than the previous
one. In fact, usually pointwise estimates of the error (and not LP-norms
of the error) are shown. On the other hand, if we express the LP-norm
of the error in terms of the uniform norm by means of embedding
theorems, we obtain a convergence order less than the previous one.
Obviously our approach generates further theoretical difficulties, due
to the unboundedness of the Hilbert transform in spaces of continuous
functions.

Our strategy consists essentially of two steps. First, assuming the
functions k£ and g to be continuous, we solve the Fredholm equation

13)  f)—u /R k() f(2)w(z) dz = g(y), yER,

using a Nystrom method based on a Gauss-type rule. Then, coming
back to equation (1.1), we assign the conditions on the functions k and
n under which the kernel I' is “smooth” (see Lemmas 4.1 and 4.2).
Hence (1.1) turns out to be a Fredholm equation. Consequently, we
use again the Nystrom method, mutatis mutandis.

The stability and the convergence of the method are proved. More-
over, the error estimates and the well-conditioning of the linear system
(associated to the Nystrom method) are stated.

The exposed method can be adapted for solving Cauchy singular
equations of the form
(1.4)

1) v [ |5+ rene@Vai| foa =), vek

where v € R, 7 and g are given continuous functions. We observe
that the numerical treatment of equation (1.4) by global approximation
has received very little attention in the literature, unlike the Cauchy
integral equations on [—1,1]. For the details, the reader can consult
[18, 20] and the references therein.
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Obviously we cannot apply the Nystrém method directly to (1.4).
Nevertheless, regularizing this equation (see Section 6), under suitable
hypotheses, we get a Fredholm equation of the form (1.1) that can be
solved by the proposed method.

The results are new and, in the analysis of the stability and the
convergence of the method, we use as main tool the polynomial ap-
proximation theory on the real line (see [9, pages 180-196]).

This paper is organized as follows. In Section 2 we recall some basic
facts. In Section 3 we study the Nystrom method for equation (1.3).
In Section 4 we consider equation (1.1). In Section 5 we suggest a
numerical method for evaluating the coefficients of the linear system
and the Nystrom interpolant. In Section 6 we reduce equation (1.4)
to the form (1.1). In Section 7 some numerical examples are shown.
Finally in Section 8 we prove our results.

2. Notations and preliminary results. Let us consider the weight
(2.1) u(@) = (1+ [z)Pe 7"/2 320, a> 1.

We are going to study the integral equations in the space

Cy = {f cC'(R): lim f(z)u(z)= o},

z—+oo

equipped with the norm
Ifllc. := fulloo = sup [f(z)u(z)].
zeR

We emphasize that f € C, can increase exponentially for x — +oo0.

Moreover, by LP, 1 < p < oo, we denote the set of all measurable
functions f such that

1/p
mm>wMM—(Aummmmm> < oo,

For simplicity of notation, we will write LS® instead of . Such
spaces LP 1 < p < oo, with the above-defined norms are Banach
spaces.
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Subspaces of LP are the Sobolev spaces, defined by

T

Wr(w) = {f e 0V € ACR), IfVull, <oo}, 721,

where AC(R) denotes the set of all the functions which are absolutely
continuous on every closed subset of R. We equip these spaces with
the norm

£ llwe ey = [ Fullp + 1 ull,.

For any f € L, 1 < p < 0o, we consider the following r-th (r € N)
modulus of smoothness with a sufficiently small step § (see [9, pages
182-183)):

2
W' (f,0)up = Q" (f,6)up + Z Peigf |(f = P)ullze(zy),
k=1 !

where J; = (=00, —Ar§=1/(@=D) 7, = (Ar ¢~/ (@~ 1 o0). Tts main
part Q"(f,0)y,p is defined by

Q(f,0)up = sup [|AL(Fulls(z,)
0<h<é

with Zj, = [~Arh=Y/(@=D Arp=1/(@=D] A > 1 a fixed constant and
the notation

(22)  Au(f;2) = f(m + g) - f(a: - g), T = Ap(ATY).

By definition we have
(2.3) QT F, ) up <297 (£,0)up-

We will write w(f,8)up = w(f,8)u,p and Q(f,8)up = Q(f,6)up-

In the sequel C will stand for a positive constant that can assume
different values in each formula and we shall write C # C(a,b,...)
when C is independent of a,b,. ... Furthermore A ~ B will mean that
if A and B are positive quantities depending on some parameters, then
there exists a positive constant C independent of these parameters such
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that (A/B)*' < C. Finally [a] will denote the largest integer smaller
than or equal to a € R™.

Let us denote by P,, the set of all algebraic polynomials of degree
at most m and by E,,(f)up = infpep,, ||(f — P)ul|, the error of best
polynomial approximation in LP. The following Jackson and Stechkin-
type inequalities hold true (see [9, page 185]):

(24) Em(f)u,p S CwT (f, %)up, r< m,
oo o) o) S0
M/ wp m ) =7 \Ok k

where f € L2, 1 < p < 00, @, ~ m'/® is the Mhaskar-Rahmanov-Saff
(M-R-S for short) number related to the weight u and C # C(f, m).

Hence, by (2.4) and (2.5), we have
(2.6) fell — 1131 En(f)up=0

for 1 < p < 0.

An estimate of the error of best polynomial approximation, weaker
than (2.4), is given by:

am/m Or
(2.7) En(f) up_c/ wd(g

where 1 < p < 0o and C # C(m, f). Obviously inequality (2.7) holds
true if the integral at the right-hand side exists.

By means of the modulus of smoothness, for 1 < p < oo, we can
define the Zygmund space

ZB(u) == ZF .(u) = {f €LP: sup L\ up w"(f,0)up

<oo, r>sp, seRT,
5>0 ¢

equipped with the norm

122y = 1 £z +su;0) (f’ 0)up
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In the sequel we will denote these subspaces briefly by Z?(u), without
the second index r and with the assumption r > s.

