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ABSTRACT. In this paper we study convergence of the
midpoint rule for linear Volterra integral equations of the first
kind as a regularization method. We prove convergence and
convergence rates as the noise level tends to zero. Numerical
tests for an application to a thermoacoustic inverse problem
illustrate performance of the method.

1. Introduction. In this paper we consider linear Volterra integral
equations of the first kind

) [ o = 1) we ()

and their regularization by application of the midpoint quadrature rule
to discretize the integral in (1). Regularization is necessary due to the
fact that for a smooth kernel k, (1) is ill-posed in the sense that its
solution ¢ (as an Lp/(p=1) function) does not depend continuously on
the data f (as an LP function). Usually the data is not given exactly
but only a noisy version f° is available, so that the lack of stability
becomes crucial. We will here assume that we have an estimate J of
the noise level with respect to the L* norm

(2) If = llze <6
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The degree of ill-posedness of (1) is given by the smoothing properties
of the integral operator

Q 1o [k ouede,
cf. [10]. If
(4) |k (z,z)| >~v >0 forall ze (a,b),

and k is differentiable with respect to its first argument, (1) can be
written as a (well-posed, cf., e.g., [3, 9]) second kind Volterra integral
equation

(5) kmm«m+A%mu@mo%=nm)

containing first derivatives of the data f, so we can regard (3) as a
one-smoothing operator which implies that (1) is as ill-posed as one
numerical differentiation.

Combining collocation with the midpoint rule for approximating the
integral in (1) yields

k
(6) th(wk,ijl/g)qf-il/z = fé(:vk), k = ]_, e ,N,

1
, rj=a+jh, zj1p=a+ <j—§)h

for q§—1/2 ~q((7—(1/2))h),j=1,...,N. Using the point values from

(6), we define qu as the piecewise constant interpolate
(7) qg € Qh7 qi(.’lﬁ) = qz?fl/Z for z € (xjflaxj]a
where @, is the space of piecewise constant functions with breakpoints

zr, k =1,... ,N. This leads to a convergent method for exact data,
cf. [11]. For the convergence analysis of further quadrature rule based
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solution methods for Volterra integral equations of the first kind, we
refer to [5, 10, 11], and the references therein.

The aim of this paper is to provide an analysis of (6) in the situation
of noisy data (2) including convergence (rates) and a priori as well as
a posteriori regularization parameter choices as § — 0. Moreover, we
will apply this method to an inverse thermoacoustic problem in the
context of combustion noise.

2. Convergence analysis of the midpoint rule with noisy
data. For noisy data, the stepsize h plays the role of a regularization
parameter and has to be appropriately chosen. The following theorem
gives an a priori rule for that purpose.

Theorem 1. Let k € C([a,b)?), 01k € C([a,b)?), (4) and (2)
hold. Moreover, let g} be defined by (6), (7), and let N. = N,(9),
h« = (b —a)/N, be chosen according to

(8) N, — o0 and N, —0 asd—0.
Then
(a) If g € L'(a,b)

(a,
N
k=1

/zk 04— )(€)de| —0 asd—0

k—1

and

(9) llg — qi* Li(apb) — 0 as 6 — 0.

(b) If g € L>(a,b),

1
be{lniN.} b

/wk 04— )(€)de| —0 asd—0

k—1
and if ¢ € C(a,b),

(10) llg — qi* llLo(apy — 0 asd— 0.
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Proof. Denoting by P, the projection onto the space @, of piecewise
constant functions with breakpoints zx, k =1,... ,N

Phg(z) = g(acj_l/g) for z € (zj_1,z;], j=1,...,N
we can rewrite (6) as
(11) / (Pake (e, )€ (€) dE = (i)

for kK =1,...,N. Subtracting (11) from the collocation of (1) at the
breakpoints

[ (@0, 90(0) = (Pak (o NEGAE) dE = S(a1) = £(22)

/Zk Prk (zk,-))(€)]g — a)(€) d€
- /Zk[k (@k, ) — (Puk (zk,)](€)]a(€) d€ + f(ax) — £ (xx)

and taking the difference quotient yields a discrete analog of (5) for the
error ¢ — ¢

12) Koy [ la-all©)de

k:flk . —k —1,L5— i
+Zl (Tr,Tj-1/2) . (g1, 1/2)/30 l[q_qg](g)df

=

1 2 3
=rp+ryt+ry =1k

with
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where we have used the fact that
Pk (zk,)) = k (21, 7j_1/2) on (xj_1,;].

