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ABSTRACT. In this paper, multilevel augmentation meth-
ods with compression technique are developed for solving ill-
posed integral equations. The methods are based on the com-
bination of Lavrentiev regularization and multiscale Galerkin
methods, and lead to fast solutions of the discrete equations.
We provide a priori error analysis for the methods, propose
an a posteriori regularization parameter choice strategy us-
ing compression technique, and establish optimal convergence
rates for approximation solutions. Finally, numerical results
are presented to illustrate the efficiency of the method.

1. Introduction. Many problems in science and engineering can
be formulated as ill-posed Fredholm integral equations of the first
kind. These equations are normally treated by regularization methods
such as Tikhonov regularization and Lavrentiev regularization (see, for
example, [11, 12, 22]). When solving the regularization equations
by iteration methods or using discrepancy principles to determine the
regularization parameters, we have to solve the regularization equations
repeatedly, so developing an efficient fast solver for numerically solving
such problems is an important and challenging task. This is what we
try to do in this paper.

Multilevel methods are popular for the solution of well-posed prob-
lems such as Fredholm integral equation of the second kind (see, for
example, [1, 4, 5, 9, 21] and the references cited therein). These
methods have considerable advantages and have been becoming stan-
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dard approaches in applications. However, little is known about the
behavior of multilevel methods when applied to the solution of ill-posed
problems (cf. [23]). Some significant attempts have been made to de-
velop multilevel methods for ill-posed problems. For examples, multi-
level preconditioners for solving ill-posed equations were developed in
[13, 15, 16]. Wavelet and multilevel algorithms for ill-posed problems
were studied in [10, 17, 18, 23, 24]|. The compression technique for
self-regularization by projection methods was applied in [14]. In [7, 8]
multilevel augmentation methods for solving ill-posed operator equa-
tions were developed by making use of the multiscale structure of the
matrix representation of the operator. It is shown that multilevel meth-
ods lead to efficient, stable and accurate solvers for ill-posed problems,
which are faster than standard methods and preserve the convergence
rate. This paper continues the general theme of recent work in [7].
The multilevel augmentation method is developed by combining the
compression technique. It will be shown by theoretical analysis and
numerical experiment that the compression technique speeds up the
multilevel augmentation method greatly, preserves the optimal conver-
gence rate and does not ruin the a posterior: regularization parameter
choice strategy presented in [7].

This paper is organized as follows. In Section 2, we describe the
multiscale Galerkin method with compression technique for numerically
solving Lavrentiev regularization equations of the first kind ill-posed
integral equations and present convergence analysis for approximate
solutions. We develop the multilevel augmentation method in Section 3
by using the multilevel decomposition of the truncated operator and
provide a priori error estimates. In Section 4, we develop the a
posteriori regularization parameter choice strategy presented in [7]
by using the compression scheme described in Section 2. Optimal
convergence rate is established for the multilevel augmentation solution
obtained by using the a posteriori regularization parameter. Finally in
Section 5, numerical results are presented to illustrate the efficiency of
the method and confirm the theoretical results of this paper.

2. Fast multiscale Galerkin methods for Lavrentiev regu-
larization. In this section, we describe the fast multiscale Galerkin
method for solving ill-posed integral equations of the first kind via
Lavrentiev regularization and present the convergence rate for the trun-
cation scheme.
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Suppose that E C R? is a bounded domain and X := L?(E) with
inner product (-,-) and norm || - ||. Let A : X — X be a linear and
positive semi-definite compact operator, that is, (Az,z) > 0, for all
z € X. We consider the operator equation of the first kind

(2.1) Au = f,

where f € X is given, u € X is the unknown to be determined, and the
operator A is defined by

(Aw@ﬁiéK@Jm@ML scE,

with the continuous kernel K(-,-) € C(E x E).

Since A is a compact operator defined on an infinity dimensional
space, equation (2.1) is ill-posed. For f € R(A), we let u € X denote
the unique minimum norm solution of equation (2.1), that means

(2.2) Au=f and |u]| = inf{||v|: Av = f,ve X}

In fact the accurate data f may not be known and instead we have a
noisy data fo € X satisfying

(2-3) IF° = fll <,

where § > 0 is a given small number. In general, the solution of (2.1)
does not continuously depend on the right-hand side, so we cannot
expect that the solution of (2.1) with f replaced by f9 is closed to @
even if ¢ is small enough. The Lavrentiev regularization method is one
of the popular methods to obtain a stable approximation of equation
(2.1). That is, for @ > 0, we solve the equation

(2.4) (aZ + Ayl = f7.
Since A is positive semi-definite, we have
(2.5) [(aZ+ A7 <™t

Thus for any given a > 0, equation (2.4) has a unique solution u% € X.
It is well known that
lim |jué — 1| = 0.

a—0
sa"t—0
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Moreover, if & € R(A") with 0 < v <1, then
(2.6) lua — 4|l < ev]lw||e”, and ||u5a — Uy < ot

where & = AYw and ¢, is a constant depending only on v (see, for
example, [12]).

Now we describe the multiscale Galerkin method for solving the
regularization equation (2.4). First we need a multiscale partition of the
set E. Let N:={1,2,...}, Ng :={0,1,2,...},Z, :={0,1,... ,n—1},
and let p© > 1 be a positive integer. The multiscale partition of E
consists of a family partitions {E; : i € Ny} having the properties that

E; .= {Eij 1 j € Ze(i)}; 1€ No,

U Ej;=E  meas(E;;nEy)=0, jj €L Jj#7i;
JE€Ze(s)

and

meas (Elj) ~ d;ia e(z) ~ ,u'ia di ~ ,Ufii/da i € Ny,
where e(7) denotes the cardinality of E;, and d; := max{d(E;;) : j €
Ze(i)}. Moreover, the sets E;; are all star-shaped, i.e., E;; contains a
point such that the line segment connecting this point and any other
point in it is contained in itself.