We remark that, by (2.5) and (2.7), we deduce Q"(f,0)y,p ~
W' (f,0)y,p for every f € ZP(u).

Let us consider the Freud weight
(2.8) w(z) = e 1417, a>1,
and the related M-R-S number a,,, given by (see for instance [15])

o 1/«
2.9 U = (W) = mt/e,
(29 W= B (@r/2.072)
where B is the beta function. Since a,,(w) ~ am,(v/w) ~ am(u), in the
sequel we will write a,,, when we will not need to make a distinction
among the weights.

Let {pm(w)}men be the sequence of the polynomials which are
orthonormal with respect to w and having positive leading coefficients.
We denote by z, 1 < k < |m/2], the positive zeros of p,,(w) and by
T_p = —xp the negative ones. If m is odd then x¢y = 0 is a zero of
pm(w). These zeros satisfy

C
—am<l—m> S:U,Lm/gj < <2 <22 < < Ty

< C
> Am ]-_m )

where C is a positive constant independent of m (see [16, page 28]).

(2.10)

Our aim is to use the Nystrém method for integral equations; then we
need a quadrature rule. In order to introduce it, for a fixed 6 € (0,1),
we define an index j = j(m,0) such that

2.11 ‘= mi L x> Oam}.
(2.11) * 1§k1£irnlw/2J{xk m 2 fan}

With the same 0 we set

(2.12) M = K%)o‘% —: Cm,

with 0 < C < 1.
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Thus we consider the Gauss-type rule

(2.13) /R f@yw@) de = 3 M(w)f (@) + em(f),

|k|<j

where z}, are the above introduced Freud zeros, A\;(w) are the Christof-
fel numbers and e, (f) is the remainder term. The following proposition
gives a simple estimate for e, (f) (see [17]).

Proposition 2.1. Let f € C,, where o(x) = (1 + |z])Pe=el®I",
0<a<l If [w(z)o'(z)dz < oo, then

(2.14) len(£)] < C{Em(Howo +e 2| folloo ]},

where M ~ m is given by (2.12), C and A are positive constant
independent of m and f.

3. The numerical method. Let us consider the integral equation

(31  f)-p /R k(e y)f (@)w(z) de = g(y), y R,

where p is a real parameter, f is the unknown function, & and g are
given continuous functions and w(z) = e~1*I" | o > 1, is a Freud weight.

Denoting by K the integral operator given by
(32) (KD)W) = [ ) f@u(e) ds
R

and by I the identity operator, we rewrite (3.1) in the form

(3.3) (I - uK)f = g.

Furthermore, we will write k,(y) = k(z,y) = ky(z).

Proposition 3.1. Let u(z) = (1 + |=|)Pe 12I°/2 with a > 1 and
8 >1/2. If

(3.4) lim sup u(z)Ey,(kz)uco =0

m—00 1cR ’
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then the operator K : C, — C, defined by (3.2) is compact and the
Fredholm alternative holds true for equation (3.1).

Notice that, by (2.6), (3.4) implies k, € C,, for any fixed z € R.

We want to use a Nystrém method for solving equation (3.1) under
the assumptions of Proposition 3.1. Thus we approximate the integral
in (3.1) applying the Gauss-type rule (2.13), and we introduce the
operators K, (m € N), defined by

(3-5) (Knf) (y) = > M(w)k(z,9)f(21), y€R,
[1<j

for any f € C,. Hence, for a sufficiently large m (say m > my), we will
solve the equation

k(21,y)
u(zy)

(36)  fm(y) —p > M(w) fl@yu(z) =g(y), veER,

<

where z; (|| < j) are zeros of p,,(w), j is defined by (2.11) and \;(w)
are the Christoffel numbers.

Let us set & := f(x;)u(z;). Multiplying equation (3.6) by u(y) and
collocating at the points z; (]i| < j), we obtain the system of linear
equations

u(z:)

B X [ou - ke a) 4o 6 = b il <

l1<j u(@
where b; := g(z;)u(z;) and §; is the Kronecker delta.
If system (3.7) admits a unique solution § = (£*,...,&7,&5,. ., §;)T,
by (3.6), we can define the Nystrom interpolant

I R (IR S c S

lt<3i

and we will compare it with the solution of equation (3.3).

We rewrite system (3.7) as follows

(3.9) A =0,
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letting

J
U\x;
(3.10) A= ((511 — pN(w)k(zy, x;) ( )>
il=—j
E= (8., &,8,. .. ,§;)T and b= (b*;,...,b7,05,. .. ,b;f)T. Fur-
thermore, we denote by

cond (4;) = [|4;]|oo |47l

the condition number of the matrix A; in infinity norm.

In conclusion, the proposed method consists in solving the system of
linear equations in (3.9) and then in computing the Nystrom interpolant
defined by (3.8). We emphasize that system (3.9) has dimension 25 (or
25 + 1 if m is odd) and not m, that is the degree of p,,(w), thus
we omit the evaluation of [cm?| (0 < ¢ < 1) coefficients. Moreover
the construction of system (3.9) requires only the computations of
the zeros z; and the Christoffel numbers A\;(w) (|I|] < j). In order
to compute these quantities, in the Hermite case (o = 2) one can use
the routine “gaussq” (see [13, 14]) or routines “recur” and “gauss”
(see [12]). While if @ # 2 one can use the Mathematica Package
“OrthogonalPolynomials” (see [2]).

The next theorem gives the conditions for the stability and the
convergence of the method.