Since (4) and continuity of k by the Heine-Cantor theorem imply that
(15) [k (@rzro1/2)| 2 3 >0 k=1,...,

for all N sufficiently large, this yields a recursive inequality of the form

k—1
(16) ¢ <AY G+Br, k=1,...,N,
=1

to which Theorem 7.1 in [11] applies, which is here written in a
somewhat modified form

17 < (14 A)1 B, k=1,... ,N
( ) Ck—( + ) jeg?.).(,k} b ) >

that can be checked by induction as well. Here,

1 [o*
Ck = E / [q - qg](g) d£7
Tk—1
2h
A = —||01Kk || L ((a,b)2)
(18) !

2
> —k i -k _ -
_j7keI{I}f%_fN},y\ (ﬂ?k,% 1/2) (-'L'k 1, Tj 1/2)|,

2|y
v

By,

Similarly, in place of the I type estimate (17) one can derive an I,
type estimate

(19) IClir < |MP|ipscp—n) | Blir

for p € [1,00), P € [1, 0],

N
MY = ] 1+ AG—1)e-V/p),
i=j+1
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by simple induction. Application of (17) and of (19) with p = P =1
to (16) with (18) yields

1] [ S
20 1 ~ .
(20) ke{ml?(,N}h/wkl[q anl (&) 6‘
2 2 b—a N
< —(1 - k -
< 7( +7H81 |20 ((a,b)2) > kG{I{I,.a.J.X,N}|rk|
2
< - 2(b — 91kl e
< ’YeXP (( (b—a)/v)|01k]||L ((a,b)z)) ke{rﬁ?‘.X,N}‘TH
and

(21) kﬁ / [q ~g)®) da‘

N
2
< S exXP (206 = ) /NN01k oo ((ay>y) 2D Irsl,
k=1

respectively.

Convergence of the right hand sides in (20), (21) can be seen as
follows: First of all,

22 1
(22) e |75

1 [ok
<l x5 [ @€ = o o1yo)| dé
R Th_1

< gl (a max sup sup |k(zg, &) — k (xx, ¢
ol ooy o s s (s €) K (o, )

— 0 as N — oo,

since k as a continuous function on the compact set [a, b]? is uniformly
continuous.
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Moreover, with j(§) such that £ € (z;(¢)—1,%j(¢)ls

23 2
(23) pe X |75
k(xkf)__k(wk—lf)
< . I—-P
< [lgllz(a,p) pefhax {:m) [ ] . (&)

ok

Tk—1

= ||q||Lt max sup
lall L1 (a,b) ke{l,.\N} e (ab)

— 611{ (m, :Uj(g),l/g)) d:U

<llglzr(apy sup sup  sup |01k (x,§) — Oik (z, Q)]
w€(a,b) £€(ab) [€~C|<h/2

— 0 as N — oo,

since 0k is uniformly continuous on the compact set [a, b]?.

For the respective [; norms we get

(24)
N N
RIS [ K €) —K(ona1yz)a(6)] de
k=1 k=17 %kK-1
N
< q max |k (zg,
> [ e, s, k(o)
—k (@p, Tp_1/2))| dr d§
<llgllz1(a max sup sup |k (zg, &) — k(x, ¢
lale oo, max,, sup ' sup [ (@, &) — k(@ )
—0 as N — oo,
and
(25)

N
h 2\ < BN 2
];1 ril < AN _max ri]
< (b—a)llqllLr(ap)

x sup sup sup |Oik(z, &) — 01k (z, Q)]
z€(a,b) §€(asb) [€—(|<h/2

(26) — 0 as N — oc.
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Finally,
20 2
(27) ke{rlr,l.?),(N*} Ir3| < W= EN*(S —0 asd—0,
and
N,
(28) h*Z|r%| <2N,6 — 0 asd—0,

k=1
by the a priori choice (8).

