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NORM ESTIMATES FOR
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ABSTRACT. We provide norm estimates for a particular
integral operator on Hardy and Bergman spaces of analytic
functions on the unit disc.

1. Introduction. Let \;, z; € [-1,1], i = 1,2, be such that |z; £+
Ail < 1,i=1,2. The linear segment S, = [x1+ 12, £2+A22] is a subset
of D for any z € D. We consider the function r,(t) = [S,]t+ (z1+ A\12),
0 <t <1, ze D, where we define [S;] = (z2 + A2z) — (1 + A12). Let
A, B, be linear complex functions with real coefficients. We assume
that [A(r.(t))z + B(r.(t))] ! is bounded as a complex function of the
variable ¢, for any z € D.

In this article we consider the integral operator

1 £(0)
@ 0@ =3 /3 AQz+ B

where f is an analytic function on the unit disc. For particular choices
of the linear segment S, and the functions A, B, we obtain certain
well-known operators, like the Cesaro integral operator ([6, 10, 11,
12])

17 £

C(f)(=) 2 ), ﬁd@

which is of the form (1) for A({) =0, B({) =1—-(, z1 = 22 = 0,
A1 = 0 and X2 = 1, or the Hilbert integral operator (as defined in [2,

3]),
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e = [ FL

for A(Q)=—-¢ B(()=1,21 =0,z =1and A\; = Xy =0.

We study the operator I on Hardy space HP, p > 1, of analytic
function f on the unit disc for which

2
2 —_—— / |F(re®)[Pdf < +oo,
0<r<1Jo

as well as the Bergman spaces AP, p > 2, of analytic function f on the
unit disc for which

171 = /D () Pdm(2) < +oo,

where dm(z) = (1/7) dz dy is the normalized Lebesgue measure on the
unit disc.

We easily verify that 7,(0) = 1 + A1z and 7,(1) = z2 + Azz. Using
a standard estimate for the growth rate of functions in Hardy spaces
(see [5]), we find

1061= |57 [ T mm
‘/Arz e B
. G0

: / A0+ 5G]
: H A=)z + B Hoo
X

1
| a=mmys e

The function [A(r,(t))z + B(r.(t))]~! is by assumption bounded as a
function of variable t, for any z € D. Moreover, for any z € D, and
0<t<l,

r= ()] < min{[Sxa]t + (21 — A1), [Salt + (21 + A1) 5



WEIGHTED INTEGRAL OPERATOR NORM ESTIMATES 41

thus,

1-— |7‘z(t)| Z max{l - (acl - )\1) - [Sil]t, 1- (231 + )\1) - [Sil]t},

which implies that, for p > 1,

/1 1 dt < 1
s T oD S T @

! 1
></0 [ . t}l/pdt<oo.

1 - 17(Z1:|:)\1)

Since S11 < 1—(z11A1), the last integral is finite and thus the operator
is well defined on Hardy spaces HP, for p > 1. A similar argument using
an analogous growth rate estimate for Bergman spaces (see [13]) proves
that the operator I is well defined on Bergman spaces AP, for p > 2, as
well.

In order to state our results we need some definitions. Let A({) =
A1+ Ay, B(¢) = B1( + By, where ( € D, and A;, B; € R, i = 1,2.
Moreover, for any ¢ € (0,1),
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( ) [(232 — $1)A2 + ()\2 — )\1)B2]t + $1A($2) + 1171)\231 + )\1B(.’1§2),
a4(t) = (1‘2 — l‘l)Bgt =+ l‘lB(l‘g),

(t) = —(A2 — A1) Art + X244,

(t) = —[(z2 — z1) A1 + (A2 — A1) Bi]t + A(z2) + Ao By,

(t) = —(x2 — x1)B1t + B(z2).