Theorem 3.2. Let ker(I — pK) = {0} in C\,, where u is the weight
in (2.1) with 8 > 1/2. Thus equation (3.1) has a unique solution f*
for any g € C,. If the conditions

(3.11) lim sup u(2)En(kz)uco =0, 2z € {z,y},
m—r 00 2€R

and

(3.12) lim FEp,(g)u,c0 =0,

m—r o0

are fulfilled, then the linear system in (3.9) has a unique solution £* for
a sufficiently large m (say m > my),

(3.13) sup cond (4;) < sup cond (I — pK,,) < oo,

m>mg m>mg
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and, denoting by f}, the Nystrom interpolant defined by (3.8), we get
(3.14)

If* = fin] uHoo < Cllfullo Sggu(y) {En(ky)u,oo + e_AmHkyuHoo}
y

+ CEn(f*)u,oo sup u(y)HkyuHom
yeR

where n = | M /2], M ~ m is defined by (2.12), the constants C and A
are independent of m and f.

We remark that, by (2.6) and assumptions (3.11) and (3.12), all the
given functions k., ky, g belong to C,. It follows that f* € C, and all
the quantities at the right hand side of (3.14) tend to 0 for m — oo.
Therefore, the Nystrom interpolant f given by (3.8) converges to the
solution f* of equation (3.1). Obviously, stronger assumptions on the
kernel k and the function g lead to a faster convergence, as the following
corollary shows.

Corollary 8.3. Under the hypotheses of Theorem 3.2, with (3.11)
and (3.12) replaced by

(3.15) surp;u(z)HkZHZgo(u) < oo, zé€{zvy},
z€

and

(3.16) g€ ZX(u), s>0,

respectively, the linear system in (3.9) has a unique solution for m > mg
and (3.13) holds true. Moreover (3.14) becomes

* * a’n * *
a1 N = Falullo £ C(%2) 17 Nz sup w00,
yeR

where n = |[M /2], M ~ m is defined by (2.12) and C is independent
of m and f.

We point out that, by (3.17) and (2.4), the Nystrém interpolant [,
in (3.8) converges to the solution f* of (3.1) with the same order of the
polynomial of best approximation of functions in the Zygmund spaces.
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Theorem 3.2 is a consequence of the following lemma. To state it, let
us recall definition (3.5) of the operators K,,:

(Knf) () = > M(w)k(z,9)f(z1), yER, f€Cy meN.

[1<i

Lemma 3.4. Let u(z) = (1 + |z])e~1#I°/2, o > 1 and B > 1/2. Let
ke, ky € Cy and assume that the kernel k satisfies the condition (3.11).
Then we have:

(3.18) sup [|Kmll¢, ¢, <00
meN
En Km u,00
(3.19) lim sup sup En(Eom flu.co =0,
N0 meN feC, [ fullo
(3.20) lim [|(Kf = Knf)ull, =0,

for all f € Cy, and

(3.21) lim (K — Kun) Knlle, »o, =0,

m—00

We remark that inequality (3.19) is equivalent to the collectively
compactness of the family of operators {K,,}m. Moreover (3.20)
implies (3.18) by the uniform boundedness principle.

4. The complete equation. We now consider the equation of
second kind

A1) @) -n /R T(e,y)f(e)w(z)dz = gy), e R,

where p is a real parameter, f is the unknown function, g is a given
continuous function, w(z) = e 1*1°, a > 1, is a Freud weight and the
kernel T" is defined by

o) = o) + v [ 2E:0Y20

R t—y
= k(x,y) +vH (nz\/way) )

(4.2) dt
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with £ and 7 given continuous functions, v a real parameter and H
denotes the Hilbert transform.

We can rewrite equation (4.1) as

(I - nK)f =

where
(4.3) (Kf)(y) = /R P(2, ) (@)w(z) dz

and I is the identity operator.

We remark that, if the kernel T’ defined by (4.2) is “smooth,” then
we could use, mutatis mutandis, the numerical method proposed in
Section 3. Thus we want to establish the hypotheses on the functions
k and 7, under which the kernel I" is in some sense smooth. The
following lemmas provide the criteria for this aim. Before stating them
we introduce the weights

(4.4) ui(2) = (1+|2]) " Vu(z), i€z,

where
w(@) = L+ o) Vw(e) = (1+ [z])7e="/2,

and the notations

Ae,y) = %n(w,y) U(e,y) = H (nov/, ).

Lemma 4.1. Let 1 < p < 0o, w and u with parameters o > 1 and
B8 > 0. Assume that

sup u(z )Hnw”Z < oo, s>0,

z€R sr(/p (W)

i 1
(4.5) sup u(zx) E :||779(f)“r7i||p <oo, = {84_ EJ L1
z€R =



A NYSTROM METHOD 265

Then we have

(4.6) sup u(z) [|¥e || 720 () < 00
z€R

Shortly speaking, the previous lemma asserts that if a function F

belongs to a Zygmund space Zf+1/p(u), s>0and 1< p < oo, and it

fulfills the further assumption ||Fu, ||, < 00, < |s+1/p|+1, then
the Hilbert transform H(F\/w) belongs to the space Z>°(u). On the
other hand, in [8] it was proved that F' € Zf+1/p(u) implies F' € Z2°(u).
Combining these two results we obtain that if, for some s > 0 and
l1<p<oo, Fe Zf+1/p(u) and ||[F@u, |, < oo, i < [s+1/p| +1,
then F' and H(F\/w) belong to the same Zygmund space Z2°(u).

In analogy with Lemma 4.1, the next lemma ensures the smoothness
of ¥ as a function of z.

Lemma 4.2. Let w and u be defined as in Lemma 4.1. If

(4.7) sup u () [|7y [l 7o (o) < 00
yeR °
and
(4.8) sup w(y) [Iyll 7oo () < 00,
yER °

then we have

(4.9) sup u(y) ||\I'y||zoo(u) < oo.
yeER 2

Therefore, if the function n fulfills the assumptions of Lemmas 4.1
and 4.2, and if the function k is such that

sup u(z)|[kz | zeo () < 00, 2 € {z,y},
z€R
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then we have

sup u(2) [Tl ooy < 00, = € {, ).

z€ER
Hence, by Proposition 3.1, the operator K given by (4.3) is compact
and for equation (4.1) the Fredholm alternative holds true. Moreover,
since the kernel I' satisfies the condition (3.15) of Corollary 3.3, for
solving equation (4.1), we can apply the numerical method described
in Section 3 for equation (3.1).

