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ABSTRACT. We consider a parametric family of integral
equations of the first kind, which can be treated as index
transformations and generalize classical Kontorovich-Lebedev
transformation and related operators. The kernel of these
equations is associated with the modified and incomplete
Bessel functions and their derivatives with respect to an in-
dex. For certain kernels general solutions are found by using
Sneddon’s operational proof of the inversion formula for the
Kontorovich-Lebedev transformation.

1. Introduction. Let f,g be complex-valued measurable functions
defined on R and R, respectively. We will deal here with the following
integral equation of the first kind

(1.1) | suenf@ =g, ver

and the kernel S,,(z,y) is defined by the formula

1 [ .
(1.2) &%Wﬁ/emmﬂwwm,mm.

— 00

Here P, (z) = anz™ + ap—12™ "1 + -+ + ag is a polynomial of degree
n € Ny with real-valued coefficients. A function g(y) in (1.1) is given
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and f(z) is to be determined. When n = 0, ag = 1 we invoke [5, Vol.
I, relation (2.4.18.4)] or [6, (6-1-2)] and we come immediately to the
value Sy(z,y) = K;y(x), where K;, () is the modified Bessel function
of the second kind [1] with respect to the pure imaginary index iy given
by the integral

1 [ .
(13) KZ (x) — 5/ e*ECOShu«kzyu du

— 00

Hence equation (1.1) becomes

(1.4) / " K@) @) = g(w),

~ =
and it is called the Kontorovich-Lebedev integral equation or transfor-

mation (cf. [6, 7, 8, 10]). As is known, the modified Bessel function
K, (z) satisfies the differential equation

(1.5) et z— — (2 +vHu =0,
2z
for which it is the solution that remains bounded as z tends to infinity

on the real line. It has the asymptotic behavior (see [1, relations (9.6.8),
(9.6.9), (9.7.2)])

2\ 12
(1.6) K,(2) = <Z> e *[1+0(1/2)], z— oo,

and near the origin
(1.7) K,(z)= O(z_lRel’), z—0,
(1.8) Ky(z) = —logz+0O(1), z—0.

Kernel (1.2) generates two more kernels, which will be studied below,
namely its real and imaginary parts written as

(1.9) Re S, (z,v) :/ e~zcoshup (y) cos uy du,
0

(1.10) Im S, (x,y) :/ e Tcoshup (y)sinuy du,
0
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where P,_(u), P, (u) are even and odd parts of the polynomial P, (u) =
Py, (u) + Pa, (u).

We will extend and motivate Sneddon’s formal operational proof [6,
Ch. 6] of the inversion for the Kontorovich-Lebedev transformation
(1.4) on integral equations of type (1.1) with certain kernels (1.2).
For instance, we will use it to find a solution of the following integral
equation

(L.11) / T M@ f@) % = gy), y>o0,

— =
where M;,(z) is a special function related to Bessel’s functions and
represented by the integral [4, 9]

(1.12) M;y(z) = / e Teoshginyudu, x>0,
0

which occurs in calculation of impedance. We will also show below
that general kernels (1.9), (1.10) are connected in some sense with the
incomplete Bessel functions (see, for instance, in [3]). In particular,
based on the modified Bessel function K, (z) according to [3] it has

(1.13) K, (z,w) = K,(2) — J(z,v,w),

where

(1.14) J(z,v,w) = / e"Z % coshvudu, Rez > 0.
0

Our main goal is to find sufficient solvability conditions for the inte-
gral equation (1.1) and describe its solutions applying the Sneddon
operational method. It is based in turn, on the use of the operational
properties for the Fourier and sine Fourier transforms

(1.15) (Fie) = o= [ s,

(1.16) (Fyf)(z) = \/g/ow £(t)sintz dt,
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and the Laplace transform

(1.17) (Lf)(z) = /0 T et dt.