We next describe the multiscale space decomposition. For each
n € Ny, let X,, be the piecewise polynomial space associated with
the partition F,, with total degree less than k, £k € N. Then we have
Unen, Xn = X, X,, C Xy41, n € Ny, and s(n) := dimX,, ~ p". For
each i € N, let W; be the orthogonal complement of X;_; in X;, then
w(i) := dim W; ~ p'. For a fixed £ € N and any m € Ny, we have the

multiscale decomposition

(27) X€+m = XZ EBJ_ W£+1 EBJ_ v EBJ_ W€+m-

For each n € Ny, we let P, : X — X,, be the linear orthogonal
projection, we have that there exists a positive constant ¢ such that for

any u € H*(E),

(2.8) llu = Prull < cdp|ulli-
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Let A, := P, APy, f3 := P,f°, the Galerkin method for solving
Lavrentiev regularization equation (2.4) is to find ug’n € X,, such that

(2.9) (o + Ap)ul,, = .
Since A,, is also positive semi-definite, we have (cf. [7])
(2.10) [(aZ+ Ap) Y <at,

and equation (2.9) has a unique solution.

To develop fast multiscale Galerkin algorithms for solving equation
(2.9), we require the multiscale bases for X,,, denoted by {w; ; : (4,7) €
Un} where U, = {(i,j) : j € Zy),i € Zni1}, have the following
properties.

(i) There exist positive integers p and r such that for every i > r
and j € Z,(; written in the form j = vp + s, where s € Z,
and v € Ny, w;(z) = 0, when = ¢ E;_,,. This means that
supp w;,; C Siyj = E,;,-y,,.

(11) For any (i,j), (i/,j/) e Uy, (wm,wigjﬁ = 6(@',]‘),(1”,]")- This leads
to that for any polynomial p of total degree less than k, (w; ;,p) = 0.

(iii) There is a positive constant ¢ such that for any (i,7) € U,,
[wijlloo < cpl?.

We remark that the construction of such bases can be seen in [3, 5,
20].

With the bases {w;; : (i,j) € U,} for space X,, the multi-
scale Galerkin scheme for solving equation (2.4) is to find ui’n =
D) EUn u;-ij (a)w; j € X, such that

> wd (@) (o (wi g, wir ) + (Awg g, w o)) = (fo,wir )
(2.11)  (j)eutn
(i',5") € Uy,.

Denote
En(@) = a[(wig wi i) ), 5y et

A” = KA“’@'J"wi’*i’”(z’,y’),(i',j')eun ’

(@) = (@] ca
B i (e
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then equation (2.11) can be written as

(2.12) (B, () + A,) U (a) = FS.

n

We now describe the matrix compression scheme for solving the
equation (2.12). To do this we require the assumption that K(-,-) €
C*(E x E), and there exists a positive constant ¢ such that

(2.13) DEDYK(s,t)| < ¢, stekE, |a|=]|8=k.

Some related lemmas are outlined in the following, which are similar
to the case using Tikhonov regularization in [2]. We omit their proofs.

Lemma 2.1. If condition (2.13) holds, then there exists a constant
c independent of n such that

|(Aw; g, wir )| < e (didyr )P

This lemma shows that most entries of A, are so small that they
can be neglected without affecting the overall accuracy of the approxi-
mation. To compress the matrix, we partition A,, into a block matrix
An = [Ai’i]i’,iEZnJrl’ where Ai’i = [(Awi,j,wif,jﬁ] nd

truncate each block by setting

J'€2 4 (i1),3 €L (i)’ a

B o
(2.14) Ay = {A“ i+vsm,

0 otherwise.
This leads to a truncated matrix Kn = [KM] . The next
i’,ieZn+1

lemma shows how sparse the matrix A,, is.

Lemma 2.2. If the matriz An 1s obtained by truncation strategy
(2.14), then

N(A,) = O((n +1)s(n)),

where N'(A) denotes the number of nonzero elements in the matriz A.
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Adopting the truncation strategy (2.14), the linear system (2.12) can
be written as

(2.15) (En(a) + Kn) Ul (a) = F2,
where U2 (a)) = [ﬂ?j(a) :(i,7) € Uy] € R5™).

Let .Z,L : X — X, be the truncated operator relative to the truncated
matrix A,, defined by

(2.16) Ane = D A (@wig) w i,
(i4,37), (-3 €U

where Zifjr,ij are the entries of A,,. The linear system (2.15) can be
written as the operator form

(2.17) (o + &)@, = £,
where ﬂi,n =2 (ij)eUs ﬂ?j (@)w;j € X,.

In order to analyze the convergence of the truncated multiscale
Galerkin scheme (2.17), we need the following estimates (cf. [2, 7]).

Lemma 2.3. If condition (2.13) holds, then there is a positive
constant ¢ such that for any n € N

(2.18) A, — An|l < E(n+ 1)p /4,
and
(2.19) |A— A, =0 asn— oo

Lemma 2.4. If condition (2.13) holds, then for 0 < ¢ < 1, a > 0,
there exists a positive integer N such that for any n € N, n > N,

1

= (1—co)a’

(2.20) ' (a7 + 4,) B
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To analyze the convergence rate of the approximate solution ﬂ‘;a’n,
require the following hypotheses (cf. [7]).

(H-1) For some v € (0,1], u € R(A¥), i.e., there is a w € X such that
u=A"w.

(H-2) There exists a sequence {6, : n € Ny} satisfying

we

On ,
(2.21) o0 < =t <1, and lim 6, =0,

0, n— 00

for some constant og € (0,1), such that when n > Np,

(2.22) (Z —Pn)AY|| < a,by, 0<v<2
and
(2.23) I A(Z = Pn)ll < a16n,

where Ny is a positive integer and a,, 0 < v < 2, are positive constants
depending only on v.

We now present the convergence rate for the truncation scheme of
Lavrentiev regularization.