In this case the system of linear equations assumes the form

@10) Y |- ) ana) 5 6 = bl <

l<j

where & = f(ai)u(a), b = g(z:)u(z;) and

t t
(4.11) (z, z;) = k(zr, i) + ,// M dt,
R t—u;
and the Nystrom interpolant becomes
x 7
(4.12) () y) + Z Ml z fz

[11<j

Moreover, we derive the following theorem.

Theorem 4.3. Let ker(I — pK) = {0} in Cy, where u is the weight
in (2.1) and B > 1/2. Denote by f* the unique solution of equation
(4.1) for a fized g. If the function n fulfills the assumptions of Lemmas
4.1 and 4.2, the function k satisfies

sup u(2)||kz |z () < 00, 2 € {z,y},
z€R

and
9 € Z;*(u),

then the linear system in (4.10) has a unique solution £* for m > mg
and its matriz A; is such that

(4.13) sup cond (4;) < sup cond (I — pK,,) < co.

m>mg m>mg
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Moreover, for the Nystrom interpolant [}, defined by (4.12), the follow-
ing estimate holds true

(414 5 sl =o( (%)),

where n = |[M/2], M ~ m is defined by (2.12) and the constants in
“O” are independent of m and f.

Remark. We have proved the stability and the convergence of the
method assuming that the given functions belong to Zygmund spaces.
Nevertheless, we can obtain the same results with minor effort if these
functions belong to Sobolev spaces.

5. The approximation of the Hilbert transform. In many
cases an explicit form of the expression of I'(z,y), appearing in (4.11)
and (4.12), is not known. Therefore, in order to construct the matrix
of system (4.10) and the Nystrém interpolant in (4.12), the main effort
is to compute integrals of the form

F(t t
(5.1) HEvy) = [ DV gy e,
R t—y
where F € Cy, u(t) = (1+ |t])?/w(t).
The quadrature rules we are going to consider have been introduced
and studied in [19], following an idea previously used in [3, 5].

Letting B be the beta function, we denote by

1/
m

B 4m
~ laB((a+1)/2,(1/2))
the M-R-S number related to the weight \/w, by t,r (|k] < [m/2])

the zeros of p,,(v/w) and by A, k(v/w) the corresponding Christoffel
numbers. As in Section 2 we set

oy = 0 Lt b = Oam(V0)

= mi
|k|<|m/2]

1/« —. Caml/a,

(52)  am(Vw)

with 6 € (0,1) the same parameter chosen in definition (2.11) for the
construction of system (4.10). For a fixed y € [—0ay, (vVw), fan,(vw)],
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we are going to define the sequence of integers {m*}, m* € {m, m+1} as
follows. Let ¢y, 4 be a zero of p,(y/w) closest to y. Then, for m > my,
two cases are possible

_tm7j1 < tm,d <y< tm+1,d+1

or

tmt1,d+1 S Y < tmdr1 < tmj;-

In the first case, if y < (tm,da+tm+1,d+1)/2 we set m* = m+1, otherwise
m* = m. We make a similar choice in the second case.

With these notations we introduce the following quadrature rule

Hye (F) = ) |1z - 3 2ot

e —
Kl<g Ok TY

(5.3) + Y Ame (V) Pl )

b —
Ik|<j1 m*k Y

— F)Ane )+ 3 A (i) L)

b g —
|k|<ja m*k Y

for any fixed y # ty- &, |k| < j1. Notice that #(\/w,y) can be evaluated
with the required precision and that the rule in (5.3) can be applied if
m* is such that y € [—tm« j,, tm= j,|. The stability (apart from an extra
logm factor) and the convergence of the rule H,,«(F,y) are shown by
the following theorem, proved in [19].

Theorem 5.1. For all F € Cy, with § > 1, and for y €
[_tm*dutm*,jl] we have

(5.4) |Hp- (F,y)| < Clogm || Ful|so-

Moreover, if F € Z°(u), s > 0, for m > mg we get

(5:5)  |H(Fvaw,y) — Hye(F,y)| < Clogm (%)S“ﬂ

ZR(u)y

where C is a positive constant independent of m, y and F'.
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Coming back to the evaluation of the coefficients of system (4.10), we
can approximate the integrals

/ 77(331,15) V ’lU(t) dt
R =

in (4.11) by means of the rule in (5.3) and then the corresponding
error is given by (5.5). In fact we have z; = ,,;(w) € [—zj,z;] C
[—tm,j1»>tm,j) and, moreover, for every x; we can choose m* such that
the zeros tp,« 1 of py+(y/w) are sufficiently far from ;.

Hence, setting
Lo (21, ) = k(z1, 2i) + VHpe (N, 1),

we obtain the new matrix

56 A= (8 @) S )

i,l=—j

But Zj is a perturbed matrix of A; of system (4.10). In fact, under the
hypotheses of Theorem 4.3, by virtue of (5.5), we get

~ am S
(57) 14; - Bl < 0(22) ogrm

for m > mg. Moreover, Theorem 4.3 and inequality (5.7) imply that

(see, for instance, Proposition 3.3 in [6]) the matrix A; is invertible
and

lim cond (4;)

=1
m—oo cond (4;)

Namely if system (4.10) admits a unique solution £*, so also does the
linear system

(5.8) A =b.

Concerning the evaluation of the integral in

L(z,y) = k(x,y) + ,//R %yw(t)dt,
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which appears in the definition of the Nystrom interpolant, we first
observe that

(5.9) |yl < Oam (V) ~ tim,j,

implies m > (|y|/fcq)®. For instance, if « = 2, # = 1/2 and y = 50,
we should take m > 2500; but with such an m we cannot compute the
Christoffel numbers A, ;(v/w) and the zeros t,, ;. Then in this case
the rule in (5.3) cannot be used.