2. Properties of the kernel S,(z,y). Let us consider some
elementary properties of the kernel (1.2), which will be employed in
the sequel. First we observe that integral (1.2) and its derivatives of
any order with respect to y are convergent absolutely and uniformly
by y € R. Thus S,(z,y) is an infinitely differentiable function with
respect to y and we easily have
(2.1)

o 1 [ s ,
_ = —xz coshu P uy N .
3t Sn(z,y) 5 / e (tw)" Py, (uw)e™™¥ du, keNy, x>0

— 00

Meanwhile, taking (1.3) we differentiate it similarly with respect to y
to get for each m € Ng and = > 0

(2.2) ;{/—mKly(x) _ 5\/ (iu)me—z coshutiyu g,

Therefore kernels S, (z,y), K;y(x) belong to the space C™(R) of func-
tions, which are m times continuously differentiable by y for any

m € Ny. Moreover, it is not difficult to obtain the following repre-
sentations of the kernel (1.2) and its derivatives

(2 3) Sn(way) = Z( Z)mamaa_mm zy(x)a
m=0
k n m+k
(2.4) S Sna) = Y () Ky (o)
m=0

Furthermore, for all ¥ € Ny we deduce from (2.1) the uniform estimate
with respect to y
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1 o
Tesa@y)| <3 [ e pupp, ) au

Sew [ e B (R, ()] + Py, () du
0

<e_z/ e Dk (1P, (w)| + | Pa, (u)]) du
0

. n ~(m4kt1)/2
e T m+k+1
5 > lanl(3) r(mHE),

m=0

IN

z >0,

where I'(z) is the Euler gamma-function [1]. On the other hand, we
observe that, for each 2 > 0, the integrand in (2.2) is an entire function.
Therefore, in the closed strip {z € C, [Imz| < §} where ¢ € (0, (7/2)),
taking into account that

+4
lim (Z(RGZ + iﬂ))mefz cosh(Re z+i83)+iy(Re z+1if3) d,B =0,

|Re z|] =00 Jg

we can shift the contour of integration in (2.2) along the upper (lower)
half-strip when y > 0 (y < 0). Consequently we obtain,

o™ 1 +26+00 o
2.6 _Kl ) = _/ iz) e wcoshztiyz g,
@6  aKu@=g [ (@)
and
2.7)
o™ 6_6|y‘ OO m ,—x cos d coshu
‘iay—mKiy(w) < /_OO(IUI+|5I) e eosb o gy

< e—ély\—zcosé/oo (u+ g) e—(zu2cos5)/2 du
0

e—6|y\—w cos §

w/2 o0 m
% / +/ >(u+ Z) o~ (eu?cosd)/2 g
0 /2 2
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—5\y|—zcost5 71,m—&-l_i_2(3m—i-1)/2

X (z cos 6)(m+1)/2F<m—+1>] ,

<

l\DI»—\

2

forany z > 0,y € R, 0 < § < (7/2). Thus, returning to (2.4), we have
accordingly the estimate

(2.8)
6k n am+k
By Pl Z am dymTk Kiy(x)

=0

<1 slyl-acoss Mkl | o(3(mtk)+1)/2
< e Z || +2

X (zcosd)™ m+k+1)/2f‘<%k+l>},

where z > 0, y € R, 0 < § < (7/2), k € Ng. Meanwhile, the
kernel (1.2) can be treated as the Fourier transform of the absolutely
integrable function e~*<*sh% P, (u) € L;(R) for each > 0. Moreover,

fixing ¢ from the interval (0,7/2) we see that S,(z,y) € Li(R) by y
via (2.8). Thus inverting the Fourier transform we obtain the equality

(29) e—mcoshuP / S CL' y) —iuy dy

For kernels (1.9), (1.10) we have similarly their cosine and sine Fourier
transformations, respectively,

2 oo
\/j/ Re S, (z,y) cosuy dy = \/ge_“"Sh“Pne (u),
\/7/ Im S, (z,y) sinuy dy = \/7 —wcoshup (y).

