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ABSTRACT. In this work we present some results on
deterministic and stochastic integrodifferential equations in
Hilbert spaces, motivated from and applied to problems aris-
ing from the mathematical modeling of electromagnetics fields
in complex random media. We examine the mild, strong
and classical well posedness for the Cauchy problem of the
integrodifferential equation which describes Maxwell’s equa-
tions complemented with the general (and therefore nonlocal
in time) linear constitutive relations describing such media,
with either additive or multiplicative noise.

1. Introduction. The propagation of electromagnetic waves in
bianisotropic (general linear) media is the subject of many studies, and
numerous references are available in the literature. Bianisotropic media
find a wide range of applications from medicine to thin film technol-
ogy. The mathematical modeling of such media is done through the
modification of the constitutive relations for the well known Maxwell’s
equations in a region  C R3, ¢t > 0:

(1) %—? —curl H = —J,, %—f +curlE = —J,,

where E is the electric field, H is the magnetic field, D is the electric
displacement, B is the magnetic induction and J., J,, are the densi-
ties of the electric and magnetic current, respectively. The complete
constitutive relations for bianisotropic media are nonlocal in time and
have the form:
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D=c¢E+cexE+c,xH, B=uH+oexE+ o0, * H,

where by x we denote the convolution ax U = fot a(t—s,z)U(s,x)ds.

Maxwell’s system (1) under these constitutive relations is called the
full nonlocal problem for bianisotropic media. A time-domain analysis
for chiral media under the full constitutive relations can be found in
[44]. Related work can be found in [4, 7, 19, 28], while a time domain
analysis using approximating constitutive laws can be found in [1, 2,
11, 13, 36, 43]. In this paper the full nonlocal problem is studied using
semigroup theory for an integrodifferential equation of Volterra type.
Mild, strong and classical well posedness for the Cauchy problem of this
integrodifferential equation, under sufficient conditions with respect to
space regularity or time regularity assumptions, is treated.

In a number of applications it is of interest to study phenomena
where the densities of the electric and magnetic currents Je and J,,
are assumed to be stochastic. These can be modeled as random fields,
i.e., as random variables indexed by spatial and time coordinates. We
will consider Gaussian random fields', which may be modeled as an
infinite dimensional Wiener process. Therefore, the evolution of the
electromagnetic fields in the medium will be given by a stochastic
integrodifferential equation of Volterra type. One of the goals of the
present work is to prove various types of well posedeness of these
stochastic problems.

Deterministic problems for Volterra type integrodifferential equations
in an abstract setting have been studied extensively by different meth-
ods since the early 1970s (see, e.g., [42] and references therein). One
of the approaches employed, e.g., [17, 25, 45], uses semigroup meth-
ods, where the integral term is treated as a perturbation to the main
term (involving an unbounded operator, which is the generator of a
Co-semigroup), whereas a closely related approach employs semigroup
theory in the setting of product spaces, e.g., [9, 10, 30]. Yet another
approach is based on the concept of resolvent families, e.g., [16, 22,
23]. This approach leads to more compact expressions for the solution;
however, in many applications, a representation involving semigroups
is preferable since for certain operators (e.g., the Maxwell operator)
the corresponding semigroup is better studied and less abstract than
the related resolvent family. Further, the semigroup approach is better
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suited for numerical implementation as well as for the determination
of a local approximating scheme to these equation (see Remark 4 in
subsection 2.3).

We have chosen to present in some length in subsection 2.2 certain
results on the well posedeness—under different solution notions (mild,
strong, classical)—of abstract Cauchy problems for Volterra type inte-
grodifferential equations, although some of them may be deduced from
existing results in different formulations. Apart from the sake of com-
pleteness, and the uniformity in presentation with the corresponding
stochastic problem (subsection 3.2), the most important reason for do-
ing so is the following: since there is very little work on the rigorous
mathematical modeling of dispersive electromagnetic materials using
Volterra type integrodifferential equations, we need to present the rel-
evant abstract results in an escalating manner regarding the solution
type (mild-strong-classical) and the required regularity of the data.
Such a presentation allows easy access to the various conditions for
well-poseness, in a form which makes it easy to check their validity for
specific models. Another reason for choosing to present some of the
results in abstract form and not only for the specific electromagnetic
models is because we believe that some of these results may be ex-
tendable to other more general electromagnetic models than the one
studied here as well as to other applications, e.g., viscoelasticity. On
the other hand, some of the abstract results, as far as we know, have not
appeared in the literature so far and we find it interesting to present
them. For example Theorems 1, 2, 3 and 4 of subsection 2.2 which
provide conditions for weak, strong and classical wellposedness by ex-
changing temporal with spatial regularity of the kernels is, to the best
of our knowledge, new.

Contrary to what applies for the deterministic case, the problem is
not equally well studied in the case of stochastic integrodifferential
equations. One should mention the influential works of Bharucha-
Kannan [29], Clément-Da Prato [12], Govindan [20] and the interesting
recent works of Keck and McKibben [33-35], as well as the work of
Karczewska [32] and Bonaccorsi-Fantozzi [5, 6]. These works are
on the abstract problem; to the best of our knowledge stochastic
integrodifferential equations have not as yet been used for the modeling
on random electromagnetic media. Again we choose to present the
theory in abstract form. One of the reasons for doing so is because
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the approach we employ to the abstract problems (namely, working
directly in terms of predictable rather than of adapted solutions, as well
as providing detailed information on the coefficients of the problem for
weak and strong well posedness) is, as far as we know, novel.

2. The deterministic model.

2.1. Motivation. In this section, we follow [44] for the formulation
of the deterministic full nonlocal problem in order to obtain a Cauchy
problem for an integrodifferential equation of Volterra type which will
be studied for weak, strong and classical well posedness.