We prove the following

Theorem 1. We assume that for any t € (0,1),
® |aq(t) —as(t)| < |bs(t) — ba(t)],

® |as(t) + as(t)| < |ba(t) + b3(t)],

o [b2(t)] < [bs(2)],

e by (t) = az(t) = 0.
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Then,
(1) If as(t) +aa(t) = ba(t) +bs3(t), for any t € (0,1), then the operator
I is bounded on Hardy spaces HP, p > 1. Moreover, for its norm we
have L ( )2/ )
Q(t)™P~
I\|gr—pme < / dt,
Ml = [ Ga@hat) - a7

where
Q(t) = {SuPzeD ba(t)z 4+ b3(t)] 1<p<2,
inf.ep |bo(t)z + b3(t)] p>2.

(2) The operator I is bounded on Bergman spaces AP, p > 2.
Moreover, for its norm we have

1 Q1)1
harar < [ o) — b

where
Qt) = {Supzen ba(t)z + ba(t)] 2<p <4,
infze[) ‘bg(t)z + bg(t)‘ p Z 4.

In the next section we prove necessary preliminary lemmas. In
Section 3 we find the expression of operator I in terms of weighted
composition operators, from which we can estimate the Hardy and
Bergman space norms and we prove Theorem 1.

The idea of representing an integral operator in terms of weighted
composition operators has appeared in previous articles ([2, 3, 6,
9, 10, 11]) and was shown to be a fertile way of proving norm
estimates on Hardy, Bergman or Dirichlet spaces. Those specific cases
for Hardy and Bergman spaces will now be presented in Section 4 as
corollaries of Theorem 1. The aim of the present article is to present
a unified approach to the methodology that appeared in those articles
and generalize the context in which this methodology is applied.

2. Preliminaries. Let a, b, ¢, d € R and

az+b

R e D.
cz+d’ i

w(z)=cz+d, ¢(z)=
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We show

Lemma 2. Let ¢ defined as above be a non constant self map of the
unit disc with 1 as a fized point. The weighted composition operator

1
T = —
(N = 551090,
is bounded on HP, 1 < p < 400, and for its norm we have

C2/p—1
ITlls < =gyl oo

where C = sup,¢p |w(2)], 1 <p <2, and C = inf.cp |w(z)|, p > 2.

Proof. We will transfer T' to an operator T acting on Hardy spaces
of the right half plane, which are isometric to Hardy spaces of the disc,
and thereby estimate the norm.

The Hardy space HP(II) of the right half plane II = {z : R(z) > 0},
consists of analytic functions f : II — C, such that

oo

1By = sup / (@ + iy)|P dy < oo.
<z <o

These are Banach spaces for 1 < p < oco.

Let u(z) = (1+ 2)/(1 — z) be the conformal map of D onto II with
inverse p1(z) = (z — 1)/(z + 1), and let

_ (47r)1/p p
V(£)(z) = mf(#(z))v f e HP(II).
It can be checked that this map is a linear isometry from HP(II) onto
H? with inverse given by
1 . )

V(g)(2) = Ap(L 2)P

Let T : HP(II) — HP(II) be the operator defined by T = V~=ITV,
and suppose f € HP(II). A calculation shows that T is a weighted
composition operator given by

cu—1(z (2/p)—1
O ]
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where
_ +b+c+dz+b+d—a—c
B(z) = 1(z) = @ .
(2) =podon(z) (c+d—a-bz+a+d—-b—c
Since ¢(1) = 1, we get a + b = ¢ + d; thus,
<I>(z):a+bz+b_c

a—c a—c

Notice that a # ¢ since in the opposite case the assumption ¢(1) = 1
would imply b = d, thus ad — bc = 0, which is a contradiction since
¢ is a non constant map. Moreover, since ® is by definition a well
defined self map of the half plane, we get (a+b)/(a—c) > 0, and
(b—¢c)/(a—c)>0. For 1 < p < 2, we compute 2/p —1 >0, and

~ su cz 2/p—1
TN < 2P =T (@)

In a similar way, for p > 2, we compute 2/p — 1 < 0, and

inf,cp |cz + d|?/P1

T < 2R (@)
We get that, for every 1 < p < 400,
~ 2/p-1
IT(f)(2)] <

m\f@’(z))\,
where C' = sup,p |w(z)], for 1 < p < 2, and C' = inf.cp |w(2)], for
p > 2. An integration gives

