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ABSTRACT. The alcohol abuse level of individuals in a
population as it depends on resilience and peer influence is
considered in this paper. Several simple models are studied
as well as an integro-differential equation model which is
derived using coarse graining from a pre-existing discrete
network system. The connection structure of the discrete
system tends to be richer than that of the integro-differential
equation model; however, the continuum problem can be
studied analytically using traveling wave, perturbation and
phase plane techniques.

The analysis presented in this paper suggests that, in both
the discrete network and integro-differential models, nearly
alcoholic or highly sober individuals are relatively unaffected
by peer pressure, and this aspect of the models leads to an
inertia in the spread of alcohol abuse or sobriety depending
on the connectivity, initial conditions and resilience of the
population. A related but different model is introduced that
avoids this inertia.

A treatment scheme had also been developed for the dis-
crete network system. A continuum version for the integro-
differential model is provided here.

1. Introduction. Alcohol abuse is an important social problem in
the world today. The papers [2, 17] introduce a discrete network model
with a bistable-type rate function for the spread and treatment of this
condition along with computational studies. Here, in order to examine
the bistable mechanism analytically, we introduce several simple new
models as well as a continuum model adaptation involving an integro-
differential equation (IDE). We study the IDE using perturbation and
traveling wave techniques as well as scientific computing.
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There are many situations where peer pressure has an influence.
Connections between criminals increases ability through mentoring (see
also [6]). Obesity studies reveal that peer influence is significant in
its spread [5]. We direct the reader to [2, 17] for a full discussion
of the ideas behind the models we study as well as references to the
Sociology literature. Essentially, we follow the evolution over time of
the alcohol abuse level of individuals or averages of individuals. The
dynamics depend on the resilience or susceptibility of the population
members and their social networks. Quoting from [2], the mechanism in
these models “has the capacity to simulate the effect of moving alcohol
abusers into non-abusers.”

Basic differential equation model. The following ordinary dif-
ferential equation,

) =l = )i — i),

has the bistable rate function used in the discrete network system and
forms a starting point for our work in this paper (It was the also
the starting point for the work in [2, 17]). Equation (1) models the
dynamics of the probability function v; = v;(t) of an individual i at time
t having alcohol-related problems (e.g., hospital admission, arrest, auto
accident or complaint with authorities). We are assuming the level of
a person’s alcohol related problems can be quantified. We will use the
shorthand terms alcoholic health, sobriety, or alcoholic (for the v;).
Individuals are sober if v; = 0 or alcoholic if v; & 1. The function
n; = n;(t) measures the peer pressure influence by taking a weighted

average health,
ni(t) =Y wijv;(t),
J

where the w;; > 0 measure the strength of the connection between
individuals ¢ and j. We assume the w;; are normalized with > jWij = 1
for all 5. Except for the two patch models described in Section 2, we
will assume symmetry, that w;; = w;; for all ¢ and j. Each r; is the
resilience of the individual ¢ with 0 < r; < 1. The closer r; is to 1
the less susceptible the individual is to becoming an alcoholic. We
generally assume that resilience is a constant r in this paper. The
initial condition
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(2) v;(0) = g; for all 4

is needed to fully specify the problem.

Discrete network model. In [2, 17] a fully discrete network
model with synchronous updating is considered where the change in
the alcoholic health of the ith individual from the mth to the (m+ 1)st
time step in a large network is modeled by
(3) ot — o = A (1 — o) (n! — ;) where n" = Zwijv;".

J
Here, v}* is the alcoholic health of individual ¢ at time ¢, and A > 0
is a rate constant. If we assume the length of the steps is small and

re-scale time, the differential equation (1) emerges as an approximation
from the fully discrete equation (3).

The spread of disease on networks is a topic of current research (see,
for instance, [9, 13, 16]). In [2, 17], one focus is on a comparison of
network dynamics when the wiring or connections are either defined
as small world or random. The research in these papers suggests the
following relationship:

@ i, =

1 ifog>T

0 ifog<T
where 7y is the average initial alcohol index and average resilience is 7.
When vy > 7 the population evolves to a state consisting primarily of

alcohol abusers, while, if the reverse is true, 7y < 7, then the population
becomes predominantly sober.