We assume that Maxwell’s equations (1) hold in ©, for ¢ > 0, where
Q is a bounded and a simply connected domain of R?® with smooth
boundary 0. Maxwell’s equations (1), supplemented with the initial
data E(0,z2) = Ey, H(0,z) = Hy, € 2 and the boundary condition
of a perfect conductor

Exn=0, in 09,

where n is the unit outward normal vector to 02, under the complete
constitutive relations

¢ ¢
D=cE+ / ce(t — s,x)E(s,z)ds + / em(t — s,2)H (s, x)ds,
0 0

t t
B=uH+ / oe(t—s,z)E(s,x)ds +/ om(t —s,2)H(s, ) ds,
0 0

lead to the following initial-boundary value problem for E, H:

%(EE—&—CE*E—i—cm*H)—curlH:—Je inQ, ¢t>0,
(2) %(uH+ae*E+0m*H)+cur1E:—Jm inQ, ¢t>0,

Exn=0 in 092, t>0,
E(-,0) = Ey, H(-,0) = Hp in Q.

We use the space H = L2(2)3 x L?()3, which is a Hilbert space when
equipped with the inner product

() () = [eon bt wan
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and the dense subspaces?

H(curl; Q) = {U € L*(Q)* : curlU € L*(Q)*},
Hy(cur; Q) ={U € H(cur; Q) : U xn =0 in 9Q}.

We also define the matrices

- els 0 _ [ C Cm
() =)

where I3 is the 3 X 3 unit matrix and O is the zero matrix. Using the
six vector notation,

_(E [ Ep

~(n) a-(m)
0 curl —J.
M_<—Curl 0 )’ F_(—Jm)’

system (2) takes the form of a Cauchy problem for a Sobolev type
equation in H:

(3) %(Aé"+ K«&)=ME+F, &(0)=b.

2.2. The abstract Cauchy problem. Suppose that & €
C(]0,7); H) and that the matrix K(t), t > 0, is appropriately smooth
on t, with K(0) = O (see subsection 2.3 for details). Then we can
formally justify for the convolution term:

%(/0 K(t—s)&(s) ds) =/ %K(tf 5)&(s)ds + K(0)&(t)
i,
= ), ol =98 s) ds.

If we consider that A is invertible, then multiplying by A~!, Problem
(3) takes the form of a Cauchy problem for an integrodifferential
equation of Volterra type in H:

(4) %g: ME+ K E+ F, E0) =&,
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where # = A7'M, # = —A"Y(0/0t)K, F = A"'F and D(A) =
D(M).

Assumption 1. Assume that

1. The operator A : D(.#) — H is the infinitesimal generator of a
Co-group of unitary operators T'(t), t € R, in H, i.e., [|T(t)||c(H) =1,
for every t € R.

2. The family {(t)}i>0 is a family of bounded operators in H, which
satisfies:

sup || (t)| ey < Mg, for some My > 0.
te[0,T]

3. # e L}([0,T); H).
4. &, € H.

In the sequel, unless otherwise stated, we assume that Assumption 1
is satisfied. We will give now the definitions of mild, strong and classical
solutions of Problem (4).

Definition 1. A function &€ C([0,T]; H) is called a mild solution
of Problem (4), if:

Et)=T(t)éo + /Ot T(t—s) /05 H (s —r)é(r)drds

+ /tT(t —5)Z(s)ds, te]0,T].

Definition 2. A function &€ C([0,T]; H) is called a weak solution
of Problem (4) if:

1. The function (&(t), ¢) is absolutely continuous on [0, T, for every
CeD(#*)=D(A).
2. For every ( € D(.#) the following holds

L 8),0) = —(8(t), .40)

@
+{ /0 (- $)E(s) ds, ¢) +(F(1),0),
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almost everywhere on [0, T7.
3. £(0) = &.

Definition 3. An H-valued function & is called a strong solution of
Problem (4) if:

1. &(t) € D(A), almost everywhere on [0,7].
T s
2. [y [1-A4E(s)|lea+ || [, H#(s —r)E(r)dr||a]ds < oc.
3. &(t) satisfies equations (4) almost everywhere on [0, 7.

Definition 4. An H-valued function & is called a classical solution
of Problem (4) if:

1. &) e D(A), t €[0,T].
2. AE(t) and f; H(t — $)&(s) ds are continuous in [0, 7.
3. &(t) satisfies equations (4) for all ¢ € [0, T].

Remark 1. Since .# is closed and densely defined, one can easily
prove that a mild solution is a weak solution and conversely. Further,
as we can conclude by [40, 107-109] and the Theorems 2,3 below,
the Definitions 3 and 4 are equivalent with the expressions: &(t) is
differentiable almost everywhere on [0,7] with & (t) € L'([0,7]; H)
and satisfies equations (4) almost everywhere on [0,7], and &(t) is
continuously differentiable on [0,7] and satisfies equations (4) for all
t € [0, T], respectively.

We have the following result:
Theorem 1. Under Assumption 1, Problem (4) is weakly well-posed.

Proof. In the Banach space C(]0,7]; H), for some b > 0, we consider
the norm ||&|p = sup,¢o, 7y e7%||&(t)|| g which is clearly equivalent to
the usual norm of C([0,T];H). We define the map ® on the Banach
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space V = (C((0, T]; H), [| - [|s):

B(E(t) = T(H) G0+ /0 T(t—s) /0 " H(s—r)&(r)dr ds+ /0 T(t—s)2(s) ds,

with s <t € [0,T]. It is not hard to establish that ® maps V into V,
and for appropriate choice of b, ® is a contraction. a

Under some extra assumptions, it can be proved that this unique
weak solution is also a strong solution.