Theorem 2.5. Assume that hypotheses (H-1), (H-2) and condition
(2.13) hold. Let u be the unique minimum norm solution of equation
(2.1), and let @), ,, be the solution of (2.17). Then for ¢y € (0,1) and
a > 0, there exists a positive integer N such that for n € N, n > N,
(2.24)

u—u <
-l € T

+aray||w|

L8 (e Dk gL
(cu|w||a 3 gy (o D ,
0] [0 [0

where ¢ is the constant appearing in Lemma 2.3.

Proof. Let uy and g, be the solutions of equations
(2.25) (aZ + Ayuy = f,
and

(2.26) (0Z + Ayt = Puf,
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respectively. It follows from (2.2), (2.25) and (2.26) that

(O‘I""“Zn)(ua*ﬁa,n) = (Avn*A) (ua*a)"‘(ﬂn*An)a""/PnA(/Pn —I)u,
which with (H-1) yields that
(2.27) g — pm = (2 + A,) " (An — A) (ua — )

+ (A, — AT —PLAZ - P, A w].

By Lemmas 2.3 and 2.4, for ¢y € (0,1), @ > 0, there exists a positive
integer N such that when n > N,

= -1
(2.28) [An — Al < coa, (eZ +An)~7|| < (1-co)a’

and there exists a constant ¢ > 0, such that
(2.29) A, = Anll < &n + 1)p="*4,

Using (2.6), (2.28), (2.29) and (H-2), we conclude from (2.27) that
(2.30)

e = Ganll < II(aZ +A0) "M 140 — Allllua —al

+ [ Ay — Anlll[]
F 1Pl AZ — P)IIIIEZ — Pr) A”|l[|w]l]
—nk/d 1+v
< CunHa + ~I|U’H ( ) +a1aunH9n .
1—cp Co le% l—cy «

On the other hand,

1) [dan = @ ull = 1@ + A) 7 Pulf = )]
2.31 - )
< M@Z +An) HIIPallllf — £1l <

1-— Co E
Substituting estimates (2.6), (2.30) and (2.31) into the inequality

~  ~§ ~ ~ ~ 4
[@ =t nll < (1= uall + [[ua = dagnll + [[Tan = Tanll

completes the proof of this theorem. a
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3. Multilevel augmentation algorithms using the truncated
operator. In this section, we develop the multilevel augmentation
method by using the truncated operator, and provide a priori error
analysis.

Recalling that we have the space decomposition (2.7), we define
Qnt1 = Pny1 — Pn, n € Ny, and write the solution ﬂi,n e X, of
equation (2.17) with n = ¢+ m as

~6 ~& ~4 ~6 ~6

U’a,é—i—m = Z (ua,é-i-m)]' = [(ua,é-l—m)O’ (U’a,é—i-m)l’ et (ua,é-i-m)m]T?
J=Zm+1

where (ﬂi,f—i—m)o € X, and (ﬂi,f—l—m)j € Wyyj, for j =1,2,... ,m. We

also identity the function flfs +m With the vector form

fg+m = [P€f67 Q€+1f57 tre Q€+mf6]T’

and the operator ./Zﬁ_m with the matrix form

PeArsmPe PeAoymQesr o PeArymQeim
Vi Qo1 ArymPe Qer1AeemQer1 -+ Qer1Arym Qom
Lm ‘= . . . .
QZ—Q—mJZZ—Q—mPZ Qe+mvze+m Qo1 - Qe+m.Ze+m Qrtm

As in [6, 7], we split the operator .Z@m into the sum of two operators
Ap o = Aﬁm + Agm,

where AL = PyAyinPrim and AL = (Poim — Po)ArymPrim,
which have matrix forms

PehesmPe PeArimQes1r - PeArimQeim
a, =] 0 v " ,
0 0 ‘ 0
and
0 0 ... 0
— Qo1 AimPe Qo1 At Qer1 -+ Qo1 Ae+m Qetm
tym = . : ) )

QvmArimPe QuvmArimQerr - QermArimQesm



FAST MULTILEVEL AUGMENTATION METHODS 49

For a given parameter o > 0, we set
(3.1)  Bym(a):=T+a *Af,, and Cpm(a) == a "Af,,.
Thus equation (2.17) with n = £ 4+ m can be written as

[ng(O[) + @7M(a)]ﬁi,2+m = ailfliLm‘

The multilevel augmentation scheme for solving (2.17) can be de-
scribed as follows (cf. [6, 7]).

Algorithm 3.1. (Truncated multilevel augmentation algorithm).

Step 1. For a fized £ > 0, solve (2.17) with n = £ ezactly to obtain
ﬁi,@ € Xy.

Step 2. Set ﬂ‘;LO = ﬂi,e and compute Byo() and Cpo(a).
()

a,l,m—1

Step 3. For m € N, suppose that u € Xyym—1 has been

obtained and do the following.

o Augment Eg,m,l(a) and (?gym,l(oz) to form g&m(a) and (?gym(a),
respectively.
)

a,t,m—1 to form

o Augment u

6 662 1
Uatom = | | € Xegme

e Solve ﬂi&m = [(ﬂi&m)o, (ﬂi&m)l, ey (ﬂi7g7m)m]T with (ﬂi,z,m)O
€ Xy and (ﬂil’m)j € Wiy, 7 =1,2,... ,m from equation
(32) ge,m(a)ﬁi,é,m = a_lngrm - @Jﬂ(a)ﬂi,l,m'

In the remainder of this section, we will give an a priori error analysis

for Algorithm 3.1. We already have the estimate of ||u — ﬂi,ZerH in

Theorem 2.5. In the following we estimate ||ﬂi,e+m - ﬂ‘;’&mH. To do
this, we let

(3.3)

- 2—cod aia, + 2a14,)||wl| 11 alall (n+ 1)p—nk/d

o202 )l 057 FE] (ot D

l—cya 1—c¢p « 1—c¢p lo
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where ¢ € (0,1) is the constant appearing in Lemma 2.4, and ¢ is the
constant appearing in Lemma 2.3. Since the sequence {6, : n € Ny}
satisfies condition (2.21), we have

Fa 1
a,n k/d
(3.4) %—ga:—max{m,,u/ }
’Ya,n-ﬁ—l 9o
We will present the estimate of ||1’\L/i7l+e - ﬂi,z,mn in Theorem 3.5.