Dl = s ([ Er dy>””

0<z<+o00 oo
02/1’*1 400 a+b b_ e 1/p
< . Py
~(a—c)r 0<21£)koo </oo |f(a - c(m +ay) + a_ c)| y>
C2/P=1 g —c\MP
- (afc)2/p a+b Hf||HP(H+)
C2/r—1

= et b)a—a]r [PAIP7EEIES

CZ/pfl
m”f”m(m),

which is the desired result. O
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Lemma 3. Let ¢ defined as above be a non constant self map of the
unit disc. Under the notations above, the operator

1
T =
(N = 557290,
is bounded on AP, 2 < p < 400, and for its norm we have
04

T ar < gz

where C = sup,¢p |w(z)|, 2 <p <4, and C = inf.cp |w(z)|, p > 4.

Proof. The function ¢ is a non constant self map of the unit disc
thus, ad — bc # 0. We easily verify that

11
w2(z)  ad—be
Let f € AP. We compute

1T = [[ 1@ 1@ dm(:)

:/waﬁﬂmm4mmmwmm)
:@£E?/|Mm“ww@WW@wmm

ad—bc //ﬂ )TIF ()P dm(z)
< tai g [, O A
< o [ 1P dne)

and we obtain the desired result. O

¢'(2)-

3. Proof of the theorem. We consider the linear fractional
transformation of the variable ¢,

R1 (Z)t + Rz(z)

162) = Rt T Ra(e)’
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where
Ry(2) = [S:](A22 + Bs),
RQ(Z) = (CEl + )\12’)[(14(152) + Al)\QZ)Z + B(mg) + Bl)\gz],
Rs(z) = —[S:](A1z + B1),
R4(Z) = (A(ivz) + A1>\QZ)Z + B(.’Ez) + Bl>\22.

We easily verify that (0, z) = z1 + A1z, and (1, z) = z2 + Aaz.

To evaluate the integral (1) we apply the transformation ¢ — (¢, z),
and we compute

v(t, 2)) (t, 2)

1t £(
e AP Tere a2

We calculate

1
A(y(t,2))z + B((t, 2))
—[S:](A1z + By)t + A(za + A22)z + B(za + A22)
[A(ma + A22)z + B(za + A22)|[A(z1 + A12)z + Bz + M\2)]

and

ov(t, 2)
ot

=[S,] X [A(z2 + A22)z + B(za + A22)]
X [A(:Ul + )\1Z)Z + B(wl + )\12)]
X {—[5.](A1z + By)t 4+ A(w2 4 Xa2)z + B(wg + Xa2)} 2.

We compute

F(1(t:2)) "

1)) = A —[S.](A1z + B1)t + A(z2 + A22)z + B(z2 + A22)

A reformulation of (¢, z) gives

a1(t)2® + az(t)2? + az(t)z + ayq(t)
by ()22 + ba(t)z + bs(t) ’

v(t,2) =
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where a;, 1 = 1,2,3,4 and b;, j = 1,2, 3 were defined in the introduc-
tion. The operator I appears in the form

106 = | smmrnarng! 06 &

Since by assumption b (t) = az(t) = 0, we easily infer a;(t) = 0, and
the operator is simplified to

s 1 as(t)z + as(t)
I(£)(2) —/0 b2(t)z+b3(t)f<bg(t)z+b3(t)>dt'

The function

di(z) = —(ZS (6)z + a4(t),
2(t)z + bs(t)

is a linear fractional transformation; thus, it transforms circles and lines
to circles and lines. Since by assumption | —b3(¢)/b2(t)] > 1, ¢t € (0,1),
the function ¢; is analytic on the closed unit disc which implies that
the image of the unit disc is a disc. Moreover, the coefficients of ¢;(z)
are real; thus, ¢:(2) = ¢¢(Z) which implies that the image ¢:(D) is
symmetrical to the real axis. Since the image of a connected set under
a continuous function is a connected set, and |¢;(—1)] < 1, |¢:(1)] < 1
by assumption, we also get ¢([—1,1]) C [-1,1].