Assumption 2. Suppose that

1. H(t)y € D(A) for every y € D( M), almost everywhere on [0,T]
and there is an My > 0 such that || AX (t)ylla < Mumxllylle,,
te [0,7].

2. Z(t) € D(M) almost everywhere on [0,T] and #F € L*([0,T]; H).
3. & € D(.ﬁ)

In view of the above assumptions we have the following

Theorem 2. Under Assumption 2, Problem (4) is strongly well-
posed.

Proof. We consider the Banach space L' = L!([0,7];H,), with
H, = (D(A),| - ||.«) and its usual norm [|&||r = [ |€(8)||a, dt,
and we denote by W the space L!(]0,T]; H ) equipped with the norm
€] = fOT e (|&(t)|| i, dt, which is equivalent to the usual norm of
L. For s <t € [0,T], we define now the map ® on L.

Based on the equivalence of the norms we can show that ® maps L!
into L!. It is not hard to establish now that ® is a contraction on W:

1
12(61)(t) = 2(&2) (D)o < 33 M| E1(E) = Ea(2)]o,
where M} = My + M, for b > 0 sufficiently large. It is clear

that the resulting fixed point satisfies Properties 1 and 2 of Defini-
tion 3. Since &(t) is absolutely continuous on [0,7] and &(0) = &,
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Property 3 of Definition 3 is also confirmed. So, Problem (4), under
the extra Assumptions 2.1-2.3, has a unique strong solution which is
b-exponentially bounded. By the form of the solution we see that Prob-
lem (4) is strongly well posed. u]

Furthermore, we can have:

Assumption 3. Assume that

1.  Assumption 2 holds and in particular 2.1-2.2 hold for every
te0,T].

2. The family of operators, {(t)}i>0, is continuous on [0,T] in
L(H).

3. & is continuous on [0,T].

Theorem 3. Under Assumption 3, Problem (4) is classically well-
posed.

Proof. We now consider the Banach space C([0,T]; H_4) equipped
with the norm ||€|y = sup,cpo )¢ "[|6(t)||,,, for some b > 0, which
is equivalent to the usual norm of C([0,T];H ), and we define the
map ®, as before, on the Banach space U = (C([0,T]; H.»), | - )
It is not hard to show that the function G(¢t) = fg H(t—s)E(s)ds €
C(]0,T); H). Furthermore, since G(t) € D(.#) for every t € [0,T)]
and .#G € L'([0,7);H) the functions u(t) = fot T(t — s)G(s) ds and
Au(t) are continuous on [0,T], so u(t) € C([0,T]; Hy).

By a similar argument we find that the functions v(t)= fot T(t—s) %
F (s) ds and Av(t) are continuous on [0, 7], hence v(t) € C([0,T]; H_4).
So, ® maps U into U. Furthermore, we may show that for b > 0 large
enough, ® is a contraction on U, and thus has a unique fixed point
in U which satisfies the assertions of Definition 4. Following the proof
of [40, Theorem 2.4, page 107], it can be shown that this solution is
continuously differentiable. So, Problem (4) is classically well posed
and the unique classical solution is b-exponentially bounded. ]

We saw that in order to obtain a classical solution for Problem (4), we
must have G, F € C([0,T}; H)NL'([0,7]; H4). An alternative assump-
tion concerning G' and .% can be the following: G, F € W1([0,7]; H),
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see e.g., [18, 23]. More precisely, replacing space regularity by time
regularity assumptions, we have the following;:

Assumption 4. Suppose that

1. For the family of bounded operators {J¢(t)}i>0, Assumption 1.2
holds.

2. For any y € H, the map: t — (t)y € WH([0,T); H) and

| i 0l < b(t)”yHH/ be LH(0. T R).

Theorem 4. Under Assumption 4, Problem (4) has a unique
classical solution if & € D(#) and F € C([0,T); H) N L1([0,T]; H 4)
or F € WhHi([o,T]; H).

Proof. We will prove that the map ® of Theorem 3, under the assump-
tions of Theorem 4, is a contraction on the space U = (C([0,T]; H4), ||-

l5)-

For the continuous function G(t) = fot H(t — s)&(s)ds, since &€ U,
we observe that

G'(t) = H(0)E(t) + /0 %Jif(t — 5)&(s)ds € L'([0,T); H).

So the function u(t) = fot T(t — s)G(s)ds is differentiable and its
derivative

¢ ¢
u'(t) = T(t)G(0) + / T(t—s)G'(s)ds = / T(t—s)G'(s)ds,
0 0
is continuous on [0,7]. So, we obtain that u(t) € D(#) and # u(t)

is continuous on [0, 7], with .Zu(t) = u'(t) — G(t). Moreover, since
Assumption 1.2 holds, for any y € H , we have:

| ()ylla < Mkllylla < Mkllylla,,
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SO
(5) [ ()E )|l < Mic||€(t)l[m,, t€[0,T].
Hence, by (5) and our assumptions, we take:

[ Aut)|la < v’ @O)lla + |GE)|a

<| [ 10960

L 1G]l

t
<7 (| Ol can + [ Hs)ds+ M) sup (O]
0 t€[0,T]

Finally we obtain that, for fixed T', there is a constant N so that

(6) e, < N sup ] 1€} (8)lee

with N > T(||#(0)| ) + Jy b(s) ds + M), T = max{T, T?}.
By a similar argument as before, since # € W11([0,7];H), we

see that for the continuous function v(t) = fg T(t — s)#(s)ds hold:
v(t) € D(A) and Av(t) is continuous on [0,7]. So ® maps U into U.