To see (9), (10), note that on the other hand the left hand sides in
(20), (21) can be estimated from below by

1 Tk 5
@) e 5| [ =@
> R RCRTGY
> el [
1 Tk

ke{rf... N} h

[ -anea

1 Tk
~ 5 ~
= _ — — — _ d
re BT gy Be-1/2 ~ Gerpol = pmax h‘ /wk -3l 5‘

V

- 5 -
> lGn — apllneo(ap) = 114 = @nllL=(a,p)
> |lg — @l o (ap) — 201¢ — GnllL(ap) for all G, € Qn,

(30) >

/ :kl[q ~ gl dg\

> é ( /[qh G d&‘ - ‘/[q G de
y

= [|dn — ahllzicap) = D

k=1
> llg— ahllzr(ap) — 21a — @nllrr(ap)-  for all G € Qn,

[ a-ae dg‘

k—1

where (’]'k,1/2 = (dh)|($k—lyzk)'
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Convergence of infg, cg, [/g — Gnllz» to zero as h — 0 follows from
denseness of piecewise constant functions with regular (such as equidis-
tant, as assumed here) breakpoints in LP(a,b) for all p € [1,00]. For
p € [1,00) this follows from the fact that the Haar system is a basis of
LP. For p = co we have

inf ||gn — .
qhthH% 4l Lo (a,b)

< max sup
ke{lv"'yN} ae[zk,l,zk]

[ @ d—ato)

k—1

< sup |q(§) —gq(e))] — 0 ash—0
[§—a|<h
by uniform continuity of ¢ on the compact interval [a, b]. o

Remark 1. Note that for obtaining L' convergence according to
Theorem 1 (a), an L' type noise estimate hsz:1 |(f — fO)(zp)| <6
for all N € N in place of (2) suffices.

A well-known and well-analyzed a posteriori rule for choosing the
regularization parameter is the discrepancy principle, whose straight-
forward application in the present situation would lead to the choice

he =max{h =B (b—a) | |Tq) — f°||L(ap) < 76, € No},

where § > 1 and 7 > 1 are a priori fixed constants. However,
in the analysis below it turns out that one should rather consider
the differentiated version of the integral equation and stop refinement
according to

(31) h,=max{h="'b—a)]|

a7 @) = (Taf) wemn)] = 7 (@) = (@)

< 27’(5, le No},

where N, = (b — a)/h..

To show well-definedness of h, > 0 according to (31) for § > 0, we
first of all prove a stability result.
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Proposition 1. Letk € C([a,b]?), 01k € C([a,b]?), (4), f € C(a,b),
as well as (2) hold. Then

(32)
C(k)

Si _ < 22 — 4]
gkl Lo (a,b) ke{rgﬁ?fmlqk_l/zl <= <w§1§|p<hf(x) FOI+ ) ;
hence, for fixred § > 0,

. h
(33) lim sup qugHLm(a,b) < C(k),
h—0

where A
C(k) = 5 &P ((2(b = a)/) |01k || Lo ((a,b)2)) -

Proof. The finite difference version of (11) (i.e., subtracting (11) for
subsequent indices and dividing by h) reads as

1 [ok
31 Kwaoa)y [ dE)d
k—1 ) _ ] z;
+Zk($ka$]71/2) hk(ickl,icgl/z)/ qg(f)df
j=1 Tj-1

_ Pan) — fO(xn-n)
h )
Therewith, from (17) for

G = qul/zv
2h
A = —[|01k || ((a,0)?)
Y
2
> -k - —k(xzp_1,2,;_
_j7keI{I}f%_fN},y\ (ﬂ?k,% 1/2) (-’L'k 1, Tj 1/2)|,

By = %( sup If(w)f(§)|+5>

> %(f‘s(xk) - f‘s(wkl)),

we get (32) in a similar manner as (20). O
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Proposition 2. Letk € C([a,b]?), 01k € C([a,b]?), (4), f € C(a,b),
as well as (2) hold. Then there exists an h,. > 0 satisfying (31).