A treatment scheme is also considered in [2]; they suppose that a
small percent of the population with high alcohol indices can be treated.
These unhealthy individuals are removed for a specified period of time
and then returned to the general population with their index set to
half of their resilience level. In one computation, it is found that if,
roughly, 7% of the population is treated on a regular basis, then the
entire population eventually becomes sober.

Outline. In Section 2 we consider a set of simple problems motivated
by the discrete network model. This set includes a single variable
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problem, a two population differential equation system and an integro-
differential equation model where peer pressure is computed by a
simple average. We also introduce a new switch model that has
similar dynamics to the model in [2] but uses different mathematical
mechanisms.

In Section 3, by rewriting the n-term as a convolution of the w and
v functions, we form an integro-differential equation model on the real
line. The goal of this work is to place the discrete models in a continuum
framework and examine, via traveling waves, how the spread of abuse
relates to the other parameters and, in particular, r. The new switch
model is also examined in this way and has robust traveling waves.

Finally, in Section 5, a treatment regime that mimics the one in [2]
is introduced and studied in a simplified situation.

Throughout, we assume that there exist unique solutions to our
various differential and integral equation problems. We have not proved
this fully but note that a proof of existence of short time solutions is
provided in [15].

2. Models inspired by the discrete network system. In this
section we look at three simple models where the long time behavior
in (4) can be shown directly. We also introduce a new model using a
switch with a Heaviside function that has similar dynamics to those of
the bistable model.

Single variable bistable model: The simple model we discuss in
this section was the motivation for the discrete system in [2, 17]. If all
individuals were the same (homogeneous) and were coupled in an all-
to-all manner with equal connection strength; then, (1) would simplify
to the initial value problem

vV =v(l—wv)(v—7r) with v(0)=vp.

Noting that 0, 1 and r are the fixed points, the rate function v(1 —
v)(v—r) indicates that the solution v will either tend to 0 (sober state)
if vyp < r or 1 (alcoholic state) if vg > 7. This result is consistent with
(4).

Two patch model: Another very simple model would have two
patches or populations. As is done in the computations in [2], we
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consider having a large population of moderate drinkers and a small
group of individuals with a strong tendency toward alcohol abuse. To
accomplish this, we examine the initial value problem consisting of a
system of two ordinary differential equations

(5) v =v1(1 —wvy)(kvy + (1 — k)vg — 7)), 0< k<1,
(6) vh = va(1 — ) (kv1 + (1 — k)va — 7a)

where

(7) v1(0) =v) and wy(0) = vy.

In this case we are considering two homogeneous populations. A wide
range of dynamics are possible in this model. To narrow the focus,
we consider the case where vy represents the index of a small set of
individuals who have a strong tendency toward alcohol abuse while vy
represents the rest of the population. We further assume that r; and
ro are both O(1) but 7 < r;. To represent the small influence of
the alcohol abuser’s population, k£ = 1. Examining the phase plane in
this special case (see Figure 1) there are fixed points at (0,0), (0, 1),
(1,0), (1,1), (r1/k,0) and ((r1 — (1 — k))/k,1). When we restrict to
trajectories within the box (0,1) x (0,1) we find that only (0,0) and
(1,1) are attractive.

Figure 1 illustrates the two typical outcomes that depend on the
initial condition (7). Only if the majority of the population is initially
abusive (v} close to 1) will the entire population tend to become
alcoholic (Figure 1B). Otherwise the entire population will become
sober (tend to (0,0), Figure 1A). Once again, we find a result which is
consistent with (4).

Average peer influence model: Here we suppose there are J
individuals which are all connected with weight w; = 1/J and have
the same resilience r. This model involves the following differential
equation

J

dv; 1 .
(8) dqu :Ui(lfvi)(nifr)a ni:jj;vja Z:].,...,J.
Thinking of v; = v(x;) where z; = i/J, we consider the following
integro-differential equation on an interval [0, 1],
v

1
i v(l —v)(n—7r) with n(t) = /0 v(z,t)dx
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FIGURE 1. Phase plane for the system (5)—(7) with k1 = 0.95, k2 = 0.05, 71 = 0.8,
and r2 = 0.2. Nullclines and direction arrows are displayed as well as a solution
trajectory. A. Initial condition vj = 0.6 and vg = 0.4. B. Initial condition v(l) =0.8

and vg = 0.4.

as an approximation of (8). The advantage of this simple model is that
we can now show

1 if [fogde >,
(9) lim v(z,t) = ' fol waE =T
t—o0 0 if [y vodz <,

which is similar to (4).