Now, using (6), we can check that ® is a contraction on the space U.
Indeed, we have

e—bt

/0 T /Osf(s—r)(cfl(r)—éaz(r)) drds|

<e"N sup [[(&1(r) = E(r) | m,
te[0,T]

so it is clear that, for b > 0 sufficiently large, the map ® is a contraction
on U. It is easy to check that the unique fixed point &(¢), ¢t € [0,T],
satisfies the assertions of Definition 4 and consequently equations (4).
So, Problem (4), under the assumptions of Theorem 4, is classically
well posed. o

More compact expressions of the solution of Volterra type problems
of forms more general than Problem (4), can be found in [16, 22, 23],
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in terms of the theory of resolvent operators. According to this theory,
the unique classical solution of Problem (4) is given by

&(t) = R(t)é + /Ot R(t — s)#(s)ds, te€]0,T],

where {R(t)}:+>0 is the resolvent operator family which is admitted for
Problem (4). In particular, since, as we have already seen, for any
y € H 4, we have

1)yl < Mi[lylla < Millylla.,,

it is clear that J#(¢) is continuous as an operator from H 4 to H for
any t > 0. We see that Hypothesis (H2) of [16] is fulfilled, so we have
the following result®, along the lines of [16]:

Theorem 4'. Under the assumptions of Theorem 4, Problem (4)
admits a resolvent operator {R(t)}:+>0 and has a unique solution given
by the form

£(t) = R(t)& + / "Rit— $)F(s)ds, te[0,T].

The above theorems may be generalized for the case where the source
terms have a nonlinear dependance on the field &, under suitable
Lipschitz conditions. For the sake of brevity, we refrain from stating
and proving the related theorems for the deterministic case here.
However, in the stochastic case, we assume the possible nonlinear
dependence of the sources on the field and provide general results for
the nonlinear case.

Remark 2. We note that the assumptions of Theorems 4 and 4’ are
the same. In many applications we prefer the expression of the solution
of Problem (4) using semigroup theory instead of using the theory of
resolvent operators, even if in the latter case the solution has a simpler
form. The resolvent operator {R(t)}:>0 is an abstract mathematical
object; on the contrary, the unitary group (7'(¢)):cr, generated by
Maxwell’s operator, is quite well studied in the literature. Generally,
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in [24], several results concerning the expansion of a solution, which is
expressed using semigroup theory, are proved. These results may lead
to a numerical scheme.

2.3. Applications in electromagnetics. The abstract results are
applied to provide well posedness results for Problem (3) as follows:

Assumption 5. Suppose that

1. e,etand p, p!

x € Q.

are positive and bounded scalar functions of

2. For the R**3-valued functions k(-,x) = Ce,Cm,0c,0m & [0,T] —
L>®(Q)°, = € Q, we assume that: k € WH([0,T]; L*(Q)?), with
k(0,z) = O3zxs3 and that

9 kt)

sup ot

t€[0,T]

< oo.
Loo(Q)S

3. M : D(M) = Hy(curl; Q) x H(curl; Q) — L?(Q)® x L%(Q)3.
4. F € L([0,T); L3(2)® x L?(Q)3).

Since by Assumption 5.1 the matrix A is invertible, multiplying
by A~1, Problem (3) takes the form of a Cauchy problem for an
integrodifferential equation of Volterra type in L?(2)3 x L?*(Q)3:

(7) %é’z/fléa—l—%*é”—i—ﬂ, &(0) = &,
where # = A7'M, # = —AY(0/0t)K, F = A"'F and D(AH) =
Hy(curl; ) x H(curl; Q).

It is well known (see, e.g., [44]) that the operator i.# is self-adjoint.
This means that the densely defined operator .# is skew-adjoint,
therefore by Stone’s theorem (see, e.g., [18]) it generates a unitary
group (T'(t))ser on L*(2)* x L*(Q)°.

Theorem 5. Under Assumption 5, there is a unique continuous
(with respect to t) function &(t) € L2(2)3x L2()3, fort € [0,T), which
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satisfies equation (3) in the weak sense, and Problem (3) is weakly well

posed in L2()® x L?(Q)3.

Assumption 6. Assume that Assumption 5 holds and additionally
that

1. for every y € Hy(curl; Q) x H(curl;Q), #(t)y € Hy(curl; Q) x
H(curl; Q) almost everywhere on [0,T], and there is an M > 0 such
that ||AX (t)yllL2 ()3 x L2(2)3 < M|yl Ho (curt;) x H(curly) -

2. Z(t) € Ho(curl; Q) x H(curl; ) almost everywhere on [0,T] and
MF € L1([0,T]; L*(Q2)3 x L2(Q2)3).

3. & € Hy(curl; Q) x H(curl; Q).

Theorem 6. Under Assumption 6 there is a unique function &(t) €
Hy(curl; ) x H(curl; Q) which is differentiable almost everywhere on
[0, T with E'(t) € L'([0,T]; L3(2)® x L2(Q)3) and satisfies equations
(3) almost everywhere on [0,T]. Problem (3) is strongly well-posed in
L2(Q)® x L*(Q)3.

Assumption 7. Assume that

1. Assumption 6 holds, and in particular that 6.1-6.2 hold, for every
te€0,T].

2. The family of operators #(t) € L(L*(2)* x L(Q)?), is continuous
on [0,T].

3. Z is continuous on [0,T].

Theorem 7. Under Assumption 7 there is a unique function &(t) €
Hy(curl; ) x H(curl; Q) which is continuously differentiable on [0, T
and satisfies equations (3) for all t € [0,T]. Problem (3) is classically
well-posed in L?(2)3 x L*(Q)3.