The above remarks verify that ¢, is a well defined self map of the
unit disc and, thus, the operator I is well defined in the unit disc as
a weighted integral operator. An application of Lemmas 2 and 3 gives
the desired result and completes the proof of Theorem 1.

4. Applications. In the introduction we remarked that well-known
examples of operators of the above type that appear in previous articles
is the Cesaro integral operator ([6, 10, 11, 12])

e =1 [ 1€

which is of the form (1) for A({) =0, B({) =1-(, 1 = 22 = 0,
A1 =0, A2 =1 and the Hilbert integral operator (as defined in [2, 3]),

1
e = [ 1L
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for A(()=—-¢, B({) =1, 21 =0, z3 = 1, Ay = A2 = 0. In addition, it
is easy to see that the H? adjoint of Cesaro operator ([10, 11]),

AnE == [ TR de,

z—1

is of the form (1) for A({) =0, B({) =1, z1 =1, 22 =0, A\ =0,
Ao =1 as well as the operator

17 f(©Q)
z—1J; —1-¢

T(f)(z) = dg,
which is studied in [9], for A({) =0, B({) =-1—-¢(, 21 =1, 22 =0,
A1 =0, Ay = 1 and the operator

@) = [ L

for A(¢) = —2¢, B(¢) = 2,21 = =1, &2 = 1, Ay = A2 = 0. The operator
H, is the H? equivalent to the well-known Carleman’s integral operator

e =g [ L%

acting on L?(0, 00). The equivalence of the operators Hg and L, as well
as the equivalence of the above operators with the operator induced by
the reduced Hilbert matrix on /2, has been described in detail in [7].

Standard calculations show that in all the specific cases above, the
function [A(r.(t))z + B(r.(t))]™! is a bounded complex function of
variable ¢, for any z € D, thus the operators are well defined when
they act on Hardy spaces HP, p > 1, or Bergman spaces AP, p > 2.

Henceforward, we denote by XP? either Hardy space HP, for p > 1,
or Bergman space AP, for p > 2. In most of our results a constant
a appears and corresponds to either case of XP. We keep in mind
the convention that this constant is a = 1, when XP? denotes HP,
and a = 2, when XP denotes AP. We can also observe that the
assumption |az(t)+aq(t)| < |ba(t)+bs(t)| is weaker than the assumption
as(t) + aq(t) = ba(t) + b3(t) and thus it shall not be verified when the
latter holds.
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Corollary 4. The operator C is bounded on Hardy spaces HP, p > 1,
and Bergman spaces AP, p > 2, and for its norm we have

p

||C||Xp_>xp < 2(2a/p)—1_E ifa <p<2a,

=3

and

ISHkS!

||C||XP—>XP <=, ifp > 2a.

Proof. We compute bi(t) = a2(t) = 0, as(t) = t, as(t) = 0,
ba(t) =t — 1 and b3(t) = 1. We verify that

o aa(t) —a3(t)] =t <2 —t = [b3(t) - ba(2)],
o [ba(t)| =1t <1=bs(t)],
o by (t) = az(t) =0.

Moreover, ag(t) +a4(t) = t = ba(t) +bs(t), and Theorem 1 is applicable
in both Hardy and Bergman space cases. For p > 2a, we compute,

Qt) = zlg}f) ba(t)z + b3(t)| = Zlg}f) |(t —1)z+ 1] =t,
while for a < p < 2a,

Q(t) = sup |ba(t)z+ b3(t)| =sup [(t — 1)z + 1| =2—t¢.
zeD 2€D

We also find a3(t)bs(t) — aa(t)b2(t) = t. A simple integral calculation
gives for p > 2a,

1 42a/p—1 p

t
< - = —
IC]| xr— x> _/0 Jalp dt 7’

while for a < p < 2a,

1 _ #)2a/p—1
IC]|xp—x» < / Ldt < 9(2a/p)—1 p
0

ta/p pfa'

which is the desired result. O
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Corollary 5. The operator A is bounded on Hardy space HP for
p > 1, and Bergman spaces AP for p > 2. Moreover,

p
HAHXP_)XP < p—_ . p > a.