Therefore, since m is given by the Nystrom method, if y satisfies (5.9)
we will use (5.3); otherwise, we will consider the simpler rule (see [19])

(5.10) H(FVw,y) = > Amip(vVw 1:( Z)/erm(F,y),

[k|<j1

where, for every F € Z°(u), s > 0 and 8 > 1, we have

(5.11) enal =0 (22)).

Let f* be the solution of equation (4.1). We denote by £** is the
solution of (5.8) and f:* is the corresponding Nystrém interpolant given
by

(5.12) £ ) = g(y) +u > A(w) ml’ L (@03) o,

[1<i )

where by I',,« (27, y) we denote the approximation of I'(z;, y) obtained
using either (5.3) or (5.10).

Under the assumptions of Theorem 4.3, by (5.5) and (5.11) we get

(5.13 7 giclulle < €(%2) g,

where n = |M/2|, M ~ m and C is independent of m and f. Namely
the rule H,,« (F,y) introduces only an extra log m factor in the estimate
of the error of the Nystrom method.
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6. An application to Cauchy equations. Let us consider a
Cauchy singular equation of the form

@) .
o) F0 - [ e [ e Val)f @) i = 5),

yeR,
where v € R and k(z,y) := 7(z, y)y/w(y) satisfies the condition

(6.2) sup u(z)||ke| 2z (u) < 0.
zeR

We assume that equation (6.1) admits a unique solution in LP,
1 < p < 0o. Using an argument in [22, page 173], applying the Hilbert
transform to both sides of (6.1) and using the reciprocity theorem, we
get

HF,) +vnf(y) v [ Y20 [ [ 705w dx} dt

R t—Y
=M (9,y)-
Then, by using (6.2), we have
(6.3) H(f,y)+vr’fly) — Z//Rf(m)w(m) [/R % ‘yw(t) dt] dz
=H(9y)-

Combining (6.3) and (6.1), we obtain the following Fredholm equation
equivalent to (6.1)

(6.4)
1) - s [ ey v [ TEVED @t
= 15220t T et G )

Note that equation (6.4) is of the form (4.1), setting

14

(65) H= 1 + 1/277'2’

F(w7y) = T(CE, y) \% w(y) +vH (Tz\/wa y) )
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and

1

(6.6) g(y) = 15202

[9(y) +v# (9,9)]-

Therefore the method described in Section 4 can also be used for
solving equation (6.4). In this case Theorem 4.3 becomes the following
proposition.

Proposition 6.1. Assume that equation (6.4) admits a unique
solution f* € Cy for any g € C,,, where u is the weight given by (2.1)
with B > 1/2. If for some s > 0 the function T fulfills the assumptions
of Lemmas 4.1 and 4.2, the function k(z,y) := 7(z,y)\/w(y) satisfies

sup U(Z)HkZHZ;X’(u) <oo, z¢€ {xvy}v

zER
and the function g in (6.6) belongs to Z2°(u), then the corresponding
linear system in (4.10) has a unique solution &* for m > mg and its
matric of the coefficients A; is such that

(6.7) sup cond (4;) < sup cond (I — pK,) < co.

m>mo m>mo

Moreover, for the Nystrom interpolant f, defined by (4.12), the esti-
mate

(6.8) IF* — Flullo, = 0((7))

holds, where n = |M /2|, M ~ m is defined by (2.12) and the constants
i “O7” are independent of m and f.

Concerning the assumptions on the function k(z, y) := 7(z, y)1/w(y),
we remark that if the parameter « of weight w in (2.8) is an even integer
or it is sufficiently large, then k belongs to the same class of 7, as a
function of y (see Example 3). Otherwise, if o is not an even integer
or it is “small”, the class of k is very large (see Example 4).

From a numerical point of view, we note that if an explicit form of
the Hilbert transforms in (6.5) and (6.6) is not known, we can use the
method described in Section 5.
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7. Numerical examples. In this section we show some approx-
imations of the weighted solutions of integral equations of the forms
(3.1), (4.1) and (6.1). Accordingly to Theorems 3.2 and 4.3, the inte-
gral equation which we are going to consider should admit solution in
a space Cy, where the parameter § of the weight u in (2.1) is greater
than 1/2. Moreover, since in Examples 2, 3 and 4 we want to use the
quadrature rule Hy,~(F') in (5.3), we need 8 > 1.

For a fixed parameter 6 € (0,1) and with j defined by (2.11), in
the following examples we will denote by A; and Zj the matrices of
the coeflicients of systems (3.7) and (5.8), respectively. Moreover, f
and fr* will stand for the corresponding Nystrom interpolants given
by (3.8) and (5.12), respectively, (here in the notation we omit the
dependence on the truncation index j).

Since the exact solutions of the equations are not known, in the tables
we will report only the digits which are correct according to the value of
the weighted approximate solution obtained for m = 512 in Examples
2 and 3 and for m = 400 in Examples 1 and 4.

All the computations have been done in double precision arithmetic.

Example 1. Let us consider the Fredholm integral equation

1 [ (1+22)f(z)e =
) - Z/R V(1 + 2% +42)
This equation admits a unique solution in the space C,, with u(z) =
(1 + |z|)e~1#/*/2. Choosing 6 = 2/5, as shown in Table 1, the machine
precision in double arithmetic is obtained solving a linear system of

order 2j = 132. Moreover, the matrix A; of the coefficient of system
(3.7) is such that

dz = arctan(1l + y).

cond (4;) < 1.6304.