We proceed by viewing n(t) as a known function and solve for v at a
specific point Z. This approach allows us to see the integro-differential
equation above as separable and we obtain,

v(,t)

/ _du N(t),
w@ wl—u)

where N(t) = fg(n(s) —r)ds. We find that

(10) (@, t) = (1 y o)

which shows 0 < v < 1 if we assume that 0 < vp(Z) < 1 for all

T € [0,1]. We note that we can create an ordinary differential equation
for the function n;

%[/Olvdm] - [/Olv(l—v)dac] (n—r)
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or
d

E(n—r):ﬁ(n—r) with ,6’(25):/0 v(l —v)dx.

Note that 8(t) > 0. If we think of 3 as a nonnegative but given function
we can solve the linear differential equation for n — r (in terms of J3)
and obtain

(1) alt) = = (n(0) e [ (s) is).

There are now two conclusions. The first comes when we assume
n(0) > r so that n(t) — r > n(0) — r and then

exp(—N(t)) = exp < - /0 (n(s)—r) ds>
<exp(—(n(0) —r)t) — 0 ast — +oo

which then allows us to conclude from (10) that v(Z,t) — 1 ast — +o00.
One can use the same reasoning to argue that, if n(0) < r, then
v(Z,t) — 0 as t — +o00. This now proves (9).

New switch model: In this section we offer a model that has
a switch or Heaviside function depending on the sign of the n; — r;
function. This model has the same long time behavior and dynamics
as the bistable system (3). We will see in the next section that it has
a more robust movement of abuse/sobriety.

We choose

d’Ui
dt

= —H(Ti — ni)vi — H(ni — T'i)(’Ui — 1) with nl(t) = Z W;5V5 (t)

Here, H = H(s) is the Heaviside function; H(s) = 1 if s > 0 and
H(s) = 0if s < 0. Note that if n; < r; the equation becomes
dv;/dt = —v; so v; — 0 (sobriety). If n; > r;, then dv;/dt = —(v; — 1)
and v; — 1 (alcohol abuse). In either case v; will not be greater than
1 or less than 0 which is the same as the bistable model.

Since H(r; — n;) + H(n; —r;) = 1 we find that

d’Ui
dt

= —v; + H(nl — ’I"i).
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To compare to the bistable model (3), we consider the following fully
discrete system:

K2

(12) o™t = o LAt [—v™ + H(n® — ;)] where n! = Zwiw?‘.
¢

We compared (3) and (12) by creating a network of 180 individuals
consisting of 30 “caves”—sets of 6 individuals initially connected in
an all-to-all manner—and, then, reconnected globally with probability
p = 0.3 to form a small world network (this procedure to generate small
world networks is explained in [13]). For each system, (3) and (12),
150 steps were taken with At = X\ = 7'/150 where T' = 15. The r; were
chosen randomly with mean 0.5 and standard deviation 1/6 (We also
truncated these randomly chosen r;’s so that 0 < r; < 1.). The initial
conditions were also chosen randomly with means vpjean and standard
deviation 1/6 (and truncated so 0 < v? < 1.). Figure 2 has the plot of
the final means of the individuals. These results suggest that, at least

in the long time calculations, the switch model (12) leads to outcomes
that are similar to those found in the bistable model from [2].

3. Integro-differential equation model. In this section we
develop a continuum model from the network model (see [11, 14] for
other examples of the coarse-graining we use in this section). We are
interested in traveling wave solutions (TWS) and their wave speeds as
well as steady state solutions. Motivated by the discrete network model
we propose the following integro-differential equation model:

(13) % =v(l —v)(n—r).
Here v = wv(z,t) measures an averaged health of individuals at a

spatial location  and time ¢. Individuals are healthy if v = 0 and
highly alcohol dependent if v 2 1. The function n = n(z,t) measures
the influence of neighboring individuals and is a convolution of the
connection function w with v;

n(e,0) = (wro) (0,0) = [ wlo -yl 0)dy
Here, w > 0 is a weight or footprint function with wads = 1.