Before that, we give three lemmas, which are the preparation for the
proof of the theorem.

Lemma 3.2. If condition (2.13) holds, then for any o > 0,
ICe,m (a)|| = 0 as ¢ — oo uniformly for m € N.

Proof. We use Lemma 2.3 to prove this lemma. Since

Cem(a) = é [(7’€+m = Po)Avim + (Peym — Pe)(Argm — Aé+m)} )
we have
(3.5)
ICom (@)l < = [I(Perm = DA+ (T = Pl + 21 Zesm — Asinll]
Because of the compactness of A and the pointwise convergence of P,

to Z,
(Z —Po)A| — 0, asf— oo,

which with Lemma 2.3 and equality (3.5) completes the proof. O

Lemma 3.3. If condition (2.13) holds, then there exists a positive
integer N such that for £ > N and m € Ny, B, *

) m (@) exzists and

1
1= co = [[Cem(a)ll

(3.6) 1B (@)l <

Proof. By Lemma 2.3, there exists a positive integer N € N such
that for all £ > N, m € Ny,

[esm — Al < coa.
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Thus,
10Z + Aprml| > laZ + Al = |A = Apsmll = (1 = co)ar.

Then it follows that

~ 1 ~ ~ ~
(1) W @) = |2 (o7 + Feum) = Con(e)| 2 1-co-Com(a)],

which with Lemma 3.2 leads to the result of this lemma. O

Lemma 3.4. If conditions (H-1), (H-2) and (2.13) hold, then there
exists a positive constant N such that for n > N,

(3-8) g — uall < Vo n-

a,n

Proof. Tt follows from (2.4) and (2.17) that

(3.9)
@, —ul = (aT + A,) T Pufd — (aZ + A1
= (aZ+ A) Y Pu(f — f) = (T + A)~Hf° - f)
+(aZ+ A,) Y (P, - D)f
+ [0+ A~ 0T+ A7 1.

It can be seen from the above equality that we can obtain the estimate
of [|@, ,, —ug || by estimating || (aZ+An) 7 Pr (£~ £)Il, | (aZ+A) (£~
DIl oL+ An) Y (Pn—I)f| and [[[(aZ + An) * = (aZ+.A) 1] f[|. We
will estimate them respectively in the following.

From Lemma 2.4, (2.3) and (2.5) we have

(3.10) 1(@Z + A) P (2 = f)] < %’
Co)x

and

(3.11) @Z + A7 = Il < g'
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Using (H-1) and (H-2), we obtain

~ 1+v
(312) e+ A" (Pa- 1)) < el G

1—co «

Next we estimate ||[(aZ + A,) " — (aZ + A)~!]f]|. Since
(aZ+A,) ' = (aZ+ A) ' = (aZ+ A,) YA - A) (e +A) L,
we conclude that

(3.13) |l[(aZ +A,)~" = (aZ +A)7f|
< (o + Ap) YA = Ap)(aZ + A) 7T A w||
+(aZ + A,) " H(An — Ap) (o + A) AT

By (H'2)7
(3.14) 1(AAR)AY || < (ara, + a14.,)05 ™.

Noting that (aZ+.A4) "1 A¥ = A(aZ+.A)~!, by Lemma 2.4 and equality
(3.14), we have

(3.15) [|(aZ + A,)"HA - A,) (o + A) LA ||

< (@a, +ars)w] 64

1—c¢p le%

From Lemmas 2.3 and 2.4 we obtain
(3.16)

1 g i —nk/d
I0Z + &)~ (An — Ao)(oT + A)~ A < el (0t Du™7

].—CO

Combining (3.10)—(3.13), (3.15) and (3.16) yields the desired estimate
of this lemma. O

The following theorem gives the estimate of ||ﬂi7 ttm ™ ﬂi ¢.m ||, Which
is similar to Proposition 3.3 in [7]. However, we don’t need the

condition on « as Proposition 3.3 in [7], and the proof is different.
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Theorem 3.5. If conditions (H-1), (H-2) and (2.13) hold, then there
erists a positive integer N such that for £ > N, m € Ny,

~0 ~6 ~6
(317) ||ua,€+m - ua,é,m” < 7a,€+m'

Proof. We conclude the estimate (3.17) similar to that in [6] by
induction on m. When m = 0, ﬂi,z,o = ﬂ‘;’z, thus the estimate holds.

Suppose that (3.17) holds for m = r —1; we come to prove that it holds
for m =r.

It follows from (3.2) with m = r and (2.17) with n = £+ r that

(318) Beﬂ"(a)(agz,f-{-r - ﬂéa,é,r) = Cear(a)(ﬂéa,é,r - ﬂi,é-&-r)‘
Using Lemma 3.3 and noting H‘;’“ = ﬂi,e,rflv we conclude that there
is an integer Ny such that, when ¢ > Ny,

B— 5 ~5 ~5
| = 1B 1 (2)Ce.r () (W, g, -1 — Topr)

1Ce,r ()] (2 s
> —= | Ug,o,r—1 — Uy r71H
(3.19) 1—co— [|Cer(a) i

||afx,€+r - ag,é,r

~6 )
+ ||ua,€+r—1 - uaHT

+ ||u5a - ag,é—i—r”)‘
Noting that Lemma 3.4 leads to

~5 ) ~8 § ~§ ~8
||ua,€+r—1 - ua” S 7(1,4—}-7"—17 and ||ua - ua,€+r|| S fYa,é-‘rr?
and (3.4) yields
~0 ~8
’7&,€+7‘71 S U’Ya,Zqu?

we obtain from (3.19) and the induction hypothesis that

ICe.r ()]

~ (l + 20’)&/2,@4-7"‘
1—co = [|Cer(a

(320) g 47 — T el <

By Lemma 3.2, there exists a positive integer N > N; such that for
£> N and r € N,

[Cor@)] 1

3.21 = .
20 1—co—[Cer(a)]] — 1420
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Combining (3.20) and (3.21) we conclude that when ¢ > N,

~§ ~§ ~§
||uoc,€+r - ua,@,r” < 7a,€+7‘7

which completes the proof. o

According to Theorem 2.5 and Theorem 3.5, we get the following
theorem.