We saw in Theorem 3 in subsection 2.2 that, in order to obtain a
classical solution for Problem (4), we must have G,.% € C([0,7]; H) N
L'([0,T]; H 4). In Theorem 4 we considered an alternative assumption
concerning G and %, i.e., G, # € W11(|0,T]; H). It is clear that if K €
W2L([0,T); L*°(2)3), then G € WHL1([0,T]; L*(Q2)3 x L?(2)®). More
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precisely, replacing space regularity by time regularity assumptions, we
have the following theorem:

Theorem 7'. Suppose that for the family of bounded operators
{H(t)}i>0, Assumption 5.2 holds. In addition we assume that:

For any y € Hy(curl;Q) x H(curl;Q), the map: t — H(t)y €
Wh([0,T); L?(Q)® x L*(Q)3) and

< b(t) ||yHHo(curl;Q) X H (curl;Q2)»
L2(Q)3xL2(Q)3

be LY([0,T);R).

0
Haf(t)y

Then Problem (3) has a unique classical solution if & € Hy(curl; 2) x
H(curl; Q) and

ZFeC(o,T]; L*(Q)*
x L*(Q)*) N LY([0,T); Ho(curl; Q) x H(curl; Q))

" F e Wh([0,T]; L* ()3 x L*(R2)3).

Remark 3. In Assumption 5.2 we assumed that k(0,z) = Ogzxs;
hence, K(0) = Ogxg. This is not really necessary. Considering that
K (0) # Ogxg, we can replace the operator . in the equation (4) by
the operator .#— A~1K(0). Since —A~1K(0) is a multiplicative (hence
bounded) operator one can check by [40, page 76] that the operator
M — ALK (0) : D(#) — H is the infinitesimal generator of a Cp-
semigroup of operators S(t), t > 0, in H, satisfying [|S(t)||zm) <
TIA KO)llewn | for ¢ ¢ [0,7].

Remark 4. A possible use of integral representation for the solution
of the electromagnetic problem is the following: Though mathematical
treatment of the integrodifferential equation which modifies Maxwell’s
equations under the complete non local constitutive relations for chiral
media is feasible, in a number of important applications this may be
cumbersome to handle. Thus, local approximations to the full consti-
tutive relations have been proposed, that are capable of keeping the
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general features of chiral media, without the mathematical complica-
tions introduced by the non locality of the integral terms. In practice,
a very common approximation scheme to the full constitutive relations
for chiral media, is the Drude-Born-Fedorov (DBF) approximation (see
e.g., [43]) which leads to the constitutive relations:

D =¢(E + Beurl E), B = u(H + Beurl H).

A local approximation to the integral terms usually leads to a Cauchy
problem for an equation of pseudoparabolic type, where well posedness
results are established (see [36]). The error of the solution of this
“approximating” problem can be expressed if we consider the solution
of the “full” problem in the implicit form, therefore in terms of the
unitary group generated by Maxwell’s operator.

3. The stochastic models.

3.1. Motivation. Models based on stochastic integrodifferential
equations in the form of (4) allow us to describe phenomena (clearly
not covered by deterministic models) arising from various forms of
uncertainty in space and time. This uncertainty may be related
to stochastic densities of electric and magnetic currents J. and J,,,
respectively, which may depend nonlinearly on the electromagnetic
field. If we assume that the evolution of electromagnetic fields in a
bianisotropic medium takes place in an environment which is disturbed
by some electromagnetic noise, an extra term containing the stochastic
effects which may be modeled by functionals of a Wiener process must
then be added in equation (4). This noise may either be of the additive
or the multiplicative type.

While the literature on deterministic integrodifferential equations is
extended (see e.g., the references in Section 2 and references therein),
there is still relatively little work done on stochastic integrodifferential
equations of type (4) (see e.g., [20, 29, 33, 34, 35]). These studies
concern only adapted processes. We follow the approach of [14, 21,
27] to stochastic differential equations in Hilbert space concerning
predictable processes, which we modify accordingly for the case of
stochastic integrodifferential equations.

3.2. The abstract Cauchy problem. Let U be a real separable
and infinite dimensional Hilbert space and consider the real and separa-
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ble Hilbert space H = L%(V)3x L%(V)3, where V is a bounded and sim-
ply connected domain of R? with smooth boundary V, the probability
space (Q, %, P) with a normal filtration %#;, t > 0, and the predictable
o-field Pr in the space Qr = [0,7T] x Q. Consider also the measurable
spaces (U, % (U)), (H,#(H)), (Qr x H, 1 x 8 (H)) (as usual A is
the Borrel o-field) and (LY, % (L9)), where by L3 we denote the space
of all Hilbert-Schmidt operators in La(Uy, H) with Uy = Q'/2(U), and
Q@ € L(U) is a nonnegative, nuclear operator (Tr [Q] < c0). For the nec-
essary notions and results concerning probability theory and stochastic
analysis we refer to [31, 37].

A non linear stochastic model, with multiplicative noise, for Problem
(4), is described as the Cauchy problem for a stochastic integrodiffer-
ential equation of the form:

t
i&, = [//zéw / Kt — 5)& ds + F(t, &)| dt + B(&) dwn,
0

(8)
t>0, & =¢,

where Wy, t > 0, is a U-valued Q-Wiener process in the probability
space (Q, %, P).

Assumption 8. We assume the following:

1. The operator 4 and the family of bounded operators {#(t)}i>0,
satisfy the Assumptions 1.1-2 of Section 2.

2. For the operator B : H — LY the following hold:
T

(2) E [y 1B ds] < oo,

(b) There ezists a Cp > 0, such that: ||[B(z)—B(y)||rg < Cpllz—yllu
where x,y € H.