Assuming w = w(s), of course, imposes a translation invariance on
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0 —— [BWBPG] Model.
* —— Switch Model.

Final Mean at T = 15.
o o o o o o o
n w s (%] o ~ ©
: : : T : : :

o
T

i
}

@ I I I I I I I
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Difference: Viean ~ "Mean

FIGURE 2. Long time evolution of fully discrete models (3) and (12) with
At = X = T/15, respectively. The final mean of the alcohol index for each
population at 7" = 15 time units is plotted versus the difference between the mean
of the initial population alcohol index vpseqn and the mean population resilience
TMean-

the connection scheme that does not exist in the discrete models. We
assume 0 < r < 1 is constant. The initial condition

(14) v(+,0) = vp.

is needed to fully specify the problems.

The transition from the network model (2) to the IDE problem
(13)—(14) follows by a standard coarse graining argument (see, for
example, [14]). We suppose the individuals are arranged on the real
axis where individual 7 is positioned at z; = iAz, 0 < Az < 1, and we
assume the connections are modeled by the “footprint” function w. If
we set w;; = Arw(z; — x;) then we can approximate the n;(t) in (1)
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by an integral;
n; = Zwijvj = ZA:U w(z; — zj)v(zj,-)
J J

= /w(ﬂvi —y)u(y,-) dy = n(zs, -).

We note that this model (as well as (1) or (3)) has the feature that
as individuals become more extreme in their ways (either sobriety or
alcohol abuse), they are less susceptible to peer influence due to the
v(1 — v) factor.

Note that any function consisting of segments or points with values
of 0 or 1 will form a steady state solution or standing wave for the IDE
(13). This could be considered a degeneracy and motivates adding the
regularization term Dv,, where D > (0. This term can be thought of as
providing communication between neighboring nodes. So, we consider

Ov v
(15) E:—v(v—l)(n—r)—&—DW,
and the initial condition (14).

Chen [3] has proved the existence and exponential stability of trav-
eling waves for the regularized problem (14)—(15). We now seek to
estimate the speed of these waves as they depend on the regularization
parameter D.

Perturbation estimate of wave speed. Here, we take advantage
of the fact that

1
Uo(z) = 3 [1 + tanh < >] satisfies — DUy = —¢1/2(Uy),

22D
where
¢1/2(Uo) = Up(Up — 1)(Up — 1/2)

(see [10], for instance). We note also that

1
- 1+ exp(—z/\/ﬁ).

Uo(z)
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So, we look for a TWS of (15) with v(z,t) = U(z — ct) and z = = — ct;
—cU'— DU" = -U(U —1)(n(U) —r)

where we further specify
1
r=gte and n(U)=U +¢q(U).

We are assuming that our convolution term n = n(U) is well approx-
imated by the function U with an error term eq(U). We also assume
that ¢ is positive but small while D is moderately sized and indepen-
dent of £. We make the perturbation assumption that ¢ = 0 4 ¢1¢ and
then have

—DU" + ¢1)5(U) =e[aiU' —UU - 1)(q(U) — 1)].
We let U = Uy + €Uy + --- and find that

— DU(/J/ + ¢1/2(U0) + E(—DU{/ + (ﬁll/z(Uo)Ul)
=¢e[c1Uf — Us(Uo — 1)(q(Up) — 1)] + O(£?).

We assume that U;(z) — 0 as z — Foo. At O(1) the equation is
satisfied by Uy while at O(e) we have

—DU{/ + (]5’1/2(U0)U1 = ClU(l) - Uo(U() - ].)(q(Uo) - ].)

Multiplying the equation by Uj and integrating-by-parts twice over R
we find, using again that —DUy + ¢1,2(Up) = 0,

0:/ Uy (DU + ¢1,2(U0))’ dz
- /R Up [exUs — Uy (Up — 1)(q(Up) — 1)] d=

from which we can obtain a formula for the wave speed coefficient

_ JrUo(Uo —1)(g(To) — 1)U dz

“ [ (U0)? dz
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A key observation is that ¢(Up) is an odd function since U is odd.
Thus, since U, and Uy(1 — Up) are even, we must have

/ Us(1 = Uo)q(Uo) U2, dz = 0.
R

So,
_ fR Uo(l — UO)U6 dz
O T2 dz

If we also change variables to z = /2Dy letting Uy (y) = Up(V2Dy),
then

Uo(1 — Uo) U dy

C1 = \/EJ‘R =~
fR(U6)2 dy

But, Up(y) = (1 + exp(—y))~" which helps us determine that
/ Uo(1 — Up)Ujdy = 1/6
R
and
[ @y =1ss.
R
Combining these evaluated integrals with our expansion for ¢; gives
(16) Cpert = £C1 = V2De = V2D(r — 1/2).