Theorem 3.6. If conditions (H-1), (H-2) and (2.13) hold, then for
given ¢y € (0,1) and a > 0, there exists a positive integer N such that
for £ > N, m € Ny,

<
].—C()

~ o~ ]
I = g evllwlla” + (3 = co)

1+v

+ 2(a1a, + arpy ) ||w| ="

(e +m4+ 1)u—(2+m)k/d
o .

+ 2¢]|ul|

4. A posteriori parameter choice strategy. In this section,
we develop the a posteriori regularization parameter choice strategy
presented in [7] by using the truncated operator described in Section 2.

We first consider an auxiliary operator equation. For fixed ¢, m € N,
we consider the equation

(4.1) (aZ + A, = @

a,l,m?
~0

where u, € X, and @’ ,, is the solution using the multilevel aug-
mentation algorithm for equation (2.17). Obviously equation (4.1) has
a unique solution which depends on ¢, m. The truncated Galerkin
method for equation (4.1) is to solve the equation

(4.2) (0Z + Ag+i)lg g1 = Pesi@y gm, 1=0,1,...,m.

~6
We use the notation #,,; to denote the multilevel augmentation

solution of the above equation.
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Let
(4.3)
~5 ) 91—}-1/ _ TL+]. —nk/d
T = @1+ (may + esan) ol - g+ et T
(0% «
where
4—c0—c(2) 3—co 5 —co
cl i= —m8M8M— Cy '= —F——— C3 = —/—
T M=) P =) T (1—c)?

¢ and ¢y are constants appearing in Lemmas 2.3 and 2.4, respectively.

Proposition 4.1. Let a > 0 and § > 0. If conditions (H-1), (H-2)
and (2.13) hold, then there exists a positive integer N such that for
£ > N, m € Ny,

~5 ~5 ~5
(44) Hua,é-l—m - uaH S 7a,€+m’
and for i =0,1,... ,m,
~5

~ ~
(45) ||ua L ua,f—i—i“ < ,Ya,l-i—i‘

Proof. Tt follows from (4.1) and (4.2) that

ﬁﬂmﬁi<ﬂ+mm>me — (T + AT,
(4.6) = (0T + Apym) ™ (@ 0,m = Wepim)
—(aZ+A)" (ie ~ g psm)
+ (0T + Aprm) ™ = (o + A) 7@, 44 -
First we estimate ||(aZ + Agpym) (@, oom — Ug €+m)|| By Lemma 2.4
and Theorem 3.5, there exists an N; € N such that for ¢ > N1, m € Ny,

T - 1 o0 ~5 )
(@7) MO+ Aesm) M S oy [T = Tl S Totm

Therefore, when £ > N; and m € Ny,

~ 1
1~ ~5 =6
(4.8)  [[(aZ + Agsm) ™ (Ua,e;m — Ug,eqm) |l < A= cp)a Jettm:
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By (2.5) and (4.7), for £ > Ny, m € Ny,

1
—1/96 ~6 ~6
(49) ||(O[I+ A) l(ua,é,m - ua,2+m)” S E’Ya,€+m'

On the other hand, a simple computation yields that
(410)  [(aZ + Apsm) ™~ (aZ + A) ", 4 4m
= (aZ + Apym) (A = Aprm) (@ + A) @D, g — ud)

+ (a4 Apym) (A= Apm) (0 + A) 7, — ua)

+(aZ + Aprm) M (A = Apsm) (aZ + A) 2.
By Lemma 2.3, there exists an Ny € N such that for £ > Ny, m € Ny,
(4.11) A — Aermll < coa,
which with (4.7), (2.5), (3.8) and (2.6) yields that when N is sufficiently
large, for £ > N, m € Ny,

(4.12) [[(aZ + Apym) (A= Appm) (0T + A) (@ g — )|
Co ~§
S (]_ — CO)a’Ya,Zer?
(413)  [[(@Z + Apgm) (A = Aprm) (0 + A) 7 (ud, — wa) |
Co )

< . .
“1—¢cy o2

We now estimate the last term of the right hand side of (4.10). Noting
that f = Au = AT w, by (4.7), (3.14) and (2.18), we have
(4.14) [I(aZ + Apsm) ™ (A = Apsm)(aZ + A) 7|
< I(aZ + Agrm) M- 1A — Aesm)A”|
eZ+ A)7H - I(aZ + A) T A - [fwl]
+1(aZ + Aerm) M- [Merm — Aesml
IeZ+A) M| l(eZ +.A) A - |2l

_ (may +ai)w] Gt
- 1—c a?

¢l (f-i—m—f—l),u*(prm)k/d
1—co a? )
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Substituting (4.12), (4.13) and (4.14) into (4.10) we see that

(4.15) [T + Aprm) ™" = (aZ + A) & g4

Co ~§ Co
< — +
- (1- co)oz%"“'m 1—co
6 (e el 05
o? 1—co o?

L a@l (et m o+ Hp b

1—¢ a?