Proof. The assertion follows from the fact that by (6)

STa)(@r) — (@) ()] -~ 1 () = (s )]

_ %‘% [ Pk @aie) de
R e LG
= g(ri’h +r"),
whereas in (22), (23),

max ﬁ| L,k
ke{l,.. N} &'

x max sup sup |k(z,€) —k(zk, ¢
ke{lv--wN}se(a,b)\5—4\9/2' (o1,8) (<))

h
< _HQ;SL”L‘X’(a,b)

— 0 as N — oo,

and
h

max |T2’h
ke{l,..,N} 6

h
< gHQZHLl(a,b)

sup sup sup |01k (z,§&) — Ok (z, Q)]
z€(a,b) §€(asb) [€—(|<h/2

—0 as N —

by (33) and uniform continuity of k, 0, k. o

Additionally, we need enhanced estimates of the expressions 7, r7
according to (13), (14) under somewhat stronger smoothness assump-
tions on k. The following lemma will also provide further estimates
that will be required for proving convergence rates later on. Here, for
some bivariate function v : (a,b)> — R, we use the notations

v € L*(a,b; LY (a,b)) <= V1| oo (0527 (a,8))

== sup ||v(z,")l[LP(ap) < 00
z€(a,b)
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NS Ll(a, b, LP((I, b)) = ||v||L1(a,b;LP(a,b))

b
= [ oo de < o0
v*(z, &) :=v(,x), =,&E€ (a,b).

Lemma 1. (a) Let P € [1,00], O2k € L*®(a,b; L (a,b)), (010:k)* €
L'(a,b; LY (a,b)), ¢ € L>(a,b). Then

1 B
(35) | mmex IRl < 51102K [l (a,bir @y Nl oo oy Y7

1ty

1 N _
(36) , max | [r] < 5 1(0002K)" [ir(uere oy [l e 7

yerey

(b) Let P,R,Q € [1,00], &2k € L*(a,b; L*(a,b)), 02k € L*>(a,b;
L*(a,b)), 010:k € L'(a,b; L%(a,b)), 0103k € L'(a,b;L" (a,b)), q €
L>(a,b), ¢ € L9(a,b). Then
(37)
pepax Pkl < CH(P) |03k || Lo (a,6:L7 (a1l Lo (apy 27

+C%(Q, R)||02K || oo (a,5: .2 (ap) 14 | L a5y B2~/ BT

(38) | _max_|r}

< CU(P)(b - )00 08K Nt iz a0z 0y
+ 02 (Q7 R)(b - a’)Halazk HLl(a,b;LR(a,b)) ||ql||LQ (a,b) hQ_I/R_l/Qv

where

1
T 22-1/P(3_1/P)(2—1/P)’

1
C*(R,Q) = 22-1/R(3-1/R—1/Q)

CH(P)

Proof. See the appendix. a
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Now we show that the discrepancy principle (31) indeed yields con-
vergence as § — 0.

Theorem 2. Let k € C([a,b]?), 61k € C([a,b]?), O2k € L*>(a, b;
L*(a,b)), (010:k)* € L'(a,b;L>(a,b)), (4), ¢ € L*>(a,b), and (2)
hold. Moreover, let g} be defined by (6), (7), and let N. = N,(9),
hs = (b —a)/N. be chosen according to (31) with T > 1.

Then

(39) ||q;sl* —q|lL=(@ap — 0 asd—0.