Example 2. We consider the integral equation

fly) — 1—10 /RF(:U, y)f(al:)e_””2 dz = arctan(1 + y),

1 e—t7/2
- _ dt.
(z,y) (1422 +y?)5 +/R (1+a? +2)5(t —y)

where
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FIGURE 1.
TABLE 1.
m |25 | (/5u)(07) (Fu)(2) (Fu)(—1)
16 6| 1.7 7.1le—2 l.e—1
32 14 | 1.715 7.15e—2 1.49¢—1
64 26 | 1.7157 7.1587e—2 1.496e—1
128 52 | 1.715725 7.158741e—2 1.496905e—1
256 | 106 | 1.7157253048945 7.1587419268479%¢—2 1.496905171886¢e —1
320 | 132 | 1.715725304894554 | 7.158741926847953e—2 | 1.496905171886349¢—1

This equation is uniquely solvable in the space C,, with u(z) =
(1 4 ||)®/2e **/2. Choosing § = 1/4, we get the machine precision
for 25 = 152, as we may notice in Table 2. Moreover, the condition
number in infinity norm of the matrix A; in (5.6) is such that

cond (4;) < 1.3722.

In Figure 1 we show the graph of the weighted approximate solution
f326u, with a max absolute error of the order of 10711
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TABLE 2.

m | 2j | (fr'w)(0-5) (fmrw)(2)

16 6 | 1.42 8.6e—1

64 | 20 | 1.4243 8.60e—1
128 | 40 | 1.424344 8.606993e—1
256 | 80 | 1.4243444912 8.606993172e—1
384 | 122 | 1.4243444912311 8.6069931722905e— 1
480 | 152 | 1.424344491231125 | 8.606993172290570e —1

Example 3. Proceeding as described in Section 6, we can show that
the Cauchy singular equation

1 arctan(y + 1)e=v/2e=" y
- dp = —2

with v = 1/10, is equivalent to an equation of the form (6.4). To be
more precise, it is equivalent to

(7.1)
2 - 2/2 2
fly) — H—ﬁ /R {T(x,y)ey /2 —|—V/R %dt] f(z)e ™™ dzx
=9(y),
where
(2,y) = arctan(y + 1) 7 oly) = y+um

4+ 22 (L+v272)(1 4 y?)

since the Hilbert transform of the function §(y) = y/(1 + y?) is known
in an explicit form. Equation (7.1) has a unique solution in C,, with
u(z) = (1 + |z|)%e ="/2. In Table 3 we show that, choosing 8 = 1/5,
we obtain the machine precision solving a linear system of order 98.
Moreover, the matrix A;, given by (5.6), of the linear system is such
that

cond (4;) < 1.0749.
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TABLE 3.
m | 2j | (f'w)(0-5) (fru)(=0-2)
16| 41.19 1.50 — 1
64 | 16 | 1.19144 1.5094e — 1
128 | 32 | 1.1914477 1.509439¢ — 1
256 | 64 | 1.191447774598 | 1.5094391534e — 1
384 | 98 | 1.191447774598290 | 1.509439153480904¢ — 1
TABLE 4.
m | 2j | (fpw)(=03) | (fmrw)(0.1) | (frrw)(0.7)
16| 6 2.62 1 7.3¢ — 2 ~1.55¢ — 1
32| 14|2627e—1 |7.38Te—2 | —1.555e—1
64 | 26|2.62772¢—1 | 7.38Te—2 | —1.55523¢ — 1
128 | 52 | 2.627726e — 1 | 7.3878¢ — 2 | —1.555236¢ — 1
256 | 106 | 2.627726e — 1 | 7.3878le — 2 | —1.555236¢ — 1

Example 4. Finally, we consider the Cauchy singular equation

1 e—lel®/2 4 1
— + r)dr = —,
f) /R[ﬂc—y (1+w2+y2)5]f( ) 1+y?
which is equivalent to the Fredholm equation
1—my

(12 10 - 1557 [ M@ f@e " o=
where

_1t13/2
D) = rape b7+ [ T
R t—y
_ e\z|3/2 +/ e(‘z|3+|t|3)/2
= (1+$2+y2)5 R(1+w2+t2)5(t_y)

Equation (7.2) has a unique solution in C,, with u(z) = (1 + |z|)

(14721 +y2)

dit

e ltP/2 g

3/2

e~ 12°/2 Since the functions 7 and

ez +1yl®)/2 Y
5= €
(1+$2+y2)5

k(z,y) = 1(z,y)Vw(y) =
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satisfy the assumptions of Proposition 6.1 with s = 17/4, the theoretical
error converges with order m—17/6logm. This error is confirmed by
the numerical results in Table 4, obtained for § = 2/5. In this case the
matrix of the linear system is such that

cond (A4;) < 1.4799.
8. Proofs.

Proof of Proposition 3.1. We first show that K is a continuous
operator from C, into C\,. By hypotheses, for any y € R, we have

K u(0) < | fulle supu(e) [l [ G2

< Cllfulloe
Now, for any fixed z € R, let P, »(y) be the polynomial of best

approximation of k,(y) in Cy of degree m, namely [|(ky — Ppn,o) ul , =
E(kz)u,0o- For every f € C, we have

(K e < sup u(y) \ [ 1) Paa(@)l 1@t d
yER R

dz
< sup u(z)E, (kz)u.co uoo/—.
< sup (@) Em (k) u,c0l[ full (T 2D?

Since 8 > 1/2, it follows that

—— 7 < Csup u(z) B (ks )u,c0
Fullo = O 528 () Em(ks)

from which we deduce

Em K u,00
lim sup & =0,

m=jec,  |[fulleo
by virtue of (3.4). Namely K is compact (see [21, pages 44-45,
93-95]). o
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Since Theorem 3.2 is a consequence of Lemma 3.4, we first prove this
last one.