3. The function F : Qr x H - H with (t,w,z) — F(t,w,x) is
measurable from (Qr x H,Pp x B (H)) to (H, B (H)) and there exist
C, Cr >0, such that:

(@) |F(t,w,z)||g < C|lz|lg wherex € H, t € [0,T], w € £,

(b) |F(t,w,z)—F(t,w,y)|la < Crllz—y||lm where z,y € H, t € [0,T],
w € Q.

4. & is an H-valued, Fo-measurable, square integrable random vari-
able, i.e., E[||£]|%] < oo.
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We will employ the space of all continuous (in mean square) and
square integrable predictable processes

C([0,T;H) = {Y € C([0,T); L*(2, H) : Y is predictable}.

This space equipped with the norm

IYle = sup (E[|Yilz])"?

te[0,T]

)

is a Banach space. We note that an adapted stochastic process which
is continuous itself is predictable. We will give now the definitions of
mild and strong solutions for the stochastic Problem (8).

Definition 5. A stochastic process E; € C([0,T]; H) is called a mild
solution of problem (8) if:

t

& = T(t)§+/ T(t—s) /S%(s —r)é.drds
+ /tT(t — $)F(s, &) ds
+/tT(t—s)B(£’s)dW3, t €[0,T], P-as.

Definition 6. An H-valued predictable process &;, t € [0,7], is
called a weak solution of problem (8), if:

1 [T |6 |luds < oo, P-as.
2. For every ¢ € D(#*) = D(#) there holds

(60 = (€, <>+/0t 6, MO+ (F(5,6),0)

+</Osf(s—r)éardr, g>] ds

+/t<B(é"s)dWs,C>, t € [0,T], P-as.
0
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Definition 7. An H-valued predictable process &;, t € [0,T], is
called a strong solution of problem (8), if:

1. & € D(MA), P-a.s., almost everywhere on [0, T].
2. [T(|| & |sa + || [ H (s — r)& dr|a] ds < oo, P-aus.
3. & =€+ [J MEds + [} [ H (s — )& drds + [} F(s,8)ds +

[y B(&,)dWs, t € [0,T] P-as.

We have the following result:
Theorem 8. Under Assumption 8, Problem (8) is weakly well-posed.

Proof. In the Banach space C([0,T]; H), for some b > 0, we consider
the norm

1€l = sup e ¥ (EI|&1%])"

t€[0,T)

which is clearly equivalent to the usual norm of C([0, T']; H). We define
the map ® on the Banach space V = (C([0,T]; H),|| - ||»):

B(&) = T(1)E + /Ot T(t - s) /0 H(s — )&, dr ds

+ /t T(t — 5)F(s,8,) ds + /t T(t — 5)B(&) dW,,

which we rewrite as ®(&;) = T(¢)€ + @1(61) + P2(&1) + P3(8%), with
s<tel0,T].

By Assumption 8.2 (a) and Proposition 6.2 in [14], we conclude that
the stochastic convolution ®3(&;) has a predictable version. Moreover,
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by 1t6’s formula and Lemma 7.2 in [14], we compute

sup EH‘/ (t — s)B(&%) dWs ||H}
te[0,T]

= sup E{/ |T(t—s)B )|igds]

t€[0,T]

gEAIﬂhﬂ(g@ﬂ&@mﬂ

:E/ ZHTt—s )Ql/zenHHds]
LJO

gE/|M@&w4
0

< 00,
where by {e,}52; we denote an orthogonal basis in U.

By the properties of the stochastic convolution, one can easily see
that ®3 is well defined and maps V into V. Following the proof of
Theorem 1 in [27], we estimate

29y 1/2

bt< H‘/ (t—s)(B(&Y) — B(6%)) dW's
</Ote—2th I(B(&Y) - B(E2) %] d5>1/2
<([=na)”

x Caf sup et (B]]162 - 62])"" )
s€[0,t]

1\ /2
<| = Cg||E* — &2|p.
<(z) colle’ -4l
So, for the map ®3 we find that

IN

1\ /2
(8 #a(8t =8Bl < (5;)  Calls’ — 8%l
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As the composition of measurable functions is measurable, taking into

account Assumption 8.3 and that
2 T 2
|<B|( [ 1Pe&lnas) |
H 0

< TE[ / PG eI ds]

T
< TOZE[ [ e ds]

< T?C?||6)|c < oo,

sup E[H /OtT(t— $)F(s, &) ds

t€[0,T]

one can obtain that ®5(&;) has a predictable version and is contin-
uous in mean square. Thus, @5 is well defined and maps V into V.
Furthermore, we estimate

21\ 1/2

J)

t 1/2
< e (B| [ 1.8 - Fls.las)
0

e bt <E H‘ /Ot T(t — s)F(s, &) — F(s, &%) ds

. 1/2
< T1/2</ e 2B [|F (s, 61) — F(s,82)||] ds)
0

t 1/2
< T1/2(/ o~ 2b(t—3) ds)
0

<0 sup e (B(16 - 6205}

s€0,t]
1/2
< (N onie - 82
> 2b F b-

So, for the map ®, we find that

1\ /2
® et -l <7 (5) Crlst -
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Similarly we see that the process ®;(E;) satisfies:
sup E[H/ (t—s) / H(s—1)& )drds||H]
te[0,T]
_E[(/ /Ji’(s—r)é”(r)dr
0 0
T s 2
< TE[/ ||/ H(s — r)E(r) dr ds]
H
2
/ H(s—r)é&(r)dr ]
H
2
<rB[( [ e -reear) |
0

ol

< T?E| sup
L s€[0,t]