Proof. The discrepancy principle (31) yields

@) | max o [ ko€l (6)de
Tt k(wkag) - k(xk—laf) k)
+ - ah. () dg
3 f‘;(a:k,) — f‘s(xk,_l) < 276
R = h,
and
1 [ox s
(41) ke ™5 | B0 /lek(xKaf)Qﬂh*(f)df

Tr-1 k (x —k(zg_
+/ ( KaE) /Bh*( K l,E)qg’h*(f)df
~ fek) = fo(er-1) 5 278
Bh Bhy

Combining (1) with (40) and using the fact that

@ |V )| 2
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yields
1 [
) [ e 0@ de
s [T SR g gy e)ag
2(r+1)6 B
<SS k=1.N,
whereas from (34), (41) we get
@ mex o [ Pk ) @b € d
Kt N8} | Bha Jor . Bh SR DRS g
Tr -1 k )k .
[ e ) (g8, € ae
270
> B,

if hy <b—a.

If h, — 0 as & — 0, then according to (13), (14), (32), (35), (36),
the left hand side and therewith also the right hand side in (44) can be
estimated from above by

0  — _
270 B (Bl 1= (ary < COOTE) | sup |£(x) - £(€)] +5
Bh o—¢|<h
— 0 asd—0,
with

C(k) = 5 (102K [| oo (a,bs250 (a,5)) [ (8102K) * || L1 (a b2 (a,0))) 5

DN | =

which by (43) and (4), (17), (29) yields (39).

On the other hand, if h, stays bounded away from zero as § — 0, then
we directly get 0/h, — 0 as 6 — 0 and can apply the same argument
as above with (43) to conclude (39).

A subsequence-subsequence argument can be used to cover all possi-
ble cases: namely for an arbitrary sequence (§,,)nen with §, — 0 and
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an arbitrary subsequence (0,;);jeN, we either have h.(d,;) as j — oo
or existence of some h > 0 and another subsequence indicated by n;,,
l € N, such that h, (6%) > h for alll € N. o

Remark 2. Note that, with the a priori choice of Theorem 1, for
L' convergence (Case(a) in Theorem 1) we only need ¢ € L'. This
relaxation as compared to the L situation (Case (b) in Theorem 1)
does not seem to be possible for the a posteriori results. Also in the
remainder of this paper we confine ourselves to L™ estimates, to avoid
lengthy but partly straightforward computations.

Convergence rates can be obtained under additional smoothness
assumptions. We first state a rates result with a priori chosen N,
for the discrete error norms.

Theorem 3. Let q) be defined by (6), (7).

(a) Under the assumptions of Lemma 1 (a) and with the a priori
choice

(45) N, ~ §~1/@=1/P)
we get

1
k(LN Ty

[l a. )@ de| = o rmem),

(b) Under the assumptions of Lemma 1 (b) and with the a priori
choice

(46) N, ~ §-1/(3=r)

we get
1

max —
ke{l,...,N} hy

/wk lq — a7, 1(€) d&| = O(F /=),

k—1

where k = max{1/P,1/R+1/Q}.

Proof. In Case (a), the assertion follows from (20), (27), (35), (36),
in Case (b) from (20), (27), (37), (38). o
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To obtain results in the L°° norm, it remains to estimate the dis-
cretization error infz, co, ||¢ — Gn|/z, which is of course somewhat
standard but nevertheless will be shortly done here for the sake of
completeness:

Lemma 2. Let ¢ € L*®(a,b) and ¢’ € L% (a,b) for some Q € (1, 00].
Then,

(47) max max
ke{l,... , N} o€[wr_1,xk]

[ @ a0

LTk—1

1

1-1
< mh '?1¢'l| Lo (a,p)s
Proof. For any k € {1,...,N}, 0 € [x_1, k], we have
1 [
[ aod a0
Tp—1

2 ao-aona

1 w; 3 ,
L[ dwana
Tp_—1 o

1 [ _
<i [ le-ol el o

Tk—1

1
2-1/Q

hl_l/QHq’HLQ(ah) O

Inserting these estimates in the proofs of Theorems 1 and 2 we get
the following two results on convergence rates

Theorem 4. Let ¢} be defined by (6), (7). Under the assumptions
of Lemma 1 (a) with ¢ € L”(a,b) and with the a priori choice (45),
we get
080~ 1/P)/(2-1/P)).

lg —ap Nl L=(ap) =
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Proof. Instead of (29), we use
]. Tk 5
48 — — d
) e 3| [ - al©

_ max ‘l / a(6) e — alon) + la — a)(on)

ke{l,...,N} | h [y, .