This formula suggests that waves will move from left-to-right if » > 1/2
and right-to-left if » < 1/2. It also predicts that wave speeds tend to 0

as D — 0. Figure 3C has a plot of this relation.
In the next section we will use scientific computation to examine these

waves.
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— —— Plot of (2D)"2(r - 1/2)

o —— Data points
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Regularizaiion Parameter D (with = 0.7)
C.
FIGURE 3. Numerical approximation of wave shapes. The waves pictured above
will move in the opposite direction if r < 1/2. The wave speeds were computed by
comparing the z-locations and times of the points where the 9 waves pictured took
on the value 1/2. Averaging the eight speeds provided the estimate of the computed
velocity. A. IDE problem (15), (17) and (14) with parameters r = 0.7, D = 0.4
and a = 4.0. Resulting wave speed was ¢ = 0.1738. B. IDE problem (15), (17) and
(14) with parameters r = 0.7, D = 0.00625 and «a = 4.0. Resulting wave speed was
¢ = 0.0261. C. Wave speeds from perturbation (16) and computations (like those

in (A) and (B)) as they depend on the regularization parameter D.

Computations on the IDE Model: We use finite difference
computations to study the full regularized IDE problem (15) and (17).
To simplify the IDE computation we take w(s) = ae~®*//2 where
o > 0. Note that [ wds = 1 and observe that this allows us to
interpret n as a Green’s function:

(17) n” —a’n = —a’v.
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This approach offers the opportunity to study a system of partial
differential equations (15) and (17) instead of an IDE (see, for instance,
[1] for the inspiration for this idea. Of course, for general convolution
integrals, FFT’s would be used to speed the computations). So, the
problem (15), (14) and (17) was solved by a finite difference scheme
with the implicit Euler method for time stepping. Figures 3A and 3B
reveal typical traveling waves that were found in the computations.
Waves like the ones pictured (with v — 0 at —oo and v — 1 at +00)
move in the opposite direction (right-to-left) if r < 1/2.

Comparison of Figures 3A and 3B reveals that as D gets smaller the
wave speeds decrease and the wave shapes become squarer and closer
to the degenerate 0/1 standing states.

In Figure 3C we have plotted computed wave speeds and the esti-
mated speed function cpet.

Standing waves in diffusion approximation: It is often useful
to consider a localized footprint and approximate the IDE by a single
partial differential equation (PDE). If, as above, we take w(s) =
ae‘o‘|s‘/2, but, here, assume « > 1 then, using Taylor’s theorem

n(z,t) = % /Rv(a: + z,t)e” Ml ds > v(x, t) + a 2vge (, t).

Here we expanded v to its second derivative term around z using
Taylor’s theorem and dropped the O(a~%) term. So, we consider the
following PDE approximation of the regularized IDE, (15) and (14),

vi — [D + 0b(V)]Vge = —0(v), o =a"?,
(18) b(v) =v(l—v), and
d(v) =v(v—1)(v—r).

The advantage of this simplification is that we can use phase plane
analysis to study the traveling wave shapes and speeds. We also can
derive formulas for the standing wave solutions (SWS) even in cases
where 7 # 1/2.