<rB[ [ 1t - e ]

T

< T3M,%E[ [ e dr}
0

< T'ME| 6 < oo,

so, arguing as for the map ®-, one can find that ®; is well defined and
maps V into V. We also estimate

bt< [H/ t*S/;ifsz @ 6y aras|
croe (] it
< 1o (£] | [* A= r)et - 82y ar HDW
< Liu“pﬂ/ (s = r)(é& - éf’2>|Hdrp1/2
(s [/ 1#1t = r)(S} - 87) HdP/
(f

1/2 1/2
M as) s e (B 16} - S21R]) )
rE[O,t]

/ H(s —r)(EL — &) dr
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1 1/2
< T3/2M;c (%) Héal - fg2||b-

So, for the map ®; we find that
1\ /2
© I -l ST (5) 16" - 6%

Summing up the obtained estimates (A), (B) and (C), we take:

1\ /2
o6t = 6Dl < (5;) (T2 + T2Cr + Ca)6* = ]

Hence for b > 0 sufficiently large, the map ® is a contraction on V,
thus has a unique fixed point in V. Therefore, Problem (8), under the
Assumptions 8.1-8.4 has a unique mild solution which is b-exponentially
bounded. By a straightforward modification of Theorem 6.5 in [14] and
Assumption 8.2 (a), this mild solution is also a weak solution. By the
form of the solution we can check that Problem (4) is weakly well-
posed. O

Remark 5. As far as the regularity of this weak solution is concerned,
one can observe that, in our case, the hypothesis of Theorem 6.10 in
[14] of the generation of a contraction semigroup by an operator A (i.e.,
(Az,z) <0 for every z € H), is fulfilled (we have that (Az,z) = 0 for
every € H). Hence, we obtain that the stochastic convolution ®3(&;)
and therefore also &;, t € [0,7T], has a continuous modification. We
note that the coefficients F, B are defined for every € H, but there
are cases that are defined only on a subspace of H, (see [26, 27]). We
also note that the above result stands even in the case of a cylindrical
Wiener process (Tr [Q] = o0).

In the spirit of [21, 27], we can prove the existence and uniqueness
of a strong solution.

Assumption 9. Suppose that Assumptions 8.1-8.4 and 2.1 of
Section 2 hold. Suppose also that

1. ¢ € D(A), F(t,x) € D(#) and B(x)Q'?h € D(.#) P-as for all
tel0,T],zeH, heU.
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2. |AF(t ) < g1(t)llzllu, g1 € LH[0,T];R), z € H.
3. |4 B(2) 1y < 92(t)||z[lm, 92 € L*([0,T]; R), z € H.

Theorem 9. Under Assumption 9, Problem (8) is strongly well
posed.

Proof. In the Banach space W = L([0,7T]; L*(€;H)), for some
b > 0, we consider the norm

T
161l = / (1) | 2t dt

= [ (m i) @ e

which is clearly equivalent to the usual norm of L' ([0, T]; L?(Q;H.z)).
By a combination of Theorem 2 of Section 2 and Proposition 2.3 in [27]
(or Theorem 2.1 in [21]), one can show that the solution map defined
by the mild solution of Theorem 8 has a unique fixed point in the space
(W, || - ||s) which satisfies Properties 1 and 2 of Definition 7. Following
[27, page 26], by Fubini’s theorem, we can see that

/Ot /0 j/T(s—r)(/OTJéf(r—u)g(u) du) i ds
:/Ot/:///T(sr)(/OT%(ru)g(u)du> ds dr

_ /OtT(t — ) /0 Hr — )& (w) du dr

—/Ot/orf(r—u)é”(u)dudr
=1
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and that
t s
/ / MT (s —r)F(r, &) drds
0 Jo o
:/ / MT (s —r)F(r,é,)dsdr
0 Jr
t
_ / T(t - 1) F(r, &) dr
0
t
—/ F(r, &) dr = I.
0

By the stochastic Fubini’s theorem, we can also have

/////Ts—r B(&,)dW, ds
/////Ts—r B(&,)dsdW,

:/ T(t - r)B(&,) dW,

t
- [ B&)aw,
0
= _[3.

Hence, applying .# in the fixed point equation and using the closedness
of ./ and the above results we have

////5 ds—////T )6y ds

////fTsfr/,}i/rfu u)dudrds

MT(s —r)F(r,&,)drds
AL

/////Ts—r B(&,) dW, ds

Tt)6p — o+ I + I + I3

§/()t/)rf(Tu)£(u)dudr
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t

—/ F(r, &) dr
o

- / B(&,) dW,,
0

therefore, the unique fixed point satisfies Property 3 of Definition 7.
Thus, we conclude that Problem (8) is strongly well posed. O

3.3. Applications in electromagnetics. Recently, a certain inter-
est for the study of stochastic models in physics (hence in electromag-
netic theory also) has developed. One can refer to the introduction in
[3] for certain reasons that clarify the implication of stochastic terms in
the equations of mathematical physics. For the use of stochastic mod-
els in electromagnetic theory, containing also engineering literature, one
can refer to [38, 41] and references therein.

3.3.1. Multiplicative noise. A nonlinear stochastic model, with
multiplicative noise, for system (3) is the following:

d[AG + K + &) = [M&, + F(t, &)|dt + B(&) dW,

©) £>0, &=¢

where Wy, t > 0 is an L?(V)3 x L?(V)3-valued Q-Wiener process
in the probability space (Q,.%,P). We denote by L3 the space of
all Hilbert-Schmidt operators in Lo(Ug, L*(V)® x L?(V)?) with Uy =
QYA(LA(V)3x L*(V)?), and Q € L(L*(V)?x L?*(V)?) is a nonnegative,
nuclear operator (Tr[Q] < o00). Let us note that, more generally,
instead of Uy = Q'/2(L?*(V)3 x L?(V)?) we can consider Uy = Q'/2(U),
where U is a real separable and infinite dimensional Hilbert space.