Proof of Lemma 3.4. Inequalities (3.18) and (3.19) can be proved
using the same arguments as in the proof of Proposition 3.1. Let us
first prove (3.18), i.e., K,, is (with respect to m € N) a uniformly
bounded operator from C, into C,. By hypotheses, for any y € R, we
get

(Ko ) ()| u(y) < || fulloo sup u(@) [lksull o > Aégujz))
z€R <i W

dz
< ||ful|loo sup u(x) ||kzu /—
<l supu(e) ol | oo

< Cllfullo

and (3.18) follows.

Now let us consider (3.19). Let P, ;,(y) be the polynomial of best ap-
proximation polynomial of k., (y) of degree n, namely, ||(kz,— Pn,2,) ul|
= By (ke,)y 00+ For any f € Cy we have

En(Kmf)u,oo < Z [kzz (y) - Pn,zz (y)]f(ml))‘l(w)

<

dz
< ||ful|loo su uxEnkzuoo/i.
< fulle s0p u(@) Bk | e

For m,n > 0 arbitrary integers, it follows that

M < Csup u(z)En(ky)u,co, C# C(m),
Il fulloo ¢cR ’

and then, by (3.11), we deduce that

. En(Kmf)u,OO _
lim sup sup —————— =0,

n=meN fec, |1 fulleo
uniformly with respect to m € N, namely, {K,,}» is collectively
compact.
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In order to prove (3.20), we use Proposition 2.1, with o = u?. Then,
for any f € C),, we get

8.1) (Kf—Enf)ull
<C Slelgu(y) {EM(kyf)uz,oo + e_AmHk‘yuHmeuHoo}

< Cl|fulloo sup u(y) {En(ky)U,oo + eiAmHkyuHOO}
yeR

+C En(f)u,oo sup u(y)HkyuHoov
yeER

where n = |M/2|. By assumption (3.11) and inequality (8.1), we
obtain (3.20).

Finally, let us prove (3.21). By (8.1), (3.18) and (3.19), we obtain

(K = Kopn) Ko (f)ullo

< CllKm(f)ulloo Slelguw) {En(Ry)u,co + e 4| kyul o0 }
Y

+ CEn(Kn f)u,c0 sUp u(y)[lkyull oo
yeR
< Cllfulloo Slelgu(y) {En(ky)u,co + €| kyull oo }
Y

+ C [ fullso sup u(@) Ep (ke )u,c0 sup w(y)|lkywlo
z€R yER

and (3.21) follows. O

Proof of Theorem 3.2. By Lemma 3.4 and Theorem 4.1.1 in [1, page
106], the operator I — uK,, is invertible for m > mg. Moreover, the
matrix A; of the coefficients of system (3.9) is such that (see [1, page
113])

1451 < (I = pEom]|

and
|47 < | - ns) |

hence
cond (A4;) < cond (I — pKy,).
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Finally, since for m > mg we have

17 = fadulae < (2 = ) | 1K = o) £l
< C (K ~ Kn) e,

inequality (3.14) is an immediate consequence of (8.1). o

Proof of Corollary 3.3. We have only to prove inequality (3.17). By
(3.14), for m > myg, we get

8.2) "= falullo

<cC {Ilf*UIoo up () En(ky Juroo + En(f* oo SUD u(y)llkyulloo} ,
yeR yER

with n = |[M/2] and M ~ m.

Let us consider the first summand at the right-hand side of (8.2). By
(2.7) and the hypotheses, for r > s, we get

aw/mQr(ky, 8
sup u(y) By Juoo < Csupuy) [ e g5
yeER yeER 0

a S
<cl= k '
< < - > sugu(y) | y”zgo(u)

ye

(8.3)

On the other hand, g € Z>°(u) and k; € Z2°(u) imply f* € Z2(u).
Therefore we obtain

an/n r *
0

Ay, y %
<c(%) 17 Nz

Combining estimates (8.3) and (8.4) in (8.2), inequality (3.17) follows. O

(8.4)

In order to prove Lemma 4.1, we need some known results.
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We note that for a “small” h > 0 and z,y € Z;, = [~ Ar p—l/(a=1)
ArhY(@D] A > 1 and r € Zt, we have

(8.5) 2z —y| < Ch = u(z) ~ u(y)

for any 8 > 0, namely, for any value of the parameter 5 of the weight
win (2.1).

Moreover we recall that the r-th finite difference, defined by (2.2), of
the product of two functions F' and G is given by

(8.6)
AR(FG; ) = ; <:> Aj, <F;m+ r— i]%)A;—i <G;x zg>
:AZ(F;x)G<xrg>

r—1
] . h r—1 h
—i—Z <Z> A}L(F;w—i— [r—z]§>Ah (G;m—z§>.
i=1

Finally, if a function F' admits the i-th derivative, we have

(8.7)
' h/2 h/2
|A;I(F;;[;)|: / / FOz+ s+ +s;)dsy - ds;

—h/2 —h/2
= / F(i)(:v—i-C)dC‘
T;
and then
: ht |FO)(z)
(8.8) AL (Frz)| = Q

1!
with 2,7 € Z), and |z — Z| < ih.

The next lemma was proved in [7] (see Lemma 2.5).

Lemma 8.1. Let 1 < p < oo, and let u(z) = (1 + |z|)Pe1*1"/2, with
a>1,8>0. For every P € P, and 8 > 0, we have

(8.9) 1Pull o,y < Ce ™| Pull,,
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with Jy, = {x € R : |z| > (14 0)am}, C and A positive constants
independent of m and P.

Proof of Lemma 4.1. Let x € R be fixed. Since the Hilbert transform
is bounded in LP-spaces, 1 < p < 0o, and since 8 > 0, we have

(8.10) [# (nevw) ul|, < C|H (nev/w) ||, < Cllnsull,.
Now we want to estimate the main part of the r-th modulus of

smoothness of ¥, = H (1,1/w) with step §, where r = |s + 1/p| + 1.
For any 0 < h < §, we can write

(8.11) ||AZ [H (n:v/w)] U’HLP(Ih)

: </z “(o) /I %dt dy)l/p
+ (/Ih U(y)/R\Ih %ﬁmt)dtl’dy>up

=: A1 + AQ.