Phase plane analysis: A system of two differential equations can be
developed to find TWS of (18) and (14). Here we set v(z,t) = U(z—ct),
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label z = = — ¢t, and obtain, for (18),
(19) —cU' — ab(U)U" = —¢(U) + DU".
We then define a two-variable system of ordinary differential equations:

—cV + ¢(U)

;7 ;7
(20) U=V and V' = D+ ob(l)

which has fixed points (0,0), (r,0) and (1,0). Letting

} 14
F(U,V) = < (—cV + ¢(U)) /(D + ab(U))> !

then

-, _ 0 1
F'(Urp,Vrp) = |:¢,(UFP)/(D +0b(Urp)) —c/(D + ab(UFp))}

since —cV + ¢(U) = 0 at the fixed points which we label (Upp, VFp).
We can now determine the type, stability, and local eigenvectors near
each fixed point. For the fixed point (0,0) we found that it is a saddle
point with eigenvectors

- 1 —ct+vc2+4rD

&+ (,Uﬂ: > and  11+(0,0) 5D

We also found that (1,0) was a saddle point and (r,0) was an unstable
spiral if ¢ was sufficiently small.

We search for a TWS where ¢ > 0 and r > 1/2. We expect U — 0
as z - —oo and U — 1 as z — +o0. To determine this, we examined
the UV phase plane and used a shooting method on the system
(20). We guessed ¢ and used an ODE solver to compute a numerical
approximation to (20) starting near the fixed point (0,0) along an
unstable eigenvector. We iterated using the bisection method until
a value of ¢ was found where the corresponding trajectory converged to
the final fixed point along a stable eigenvector direction near the fixed
point (1,0). We found a trajectory connecting (0, 0) to (1,0) which led
to the TWS displayed in Figure 4A.
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1 15
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15 2
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A. B.

FIGURE 4. Wave shapes from approximations of the solutions to the PDE (18).
A.. Plot of the traveling wave shape for the case when r = 0.7, D = .002 and o = 2/3
obtained by the phase plane analysis. Resulting speed was ¢ = 0.05372. B. Plot of
standing wave obtained for » = 0.7 and ¢ = 2/3 using the formula (22).

Standing waves: We start with the steady state equation, noting
that ¢(v) = —b(v)(v — r), we have
—ab(v)v" = b(v)(v — 7).
There are two cases; for r > 1/2 we assume v =0 for z <0 and v =1
for all > 7 where T > 0. Then on [0,Z] we consider
(21) ov' +v=r

and, from viewing the computed TWS in Figure 4A, we require v(0) =
v'(0) = 0 and v(Z) = 1. The solution of (21) with these conditions is

(22)  w(z) =7 [1 ~ cos (%)] with 7 = /o arccos (1 - %)

In the case when r < 1/2 we look for a solution with v =0 for x < T
and v = 1 for all z > 0 where T > 0. Here, we require v to satisfy (21),
v(T) =0, v'(0) = 0 and v(0) = 1. In this case we find on [Z,0] that

(23) w(z)=(1—r)cos <%> +7 with T = /& arccos <7~TTl>

A plot of the standing wave for r > 1/2, (22), is provided in Figure 4B.
Note that the shape of the slow moving wave in figure 4A is similar.
Computations with the full time-dependent model (18) using our im-
plicit Euler method and either of the SWS, (22) or (23), supported the
notion that these formulas are steady states.
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FIGURE 5. Dynamics of the switch IDE model (24). Computed traveling waves are
displayed with 7 = 0.7 and a = 4. The approximate wave speed in this computation
was 0.2053.

Traveling waves in the switch model: As we have seen, the
current IDE model and its PDE approximation have standing waves
in situations (r # 1/2) when one might expect traveling waves. They
also exhibit decreasing wave speeds as the regularization parameter
D — 0. The v and v — 1 factors in the bistable model (1)—(2), that
we have studied thus far, lead to greatly diminished peer influence for
individuals that are severe alcoholics or nearly sober. In this section
we look for traveling waves in the integro-differential equations for the
switch model (12). Here, we consider

(24) vp=-—v+H(n—r) where n=w=*wv.

If we then take the convolution with footprint function w we have
ng=-n+wxH(n—r).

From [11] we know that there exists a traveling wave for n. We can

then recover a traveling wave for v by solving the equation n = w * v.

We developed a finite difference implicit Euler approximation to
solutions of (24) similar to those used in Section 3 (choosing n as a
solution of (17), etc.). Again, we used the specific weight function
w(s) and the associated differential equation (17). Figure 5 displays a
sample computation that features a TWS.
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4. IDE treatment. We also consider a treatment regime for
(13)—(14) that is available to the worst alcohol abusers (v > 1 —p
where 0 < p << 1). One way to incorporate this involves adding the
following term to the right side of (13):

(25) T(x,t>=im<x,t>(v(x,t)’"(ﬂ”)), rs >0,
TS 2
where
2) I - lpw_-pya-m-" >0 and 77 > 0
8t = - v p m TR, TR ana 7r .