Applying the abstract results for problem (8) we obtain the following:

Theorem 10. Suppose that

1. The operator A and the family of bounded operators {J¢(t)}i>0,
satisfy the Assumptions 5.1-5.2 of the deterministic model.

2. For the operator B : L*(V)* x L*(V)3 — L3 the following hold:
T
(8) B |fy IB(&)]13 ds] < oo,



STOCHASTIC INTEGRODIFFERENTIAL EQUATIONS 585

(b) There exists a Cp > 0, such that: |B(z) — B(y)|lzg < Csllz —
Yll2(vysxn2(vys where z,y € L*(V)? x L*(V)3.

3. The function F : Qr x L2(V)3 x L*>(V)? — L*(V)3 x L3(V)? with
(t,w,z) — F(t,w,z) is measurable from (Qp x L2(V)3 x L2(V)3, P x
B (L*(V)3x L2(V)3)) to (L*(V)® x L3(V)3, B (L*(V)3 x L*(V)3)) and
for every z,y € L*(V)® x L3(V)3, t € [0,T], w € Q, there emist
C,Cr > 0, such that:

(@) |1F(t,w,2)|lL2(vysxrz(vys < Cllz|l2vysxpz(vys-
(b) |[F(t,w,z) — F(t,w,y)|L2(vyexr2 vy < Crlle — yllL2(vyzxr2(vys-
4. & is an L*(V)3 x L%(V)3-valued, Fy-measurable, square integrable
random variable, i.e., EH|§H%2(V)3><L2(V)3] < 0.
Then there is a unique, continuous in mean square, L*>(V)3 x L*(V)3-

valued predictable process é;, t € [0,T], which satisfies equation (9) in
the weak sense and Problem (9) is weakly well-posed.

Remark 6. By Remark 5, since we have that (.#z,z) = 0 for every
z € Hy(curl;Q) x H(curl; ), this weak solution has a continuous
modification.

We can also have the following:

Theorem 11. Suppose that Assumptions 1-4 of Theorem 10 and
6.1 of subsection 2.3 hold. Suppose also that &, F(t,z), B(x)QY?h €
Hy(curl; Q) x H(curl;Q)), P-as for all t € [0,T], z,h € L*(V)3?
L?(V)? and that

LA F(t,z)|L2vysxz2vyz < gr@)l|zllLevys <2 (vys, 91 € LH([0, TT;
R), z € L?(V)3 x LZ(V)3,

2. | A4B(2)lly < g2(W)llzllrevysxrzvye, g2 € L*([0,T;R), = €
LA(V)? x L(V)*.

(8

Then Problem (8) is strongly well posed in L*(V)3 x L*(V)3.

3.3.2. More general noises. Another nonlinear stochastic model,
with a time dependent multiplicative noise, for Problem (4) is of the
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form:

t
10) %= [///é”tJr/ H(t — 8)& ds + F(t, é’;)} dt + B(t, &) dW;,
0

t>0, & =¢.

Assumption 10. Let H = L2(V)3 x L%(V)3. Assume that, for the
coefficients F, B, the following hold:

1. B(t,x) € LY, z € H and the mapping B : Qr x H — LI :
(t,w,x) = B(t,w,z) is measurable from (Qr x H,Pr x B (H)) into
(L3, B(L3)).

2. The function F : Qr x H - H with (t,w,z) — F(t,w,z) is
measurable from (Qr x H,Pr x 2 (H)) into (H, Z(H)).

3. There is a C' > 0, such that:

(a) ||F(t,w,:L')—F(t,w,y)||H+||B(t,w,w)—B(t,w,y)HLg < Cum_yHH
where z,y € H, t € [0,T], w € Q.

(b) [|F(t,w,2)If + |1 B(t, w, z)|[7g < C*(1+ |l2]?), = € H, ¢ € [0, T],
w e Q.

Mild, weak and strong solutions can be defined in a way similar to this
in Problem (8). This case can be treated by a combination of Theorem 8
and Chapter 7 in [14] as far as the mild solvability is concerned and
under some extra assumptions mild solvability stands even in the case of
a cylindrical Wiener process (Tr[Q)] = 00). Furthermore, one can find
sufficient conditions for mild and strong well posedness for Problem (10)
by a combination of Theorem 9 and Chapter 2 in [21] where the case
of time varying systems is also covered.

A stochastic model, with a convolution type noise for Problem (4) is
the following:

t t
g;://zgﬁ/ f(t—s)é”sds—i—ﬁz(t,é”t)—i—/ B(t — 5)&, dW,,
0 0
& —¢.

More general forms of equations than (11) have been already studied
in [20, 33-35] covering also the case that the coefficients F, B are not

(11)
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defined for every x € H, but only on a subspace of H. Time varying
systems can also be covered as we can see in the Remark 3.1 in [20].

Acknowledgments. The authors thank the referees for their con-
structive comments; they also thank Dr. Gerassimos Barbatis for useful
discussions.

ENDNOTES

1. The Gaussian property is a reasonable assumption in view of
arguments based on the independence of fluctuations and the central
limit theorem.

2. For the properties of the function spaces introduced in electromag-
netic theory, we refer to [8, 15, 39].

3. We use the numbering Theorem 4’, to highlight the fact that this
result, as well as Theorem 4, are related to Assumption 4. The same
applies for Theorems 7 and 7’ of subsection 2.3.
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