Finally, combining (4.6), (4.8), (4.9), (4.15) and (3.3) yields (4.4).
Noting that

~0

Ya,n =6 =4
= <o and Uy 0= Uy
’Ya,nJrl

a similar argument to Theorem 3.5 leads to the estimate (4.5). This

completes the proof. |
Let 5
Aa = 042(OéI+ A)_Qfa Ai,l,m = OéQﬁa,Z,m
and

D(8,0041m) = cad + (c5a1a, + coarsy)||w||0pFY
+ escl[al| (£ 4+ m + 1) EHmIR,

where

7—200—03 6 — 2¢g 10 — 2¢p
(416) Cq i— W, Cy 1= m, Cg i— V(7

We then estimate the difference between A, and gi,e,m'

Proposition 4.2. If conditions (H-1), (H-2) and (2.13) hold, then
there ezists a positive integer N such that for £ > N, m € Ny, there

hold

(4.17) 1A% 4 — Aall < D(S, Oem),

a,lm
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and

(4.18) 1Aall < =77 ulja*.
Moreover, if

(4.19) £l > D(8, 60 1m) + (b+ 1)
for some b > 0, then

. )
(4.20) tim inf A2, .., > b5

Proof. From (4.2), we have
(4.21)
~5

Zi,é,m A, = O‘Z(Ei,e,m - ﬂa,f-‘rm)
+o*(aZ + "Zé‘f‘m)_l(ﬂg,(,m - ﬂéa,e-‘rm)
+a?(aZ + Appm) (@, g4 — Ua)
+?[(aZ 4 Appm)t — (aZ + A)H(aZ + A)7Lf.
By Proposition 4.1, Lemma 2.4 and Theorem 3.5, there exists an N € N
such that for £ > N, m € Ny,

~ A~ =6
(422) ||ua,l,m - ua,€+m|| < Yo, t+m>

(4.23)
1

1 —1/~68 ~5 ~5
H(aI+ A£+m) l(ua,l-i—m o ua,l,m)” < m7a,z+m‘

It follows from (2.17) and (2.25) that

ﬂéa,é-&-m — U = (O‘I + Av€+m)_lpé+m(f5 - f)
(4.24) +(Z + Apim) N Poym —I)f
+[(aZ + Apym) ' = (oI + A)HF.

By Lemma 2.4 and (2.3), (H-1) and (H-2), we have
1 ]

(425) 0T+ Aerm) Pem(f7 = DIl € 7= 2
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(4.26) [[(0Z + Apsm) *(Peym — D) F]|
= (0T + Aps) ™ (Perm — T) A
1l
“1l—c lo

From (3.15) and (3.16) we conclude

(427) [ll(@Z + Apm) '~ (aZ + A)1f|
< I(aZ + Apsm) ™ (A = Agrm) A" (T + A) ™' Aw|

+1(aZ + Apgm) H(Aepm — Arpm) (@ + A) LAl
< 1 [(
(1 =co)a

ai1ay, + al-ﬂ—V)Hw”al}i—:n

+2[@l| (€ 4 m + 1)~ EFmIk/d]

Similarly, there holds

(4.28) [[(aZ + Aprm) ™" = (aZ + A" (aZ + A)7' S|
1
=0 ao?

+3| ][ (€ 4 m A+ 1)~ EFmIk/d]

a1a, + a’1+V)||wH0;-i7’Vn

Combining (4.24)—(4.27) yields that

1 5 1+v
2+ (a1, + 2014wl 22

~6
(129) [T em — ol < =

iy (Em o 1) (EFmR/d

+cllall :
o

The estimate (4.17) follows from (4.21)—(4.23), (4.28) and (4.29).

The proof of estimates (4.18) and (4.20) is similar to that of Propo-
sition 4.2 in [7], which is omitted. mi

We remark that if ||f?]| > ¢§ with ¢ > ¢4 + 1, then condition (4.19)
holds when / is large enough, since

1l = D(8, 8e4m) = 8 = (¢ = ca = 1) = (csaray + coars)|[w]|,
— esCl[al| (£ +m + 1) IR,
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We now consider parameter choice strategy. As in [7], we let £ € N,
7> 0 and d > 1 be fixed, choose a positive number «q satisfying

(4.30) T8¢ < ag < drby,
and define a sequence «,, by the formula
anp =do, 1, n=12,....

We replace Ai,z,m in [7] by ﬁi,e,m defined above and get the following
lemma (cf. [7]).

Lemma 4.3. If conditions (4.19) hold for some constant b > 0, then
there exists an ng € Ng such that

(4.31) ol <08 < ||AS

|| Qng—1, ano,f,mH’

where ||Ei =0.

_l,é,mH

Now we present the algorithm for choosing an a posteriori regular-
ization parameter.

Algorithm 4.4 (A posteriori regularization parameter choice). Let
d>1,b>cy be fired. Input positive integers Startlevel and Endlevel.

Step 1. For a given 6 > 0, choose a positive integer £ € N,
£ > Startlevel such that 6, < ¢§ for some ¢ > 0 and choose a constant
ag such that (4.30) holds.

Step 2. Let m = Endlevel — £. When «, has been defined, use

Algorithm 3.1 to compute ﬂgmﬂm and ﬁin,f,m' If ||ngz7m|| < bd, we
set ap41 = doy,, n:=n+ 1, and repeat this step. Otherwise, go to
Step 3.

Step 3. Set @ := «a,,_1 and stop.

According to Algorithm 4.4, the output @ depends on ¢, m and 4,
and it satisfies

(4.32) 0 <@ <dry and b5 <AL, |,
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or

d,[,m”‘

(4.33) a>rT16, and ||th\7€7m|| <bd < ||£§

Note that (£+m+1)u~¢+™k/ 4 — 0 as £ — +oo uniformly for m € Ny,
we have the following proposition which is similar to Proposition 4.5 in
[7].

Lemma 4.5. Suppose that hypotheses (H-1), (H-2) and (2.13) hold.
Let @ := (¢, m,0) be chosen according to Algorithm 4.4. Then
(4.34) lim a4, m,d) =0,

6—0,—+00

uniformly for m € Ny.
We also quote the following technical result from [7].