> max max 40
T ke{1,... N} p€[zi—_1,7k] lg = an](P)l

—  max max
ke{l,...,N} o€[zr_1,Tk]
1
2 — I/P

[ @ ato)

k—1

> |lq = gl o= (ap) — RPN | e (o)

where pp, € [xg—1, k] is such that [¢ — Qi](f’h) = MAX,c(gy_1,a4] llg —
4%](p)| and (note that by P > 1, g is continuous) and we have used the
fact that g} is constant on (zy_1, zx], as well as (47). u]

Theorem 5. Under the assumptions of Theorem 2 and Lemma 1 (a)
with f' € L*(a,b) and the a posteriori choice (31) with

~ 2
2r>(Xky:;ﬁxpaﬂb*aﬂvwakﬂmwmw%)

X (/102K || oo (0,527 (a,p)) T 1 (O102K)* || L1 (a,6: 17 (as0)) )

we get
Lo (ap) = 0(5(1*1/1’)/(2*1/1’)),

lg — ap.
provided hy, < b— a.

Proof. By (35), (36) with g replaced by ¢, and (32), we can estimate
the left hand side and therewith the right hand side in (44) from above
as follows:

279 <
Bhs ~

Therewith, by (49),

_ B , 5
C)(Eh) (I oty + 55 )

2-1/P 5 21 — C(k) §=C

Bhy > =
(6h-) CE)f' M zoo (a,b)
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which by (43) implies that
S ko, o de

h* Th—1

Tk (w8, §) — k(T-1,6)
+/a h*

< 2( +1)88(Cs) =Y/ 2-1/P)
—o(r + 1)56—1/(2—1/1’) s(1=1/P)/(2=1/P)_

max
ke{l,...,N,}

(ah, — a)(€) d¢

By (4), (17), (48), this yields the assertion. O

Remark 3. Note that in Theorems 3, 4, the regularity assumptions
are made directly in terms of ¢, while in Theorem 5, they are hidden
in the assumption f’ € L% (a,b).

3. Application to a thermoacoustic inverse problem. In
combustion technology, unsteady heat fluctuations can influence pollu-
tant emission, reliability, and especially noise production: The physical
background for the latter phenomenon is the fact that oscillatory heat
release acts as a source of sound in compressible flows. Therewith, it is
of high interest to reconstruct the oscillatory heat release distribution
from measurements of the sound pressure at combustor walls, cf., e.g.,
[1, 14, 15]. This represents an ill-posed problem and therefore has to
be regularized, see e.g., [4, 6, 8, 12, 13, 16, 17].

Following [1], we work in frequency domain, assuming time har-

monic behavior at frequency w, and formulate the problem as a one-
dimensional differential equation

(50) Pux + lez + ZQP = Z3(qu + qu)a T < (OaL)a

which is justified in an appropriate experimental setup, cf. [1]. Here p
denotes the acoustic pressure, ¢ the heat release, and the constants 7y,
Zo, Z3 are given by

2kM .
H=rope
]C2

Z:

2T 1 M2
vy —1

Zy= -1
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where 4 is the ratio of specific heats, k = w/¢ the wave number,
M = u/¢ the mean Mach number, & the mean axial velocity, ¢ the
mean speed of sound, and L the length of the combustor. Here, to keep
notation similar to existing literature on this application, we write a
subscript  for the derivative with respect to space, although (50) is
obviously an ordinary differential equation. Considering (50) as an
ODE for g, we see that ¢ is only uniquely determined if we specify in
addition to (50) an initial value for g. We will simply set

(51) q(0) =0,
which is physically justified by the fact that ¢(0) can be regarded as a
selectable offset value.