Let us denote by X}, the characteristic function of the interval Z;. By
the same arguments as used to derive (8.10), we have

A1 < [ [ ()]
<c|aq vy @+l
Moreover, using (8.6), (8.8) and (8.5), we obtain
(8.13) A (rvw) (1+1-1)|
< CllAL (n2)ull Loz,
1

r—

+CZ

i=0
C A% (na )UHLP(Ih)
_ ' ' .
+C h’"_l</ A’(w;t—i-r—i—)ur_it
g [ 184 (st + 1= 15 Juesto)

= C{IIA} (1) ull o+ So-1 (12) }

(8.12)

Lp Ih

P \1/p
dt>

<nz,t+[T—l]h>hT ) (14 i)

P 1/p
dt>
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Concerning S,_1 (1), by (8.7), it follows that

r—1

Sp—1(ns) < Zh”’(/z

=0 h

r—1
S C hr—i /

hence, by the Minkowski inequality, we get

P 1/p
ubl_(t) dt>

P 1/p
dt> ;

/ 0t + ) dC
T;

[ A+ Ou e+ ac

S, 1(ne) < C S AT / ‘ Oy, d
1(72) ; - n Lo(Th) ¢
(8.14) -
<Ch™Y I ur—i]lp-
i=0

Finally, combining (8.12), (8.13) and (8.14), we obtain
r—1 )

819 A< {1850, X 10l ).
i=0

Now, let us consider the term A;. Using the same arguments as in
the proof of (8.12), we get

(8.16) Az < |[H[(1 = xn) AF (nev/w) ] ul|, < ClineullLr(gy),

where J5 := (—o00, —Ar /(=) U (Ar /(1= 100), A is a positive
constant and h < 4.

For any fixed § and for some 6 > 0, we choose

Ar \“
N = a/(l—a) ~ a/(l—a)'
(i59) o] ~o

Hence § ~ ay/N and N > 6~ 1. By (8.9), for every Py € Py we have

Imeul|Le(75) < (e — Pn)ulle(gs) + | PnullLe(gs)
< ||(ns — Pw)ullp + Ce™ 0" || Pyull,,
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where A > 0 is a constant. Taking the infimum on all Py € Py and
using (2.4), from (8.16) it follows that

(8.17) Ay < C{w (e, O)up + ¢~ Imauly }

Combining (8.15) and (8.17) and taking the supremum on all & € (0, ],
we obtain

(8.18) Q" (3 [n.v/w] ,3)

u,p

r—1
_ -1 i
sc{w(nz,mﬂe A3 ||nzu||p+afz||ny>ur_i|p}-
=0

Dividing both sides of (8.18) for §**/P and taking the supremum on

all § > 0, we have H(n.v/w) € Z{,, , (u) for any = € R.

Moreover, using the results in [8], it follows that H(n,/w) € Z2°(u)
(see also [10]). Then, multiplying by u(z) and taking the supremum
onall z € R, we get (4.6). 0O

Proof of Lemma 4.2. We prove that ¥, satisfies (4.9) only for y > 0,
the other case being similar. We can write
(8.19)

LT [
=: Ay (z) + As(z) + As(z).
Concerning A, (z), we have

(Y () Vw(t) — nz,y)w(y)
A1<m>—/y_1 L at

ytl %{ /yt % [n(a.v) V)] dv} dt

/
8.20 vt
(8:20) /y 1 {

]
&
&
+
P
&
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For x € I, with r > s and 0 < h < §, we get
(8.21)
y+1 Yy

u(@) A (By; )—/ LY @) AL (s 2) o) dw dt

ylt_

v 0 _ul)
<[ / 185 () = dvat
- b7

y+1
< sup u(v)Q" ﬁv,éuoo/ /
UGR() (M0, 0),, . yy1+|v

< C sup u(v)Q" (M, 9)
vER

u,00

and, analogously,
(8.22) wu(z)A}(Bg;x)

y+1 9 Yy
= / —— | uz)AL (no; ) (14 [v))*  Vw(v) dvdt
y

1 t—=yJi
< C sup ug (v)Q" (1,0),, o -
veER ’

Combining (8.21) and (8.22) and taking the supremum on all z € 7y,
we obtain

854Dl ) < € 5P {0 (s, o + (O (1 8)y -

Then, taking the supremum on all h € (0, 4], it follows that
(8.23)
(A1, 8)u00 < O sup {097 (0,8) 1 0 + 1 (0)27 (1058), 00 }
ve

Now we estimate the term As(z). We have

+o0 AT : ;
u(z) |AL(Az; z)| = / u(z) AR iﬁi z) \/w(t) "
y+1 Y
+o00 dt
< ) (N, ) oo _de
< sup u(t)2 (. 0), /yﬂ S -

< C supu(t)Q" (¢, 0)u,00
teR
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Taking the supremum on all z € 7, first and then the supremum on all
h € (0, 4], it follows that

(8.24) Q"(A2,0)u,00 < Csup u(t)Q" (M, 0)u,00-
teER

Proceeding as was done for As(z) we get

(8.25) Q" (As,0)u,00 < Csup u(t)Q" (N, 0)u,00-
teR

Combining (8.23), (8.24) and (8.25), we obtain
(8.26)
0 (,.0) 0 < C sup (U0} (710), o + 01(0)Y (1,20),. ..}
vER

for any y € R. Dividing both sides of (8.26) by 6°, r > s, and taking
the supremum on all § > 0, we get

Qr (v
(8.27) sup L C e < C.

5>0 (o

On the other hand, in an analogous way we can prove that

(8.28) 1yulle < © sup {u(®) |[oullo +ua(0)lmoulloc} -
Thus, combining (8.27) and (8.28), we obtain (4.9). O
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