Proof. We compute asz(t) =t, as(t) =1 —t, ba(t) = 0 and b3(t) = 1.
We verify that

o las(t) — as(t)] = 2t — 1 < 1= [ba(t) — ba(1),
® [b2(t)] = 0 < 1= [b3(t)],
® bl(t) = ag(t) =0.

Moreover a3z(t) + as(t) = 1 = by(t) + bs(t), thus Theorem 1 is appli-
cable in both Hardy and Bergman space cases. We further compute
as(t)bs(t) — as(t)b2(t) = t, and for every p > a,

Q(t) = sup |b2(t)z + b3(t)| = inf |b2(t)z + b3(t)| = 1.
zeD zeD

A simple integral calculation gives for p > a,

1
1 P
Al xr—xr < /0 2alp dt = p—a’

which is the desired result. O

Corollary 6. The operator J is bounded on Hardy space HP for
p > 1, and Bergman spaces AP for p > 2. Moreover,

[T l|xp—xv < if a < p < 2a,

_pr
2(p —a)’

and )
Tl xp—xe < 24’ if p > 2a.

Proof. We compute ag(t) = —t — 1, aq(t) =t — 1, ba(t) =t — 1 and
bs(t) = —t — 1. We also verify that
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o |ay(t) —az(t)| = 2t < 2t = |b3(t) — ba(?)],
o |ba(t) =1—t<14t=|bs3(t),
o bl(t) = a2(t) =0.

Moreover, ag(t) + a4(t) = —2 = by(t) + b3(t), and Theorem 1 is
applicable in both the Hardy and Bergman space cases. We compute
a3 (t)bs(t) — aq(t)be(t) = 4t. Moreover, for p > 2a,

Qt) = Zlglf) b2 (t)z + b3(t)| = Zlglf) |(t — 1)z + 1] = 2t,
while for a < p < 2a,

Q(t) = sup |ba(t)z + b3(t)| =sup [(t — 1)z + 1] = 2.
zeD z€D

A simple integral calculation gives for p > 2a,

1 2a/p—1
(2t) D
poxe < | A dt = —
1T l|xr—x _/0 (4t)/r dt 2%’

while for a < p < 2a,

1 22a/p—1 J P
p p < N t -
oo = | g = 55

which is the desired result. O

Remark. The last result comprises a natural generalization of the
result obtained at [9] for the Hardy space case.

Corollary 7. The operator ‘H is bounded on Hardy spaces HP for
p > 1, and Bergman spaces AP for p > 2. Moreover, for each f € XP,

1
|1 H||xr—x» < 22“/1”—1/ t=YP(1—t)"%Pdt, a<p< 2a,
0

and
T
sin(ar/p)’

[Hxr—xr < P = 2a.
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Proof. We compute az(t) =0, as(t) =1t, ba(t) =t — 1 and b3(t) = 1.
We also verify that

o lag(t) —as(t)| =t <2 —t=|bs3(t) — ba(t)|,
o [ba(t) =1 -t <1=bs(t)],
o by(£) = as(t) = 0.