Unique identifiability of ¢ from measurements of p follows from the
Picard-Lindel6f theorem provided p is sufficiently smooth. One can
even derive the following explicit formula
(52)

a(w) = exp(~i(k/M)a) (a(0) + 5 (- pa(0) + (i(k/M) — Z1)p(0)))
+ 11z (P2(2) — (i(k/M) — Z1)p(x))
+ 1izs (—(k/M)* = Zyi(k/M) + Z)

XA£MMKWst—mm@wm

cf. [7].

The problem of identifying the heat release from pressure measure-
ments according to (50) is ill-posed in the sense that small perturbations
in the data can lead to large deviations in the solution. As a matter
of fact, in place of the exact pressures p only measured values p® are
available, that are contaminated with noise (which here and below is
indicated by a superscript ).

Integrating twice with respect to space, we can reformulate (50) as a
Volterra integral equation of the first kind (50) where

fuvrﬂw—47m+@@—ama@
(14 Z12)p(0) + 2pa(0) + ZsMaq(0)

(53)
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and the kernel takes the simple (convolution type) form
(54) k(z,8) = ~Z3(M +ik(z — §))

cf. [1]. Since here k (z,z) = —Z3M > 0, we deal with a one-smoothing
integral operator here.

3.1. Numerical experiments. In this section we test the per-
formance of method (6), (31) and compare it to a classical method
for Volterra integral equations of the first kind, namely Lavrent’ev’s
method, which, given a small regularization parameter o > 0 defines
the solution ¢, to the second kind (hence well-posed) Volterra integral
equation

(55) aq(z) + /0 "k (2, €)q(€) dé = £ ()

as a regularized approximation to the solution of (1). For a convergence
analysis of this method we refer to [2] and further references in [10].
According to Theorem 1 in [10] (quoted from [2]) a = a(d) should be
chosen such that

a—0 and §/a—0 asd—0.

Here we computed solutions using Lavrent’ev’s method with several
regularization parameters for each noise level and display the result that
yielded the smallest error in order to provide a really fair comparison
to the proposed method.

In our computations, we used the values M = 0.1, k = 0.5, ¥y = 1.2
taken from [1]. Moreover, we set 8 = 2 and 7 = 1.1.

As a first test example, we considered
p(z) = exp(i(Q/L)x),

with the exact solution according to (52) given by
(56)
g(z) = exp(—i(k/M)x)q(0)
Zy — (Q/L)? + Z1iQ/L
i((k/M) + (/L)) M Z3

(exp(i(Q/L)x) — exp(—i(k/M)z)).
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FIGURE 1. Method (55) (left) and (6) (right) for test example (56) applied to data
with 1/4,1/2,1,2, and 4% noise (solid line) versus exact solution (dashed line).
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Note that availability of an analytic formula for the solution helps
us to avoid an inverse crime, (which would mean to produce non-
representative numerical results by restriction of the whole problem
to a finite dimensional subspace). Synthetic noise of relative level
Ip° — pll/l|lp|| = 6, * 0.01 with 6, = (1/4),(1/2),1,2, and 4 percent in
the data is generated by adding rescaled standard normally distributed
random numbers to the exact values of p.

Figure 1 shows the respective results for Lavrent’ev’s method and the
midpoint rule for test example (56) with L =1, Q = 2.

As a second test example, we consider a heat release distribution with
two peaks

(57)  q(z) = Ayexp <(””0$)2> Ay exp (%#)

1 2

with corresponding pressure distribution according to (50) computed
by finite differences on a fine grid in order to avoid an inverse crime.

Figure 2 shows the respective results for Lavrent’ev’s method and
the midpoint rule for test example (57) with z; = L/3, 2 = 3L/4,
o =1e—3,09=3.e—3, A; =100, Ay = 50.

Method (6) appears to be more robust against noise as compared
to (55) for the smoother test example (56). For the less regular test
example (57), performance was worse for both methods, as expected
from the well known fact that convergence of regularization methods
depends on smoothness of the solution. Method (6) very well locates
the peaks and to some extent even their heights, but yields somewhat
oscillatory solutions. Method (55) succeeds in avoiding oscillations but
gives poor approximations to the peak heights.