Lemma 4.6. Suppose that a > o' > 0. Let u, denote the solution of
(aZ+ A)uq = f and u denote the minimum norm solution of Au = f.
Then,

~ ~ . Aa
(435) It =l < Jltar — @ + 22

We next present the optimal convergence rate for the multilevel
augmentation solution obtained by using the truncated operator and
the a posteriori regularization parameter choice strategy. The proof is
similar to the proof of Theorem 4.7 in [7], and we present it briefly.
The readers can refer to [7] for the detailed proof.

Theorem 4.7. Suppose that hypotheses (H-1), (H-2) and (2.13)
hold. Let u be the minimum norm solution of equation (2.1), and
let u be the approximate solution obtained by Algorithm 3.1 with

[hg)

Q chosen according to Algorithm 4.4. 1If ||f°|| > ¢ with ¢ > ¢ :=
(8 —4co) /(1 — ¢g)?, then there exists a positive integer N and positive
constants ¢ independent of § such that for £ > N and m € Ny,

I, =l < c*/0+).
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Proof. Since ||f?|| > ¢§, ¢ > € = ¢4 + 1, according to the remark
after Proposition 4.2 that there exists an N; € N such that for £ > Ny,
m € Ny, condition (4.19) holds. So @ can be chosen according to
Algorithm 4.4.

By Theorem 3.6, there exists an N € N with NV > N7 such that for
{> N, m € No,

- 1 ~ 0
18-, < 7= |ellwl@” + (3 = o)
14+v
(4.36) +2(a1a, + avp) Jwl| =5
(A m 4 ) EFmk/d
+2lal < :

In the case that (4.32) holds, by Algorithm 4.4 we have
(4.37) a” < (drp)” < (cdrd)” = (cdr)”é"”.

It follows from (4.17) and (4.18) that, similar to the proof in [7], we
obtain that

(4.38)

bé < ||Af;ye’m|| < ||Aa||+||Af;’&m—Aa\| <Y w| @M +D(6, 0ppm).-
We choose the integer IV large enough such that for £ > N, there holds
pk/d

and (04 1)u~*1 < ¢,

where ¢} satisfies c5c||ul/c] + c4 < b. Thus for £ > N, ({ +m +

1)u~+m)k/d decreases as £ increases. Combining (4.38) and (4.39)

we get

(4.40)

b3 < |wl|aM 4 46 + (csara, + c6a14y)||[w]|6,7, + esellal ¢y 6.
Let ¢ := ¢4 + ¢l es¢||u]|. Then ¢y < b. It follows from equation (4.40)

that

b—ch)s R 0,1
(4.41) % < cl(,l_”)/”HwHa” + (e5a1a, + cea140)||w]| % .
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From (4.32), (4.37) and (4.41) we conclude that

5 Cl(jl_”)/” (05(11@1/ + c(ial-I-l/)HU}H
442) 2 cdr)”6” O m:
(142) 3 < =g Iwll(edn)™s”+ (b—ch)7 o

It follows from equation (H-2) and (4.32) that

0}1‘7’; 6€U+m v 06 v 6?+m
(4.43) = =2 Ohm S o0, S
It follows from equations (4.39) and (4.42) that when ¢ is large enough

we have

(4.44)
/¢ 1)y~ (E+m)k/d 5
(L+m+ lu <.l
(6% (8%
) C,(/l—l/)/ll R
< | G IwlGrys”

(csaran + cgartn)||wll
; 9€+m .
(b—ch)T

Substituting (4.37), (4.42), (4.43) and (4.44) into (4.36), we obtain
(4.45) = af:l,mn < dy8” + dob),

where

3 —co +cch|[u]]

/
b—ch

dy == [cy(EdT)” + /v (’édT)"],

i, e Ml [2aray +ariy) (8= o+ e f[ull)(csaran + coarry)
z: T (b—cy)r ’

Without lost of generality we assume that § < 1. This leads to
v < 6u/(1+u)‘

We next consider the case that (4.33) holds. Let o := 6%/ ()46, ..
Then the equation

(4.46) (o) < 2v(8"/0F) gy )

holds.
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If & > o, it follows from (4.39) that

—(e+m)k/d
(4.47) (L+m+ ll,u 1

o o

By Proposition 4.2, Lemma 4.6, Theorem 3.5 and equations (2.6),
(4.29), (4.33), (4.39), (4.46), we can conclude (cf. [7]) that there exists
an N large enough such that for £ > N, m € Ny,

~  ~5 m u’ 0 a
T, < =gl + g =, N+ 1, —

S dl(sy/(l—Hj) + d2021+m7
where

N 3—c 2¢h¢l|lu
dy == 2"¢c,||w|| + b+ cq + cescl|ul| + . cO + =2 [l
—Co

].—Co’

2(a1au + 2a1+u)

v L )

dy := |2"¢c, + csa1a0 + A1+ +

If @ < o/, then by (4.46) the following equation holds:
(4.48) ar < () <2v(67/0) oy ).

It follows from equations (4.33), (4.39) and Proposition 4.2 that (cf.

[7])

1)
(4.49) = < 0" + 40,y
where
. c’(jl—V)/V||de1+V ;o (05a1al, +06a1+,,)||w||
C3 1= ; ) and Cyq = / :
b—ch (b—cy)T

Combining (4.39), (4.48) and (4.36), we obtain

Ha_ ﬂg\emn < dl(su/(l-‘ru) +d292f+m,
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where
di = 1= o e llwl| + (3 — co)ez + creselall],
1
o = 1[0, [ul + 2ara, + ar)[wll /7 + (3= e0) (2 + i)

+ eyl (c52” + €3]

Since 0y4,, — 0 uniformly as £ — oo, we can choose N large enough
such that for £ > N, m € Ny,

Opym < 610,

which with the above estimates of ||z — ﬂﬁi\é m|| leads to the conclusion
of this theorem. O o

5. Numerical results. In this section, we present numerical results
to illustrate the efficiency of the algorithms and confirm the theoretical
results described in previous sections.