Moreover, a3 (t)+a4(t) =t = ba(t)+bs(t); thus, Theorem 1 is applicable
in both the Hardy and Bergman space cases. We further compute
as(t)bs(t) — aa(t)ba(t) = (1 —t). We also remind the reader from the
proof of Corollary 4 that for p > 2a,

Q) = inf [ba(0)= + bs(t)] =,
while for a < p < 2a,

Q(t) = sup |ba(t)z + bs(t)| =2 —¢.
zeD

An integral calculation gives for p > 2a,

t2a/p71

1
p p < —dt
Mo = || g

1
:/ /P71 (1 — t)=/P dt
0

" sin(ar/p)’

where we used standard identities on beta and gamma special functions
(see [14]), while for a < p < 2a,

1 _ #)2a/p—1
2-1)
p p < —_—
e e

1
< 2%a/p—1 / t=/P(1 —t)~/P dt,
0
which is the desired result. O

Remark. The operator # is not bounded on Hardy space H' and
Bergman space A2. A proof of those facts appears in [3] and [2],
respectively.
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Corollary 8. The operator Hy is bounded on Hardy space HP for
p > 1, and Bergman spaces AP for p > 2. Moreover, for each f € XP,

1/2
[Holl o xr < / go/p=1(1 _ py=alp gy,
0

for p > 2a, and

1/2
Hollxosxe < / £a/P(1— £)*/r L dy,
0
fora < p < 2a.

Proof. We compute az(t) = 2, as(t) = 4t — 2, ba(t) = 4t — 2 and
bs(t) = 2. We verify that

o Jas(t) —as(t)| = 4(1—t) < 4
o |ba(t)| = |4t — 2] <2 =1bs(t)
® bl(t) = ag(t) =0.

Moreover, a3(t)+aq(t) = 4t = by(t)+b3(t), and Theorem 1 is applicable
in both the Hardy and Bergman space cases.

We further compute as(t)bs(t)—a4(t)ba(t) = 16t(1—t), and for p > 2a,

(1 —1t) = [bs(t) = ba()],
B

Q(t) = inf (4t —2)2 42 = {4(1—t) 0<t<1/2,

4t 1/2<t<1,
while for a < p < 2a,
4t 0<t<1/2,
t) = 4t — 2 2| =
Q) = sup (4t =2)z +2] {4(1—t) 1/2<t<1.

From Theorem 1 we obtain that for any ¢ € (0,1), the operator H, is
bounded on Hardy spaces HP, 1 < p < +o0, and Bergman spaces AP,
p > 2 and for its norm we have

1 t 1-2a/p
(2) ||H0HXP—>XP S/O &Wc{t‘
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From the calculations above and estimate (2), we get for p > 2a,
1 Y2
[Hollxrer <5 [ 10—t as
0

1 1
+ = / t=/P(1 — t)2/P1 gt
2 )12

/ ta/P 1 )*G/P dt,

while for a < p < 2a we end at
/ ta/P(1 — )P gy
1
2

/ ta/p= 1( )—a/p dt
1/2

+
1/2
/ t7vP(1—t)*PLar. o

1Mol xr—xr <

N | =

Final remarks. In the recent article [4], the authors prove that
the norm estimate of the Hilbert operator of Corollary 7 is sharp for
p > 2a, in both the Hardy and Bergman space cases. Moreover, they
show that the same estimate still holds in the Hardy space case for
1 < p < 2, which implies that Theorem 1 does not provide a sharp
estimate in this case.

On the other hand, Theorem 1 is proven to be sharp for other cases
we exhibit in the last section. Actually, for p > 2a, using a semigroup
theory argument, it is possible to show that the norm estimates are
sharp for the Cesaro integral operator on Hardy and Bergman spaces
(see [10, 12] respectively). Analogous arguments show that for p > a,
the estimates are sharp for the operator A, on Hardy and Bergman
spaces as well (see [10, 11] respectively).

Finally, since the spectrum of Carleman’s Integral operator on
L?(0,1) is the interval [0,7/2] ([1, page 169]) and

1/2
[Holl 2 2 g/ V21—tV dr =T,
0
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we derive that the norm estimate of Corollary 8 for the Hardy space
case and p = 2, is best possible, in particular

|3

1Hollgz—m2 =

The final question that naturally arises for future research is the
detection of the appropriate assumptions for Theorem 1 so that it can
be a sharp norm estimate of the integral operator (1).

Acknowledgments. I would like to express my gratitude to Profes-
sor Vassili Nestoridis for his moral support during the preparation of
this article.
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