4. Conclusions and remarks. In this paper, we have carried
out a convergence analysis of the midpoint rule for Volterra integral
equations of the first kind, that so far has been studied for exact data
only. We have established a regularizing property as well as convergence
rates under additional regularity assumptions. Enhanced rates might
be obtainable for higher order quadrature rules, however, limitations
might arise in view of the converse results from [11]. We have shown
numerical tests for an application in combustion technology.
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FIGURE 2. Method (55) (left) and (6) (right) for test example (57) applied to data
with 1/4,1/2,1,2, and 4 per cent noise (solid line) versus exact solution (dashed
line).
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APPENDIX

Proof. (Lemma 1). Assertion (a) can be seen by applying Holder’s
inequality to the estimates

1 [%k 13
lri| = E/ / 0ok (zg, 7) drq(§) dE‘
Tr—1 Y Tp—1/2

1 LTr—1/2 T
=7 —/ / q(&) d€Ook (zg, 7) dT
Th—1 Th—1

+/ / q(&) d€dak (g, ) dr
Tp—1/2 YT

1
< gllqlle(a,w/ |02k (g, 7)| dr
Tk—1

T

1 = ZTj_1/2 [T
= E /Z‘kl ; ( B /:,3]__1 /zj_l q(f) d§6162k (CU,T) dr
! /Ijil/z /wj Q(f) dgalazk (xa T) dT> dx

T

1L pas 3 Tk
Iril = ‘E > / / / 02k (z,7) da drq(€) ds‘
j=1 Tj—1YvTj_1/2 k—1

Tk

k=1 g
Z/ |0102k (z, T)| dr dz.

Th—1 j=1

< Lial
=9 q||L>=(a,b)

To prove assertion (b), we denote by ¢°¥ the part of ¢ that is symmetric
with respect to x;¢)—1/2

(a(€) +azjey-1/2 — €))

DN | =

7*(§) =

which implies

/ k (6§ —zp—1/2)q°Y () dE = 0,

k—1

(a(6) — a(2zj¢)-1/2 = €))

N | =

q(§) — ¢*(§) =



CONVERGENCE ANALYSIS OF THE MIDPOINT RULE 337

and therewith get

(58)
1 1 o
Tl = ‘E/ [k (zk,€) — k (zp, Zj(¢)-1/2)] dﬁ‘
Th—1
1 [**
= ‘E/ (6 = 2r—1/2)q°Y (§) dEO2k (T, Ti—1/2)
Tp—1
1ot
b [ k) Ok ()] dra(€) de
Tr—1 Y Tr—1/2
1 [%k 13
a0 ek diate) - o) de
Tk—1/2
1 13
‘h/ [ [ #xeandarene i
Tr—1 VY Tp—1/2 YV Tk—1/2
/ / Ok (zg, T )dT/ dpdf‘
Tk—1 Y Tr—1/2 2wp—1/2~ 5
< [T kGl dpdrle e
LTr—1/2 Y Tkr—1/2
Lo 1-1/Q
o Ook (xg, 7) dT (2|6 — 1_1/2]) d¢
Tp—1 YV Tp—_1/2
x ”ql”LQ(a,b)
Tk
<[l mepl T a0 o o el
Tr—-1/2
i o _ l—l/R _ l—l/Q
+ |€ — zp_1/2] (216 — xp—1/2]) d§
2h J,, _,
X |02k (21, )| L0014 | L2 (a,0)
= CH(P)||03Kk (, -)|
(59)
+ C2(Q, R)||02k (k)| Lraypy 10 | Lo apyh?H FH/Q
as well as
Tk
7t =| 3 / (01K (0,€) — 01k (0,16 1/2)] 4(€) dE do
Th-1 j=1 Y %j-1
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1 [%
< (b— il
<(b—a)] max ‘h/z

J€{l,m N}

[0,k(0, ) — D1k(0, 5(6-1/2)] (€) d&‘

ji—1

see (58), (59)

<(b-a) (Cl(P)Ilf?l@Sk () lze(ap lall Lo @p B2

+ C(Q B)[0102K (0, )| ay ld 1207/ A7Y9) 0
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