Here, H is the Heaviside function as described in the previous section.
Parameter 7 measures the time to impose a treatment regimen, 7p
measures the rehabilitation time and 1/7s measures the strength of
the treatment. If the “treatment” is imposed (case where v > 1 — p),
the worst alcohol abusers will have m — 1 in O(7r) time which will
invoke the treatment T'(z, t), a force driving v — r/2 if 75 is sufficiently
small. Once the individuals being treated are healthier, v < 1 — p, the
treatment will be removed in O(7g) since m — 0.

Below we examine a special case.

Homogeneous treatment: In this section we assume all individuals
in (13) start at the same abuse level; that is vg is constant in (14). If we
also assume r is constant, then the IDE model with treatment (25)—(26)
reduces to a differential equation system where the solutions v = v(¢)
and w = w(t) satisfy

' %H(v (- (1—m)— %m.

3
[

with v(0) = vg and m(0) = my. A major advantage of this formulation

is the opportunity to use phase planes.
We discuss the results displayed in Figures 6 and 7. In the r = 0.2

and p = 0.2 case (Figure 6), the population with low resilience is in
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FIGURE 6. Results for homogeneous treatment model when r = 0.2, p = 0.2,
7r = 10, 75 = 0.5 and 7 = 20. Here we took (vg, mo) = (0.68,0). A: Dynamics of
the population index v = v(¢t). B: Dynamics of the treatment variable m = m(t).
C: Phase plane showing the nullclines, direction arrows and solution trajectory.
Here the center fixed point is a stable spiral.

and out of treatment and remains at a high consumption level (v = 0.8).
The trajectory tends to the stable spiral fixed point. This situation
resembles the behaviors of addictive personalities, and it is like the
celebrity behavior that frequently appears in the tabloids.

With r still set at 0.2 but p increased to 0.4 (Figure 7), we see that
the population becomes sober. In this case the treatment is invoked
for a larger class of individuals (those with v > 0.6). Here, the fixed
point is an unstable spiral and the trajectory tends to the fixed point
at (0,0). Note that this behavior matches the trends shown in Braun
et al. [2, Figure 6, page 8.
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FIGURE 7. Results for homogeneous treatment model when r = 0.2, p = 0.4,
7r = 10, 7s = 0.5 and 7r = 20. Here we took (v, mp) = (0.78,0). A: Dynamics of
the population index v = v(t). B: Dynamics of the treatment variable w = w(t). C:
Phase plane showing the nullclines, direction arrows and solution trajectory. Here
the center fixed point is an unstable spiral type.

5. Discussion. In this paper we have investigated a wide range of
idealized models for the spread of alcohol abuse which are motivated
directly from the discrete network model with bistable rate function

introduced in [2].

Computations in [2] show that the populations tend to become
abusive (v = 1) if, initially, the average abuse level Ty is greater
than their average resilience 7. If the opposite is true, initially, the
population tends toward sobriety (This is the same as (4)). In Section
2, we introduced three simple but related models where this behavior
can be shown directly. In Section 3, an IDE problem for the bistable
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model was introduced. Computations, a perturbation analysis and
phase plane analysis on a regularized version of the new equation model
as well as the existence of standing waves in the non-regularized model
suggest that there is an inertia in the bistable model and it may not
have traveling wave solutions.

We also introduced a switch model that has many of the same features
as the bistable model. This new switch model, however, has robust
traveling waves as can be shown computationally and via known results
from the literature.

The results in Sections 2 and 3 for the bistable models, at first glance,
appear to be contradictory. However, we expect that the presence of
noise and randomness in the discrete network system would tend to
break the inertia caused by the v and (1 — v) functions.

In Section 5 we developed a continuum treatment strategy and
displayed its efficacy in a simple homogenous case.

There are many future directions. We note that the degeneracy
caused by the v and 1 — v functions in (13) have some resemblance to
those studied in [12]. The approach in [12] could clarify the dynamics.
We are interested in extending the model (13)—(14) to more realistic
situations with data in the style of the work in [8].
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