We consider the problem of solving the integral equation
(5.1) (Ku)(s) = f(s), se€E:=][0,1],
where K : L?(E) — L?(E) is a linear compact operator defined by
(5.2) (Ku)(s) := / K(s,t)u(t)dt, secFE,
E

with the kernel

1 1, 1.

K(s,t) := 2 cos(—s +1t) + —sin(s +t) — —sin(s + ¢t + 2),

4 4
and the right-hand side

1 . 25 -3 1
f(s).—gsm( 5 >+§cos

1 (25—9
+ —cos| ———

2
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The unique solution of this problem is @(t) = cos((2t —1)/2) —
(1/2) sin((2¢t 4+ 5)/2) +(1/2) sin((2¢ + 1) /2). Since u = Kw with w = 1,
we have that @ € R(K), which means v = 1. In this case, the optimal
convergence rate should be §'/2.

Let X, be the space of piecewise linear polynomials on F with knots
at j/2",j=1,2,...,2" — 1. Asin [6], we decompose X,, into the form
of the orthogonal direct sum of subspaces

X, = Xo® "W ot - atW,,

where Xy = Wy is the linear polynomial space on F, and for ¢ € N,
W, is the orthogonal complement of X; ; in X;. The basis for W,
i = 2,3,..., can be constructed recursively once the basis for W is
given (cf. [3, 20]).

We choose a basis for X,
woo(t) =1,  wo(t):=V3(2t—1), telo,1],

and a basis for W

wrot) :_{6t+1 t€[0,1/2],

—6t+5 te(1/21],
0 —4\/3t +/3 te0,1/2],
wy,1(t) = 43t —3v3 te(1/2,1).

The bases for subspaces W; = span{w;; : j = 0,1,...,2° — 1} are
recursively generated by

() = {ﬁwi—l,j(?t) te€[0,1/2],
T 0 te(1/2,1],
0 telo,1/2],

Wi 2i-145(t) = { V2w 1 (2t —1) te(1/2,1],

where j € Zgi-1.

We complete the computation on a PC with Intel(R) Celeron(R) 2.40
GHz CPU and 512 MB memory. We report in Table 1 the compression
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rate (Comp. Rate) and computational times measured in seconds for
generating matrix A,, and matrix An respectively, where compression
rate is defined as the ratio of the number of the nonzero entries in A,
to that of the full matrix A,,, i.e., N'(A,)/s(n)?. It shows that when n
gets larger the time saved by using our truncation strategy gets more.

TABLE 1. The time comparison between the generation of A, and Kn

n | Comp. Rate | Time for generating A, (sec.) | Time for generating A, (sec.)
6 6.250e — 2 0.1250 0.07800
7 3.516e — 2 0.7500 0.3440
8 1.953e — 2 5.641 1.563
9 1.074e — 2 38.33 6.672
10 5.859e — 3 287.8 26.30
TABLE 2. Numerical results for a priori parameter choice (o = s/ (+v) —

812, £ =5, m=5).

1) 51/2 llu — ui,ler”Lz |[u — ul emllz2 | To (sec.) | To (sec.)
1.000e — 2 | 1.000e — 1 2.038¢e — 1 2.014e -1 296.8 5.031
5.000e — 3 | 7.071e — 2 1.487e -1 1.475e — 1 287.2 5.031
1.250e — 3 | 3.536e — 2 7.739e — 2 7.712e — 1 290.3 5.047
5.000e — 4 | 2.236e — 2 4.975e — 2 4.961e — 2 287.2 5.031
3.125e — 4 | 1.768e — 2 3.956e — 2 3.950e — 2 287.4 5.094
7.813e — 5 | 8.839e — 3 2.002e — 2 2.002e — 2 288.1 5.062
1.953e — 5 | 4.419e — 3 1.009¢e — 2 1.009¢e — 2 287.6 5.047
1.000e — 6 | 1.000e — 3 2.303e — 3 2.303e — 3 287.2 5.031
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TABLE 3. Numerical results for a posteriori parameter choice (d = 3.5, b = 8§,
¢ =6, T =1, Startlevel= 5, Endlevel= 10).

0 Qpost Qprio Ha - aapost’£7m HL2 H/'l; - uiprio’£+m ||L2
1.000e — 2 | 2.538e — 1 | 1.000e — 1 3.748e — 1 2.040e — 1
5.000e — 3 | 7.252e —2 | 7.071le — 2 1.494e — 1 1.488e — 1
1.250e — 3 | 7.252e — 2 | 3.536e — 2 1.349e — 1 7.742e — 2
5.000e — 4 | 2.072e — 2 | 2.236e — 2 4.767e — 2 4.979e — 2
3.125e — 4 | 2.072e — 2 | 1.768e — 2 4.391e — 2 3.954e — 2
7.813e — 5 | 5.180e — 3 | 8.839%¢ — 3 1.839%e — 2 2.003e — 2
1.953e — 5 | 4.533e — 3 | 4.419e — 3 1.025e — 2 1.009e — 2
1.000e — 6 | 9.915e — 4 | 1.000e — 3 2.291e — 3 2.304e — 3

In our numerical implementation, we choose a perturbed right-hand
side fO with ||f® — f||.2 = 6, and an a priori parameter o = §'/11¥ =
61/2. The numerical results are presented in Table 2, where T} de-
notes the time for solving the linear system (2.12) by directly using
LU factorization method and 7> denotes the time for solving the linear
system (2.15) by multilevel augmentation algorithm. The results shows
that optimal convergence rate can be obtained by the a priori param-
eter choice using fast multilevel augmentation algorithm. Moreover,
the multilevel augmentation method with truncation strategy is much
more efficient than the direct method without truncation. We can also
see from Table 1 and Table!2 that the fast multilevel augmentation
algorithm is especially efficient for large scale computation.

Table 3 gives numerical results for the a posteriori parameter choice,
where a gt stands for the a posteriori parameter and a,.;, stands for
the a prior: parameter. The results shows optimal convergence rate can
be obtained by the a posteriori parameter choice suggested in Section 4.
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