Finally in this section we represent functions (1.9), (1.10) in terms
of the incomplete Bessel functions. Precisely, with the interchange

(2.10)

(2.11)
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of the order of integration via Fubini’s theorem we get plainly the
representations

(2.12)
Resn(o) = [ T Ky 0,0) do + P, (0K 2),

(2.13)
[T dP,,(w)
S, (e.9) = [ TN (o) do

where Ky (x,w) is defined by the integral (see (1.13), (1.14))

o0

Kiy(z,w) = / e~ @ eosh Y cos uy du,
and M;,(z,w) is an incomplete M-function (1.12)

o0
Miy(ac,w):/ e~ eosh U gin uy du.
w

3. Sneddon’s operational solutions of the equations (1.4),
(1.11). In this section we will motivate the Sneddon operational
method [6, Ch. 6] to find a solution of the Kontorovich-Lebedev integral
equation (1.4) and will solve in a similar manner equation (1.11). To
do this we will formulate sufficient conditions on the right-hand sides
of equations (1.4), (1.11) in order to seek solutions in a certain class
and guarantee their existence and uniqueness.

By L1(9; p(z) dz) we denote, as usual, the Banach space of summable
functions with respect to the Lebesgue measure p(x) dz and the norm

I1£]] :/Q|f(:v)|p(ac)da: < 0.

We will say that f(z) belongs to the class £,,(Ry) C Li(Ry) if f
satisfies the condition

f € L (0,150 9/2 o) 1 Ly ((1,00);dz), m € N,

We will prove the following
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Theorem 1. Let f € L,,(R4). Then the right-hand side of the
Kontorovich-Lebedev integral equation (1.4) g(y) is necessarily even
and belongs to C™(R). Moreover, if g(y) € Li(R;|yle™ ¥l dy),
d € (0,7/2) and satisfies the condition

(3.1)
0o o) ty(z+log 2)
[(m+1)/2] e o dul d
ma e - T < 00,
k=0,1,... ,[<>fn+1>/41/o /_oo L(k — iy + 1)g(y) Y

then there exists a unique solution of equation (1.4) in the class
L, (R4) given by the formula

(3.2) fla) =~ / YL (@)g(y) d.

™

Proof. Indeed, the right-hand side g(y) of equation (1.4) is even (see
(1.3)) and belongs to C™(R), m € Ny. The latter fact can be shown by
using (2.7) and the possibility to differentiate under the integral sign
in (1.4). Precisely, this is because of the estimates

| gm I, ()
(m) ()| < / ‘ u(@) oo
19" (y)| < | g f(z)
1 oo
X (/ + > |:ﬂ,m+1 + 2(3m+1)/2 (l‘ cos 5)7(m+1)/2
0 1

(M) e

x

1 0o
< Opge W (/ z M /2) £ ()| da +/ |f ()] d:v) < o0,
0 1

dzr

dz 1 sy
r ~ 2

where Cp, s > 0 is a constant. Furthermore, we get that g € Ly (R).
Therefore, applying the Fourier transform (1.15) to both sides of (1.4)
we invert the order of integration via the estimate above. The inner
integral is calculated as the result of the inverse Fourier transform,
which is taken in (1.3). Thus we arrive at the equality

ea [ erty@T =2 [ gweay

T T J_ o
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Making an elementary substitution coshu = p in (3.3) it becomes

B [Ceri@T =1 [ awe e E Dy pon

T J -0

But g € Li(R;ydy) too. This circumstance and the condition f €
L., (Ry) give the possibility to differentiate through in (3.4) with
respect to p. Hence we obtain

o0 e i [ e—iylog(p++/p>-1)
(3.5) e P f(z)dr = - y9(y) dy.
0

T J_co p2—1

Now we appeal to the value of the integral (see [5, Vol. II, relation
(2.15.3.1)))

e~ log(p++/p*—1) o0
(3.6) = e P Liy(x)dx, p>1,

Vp? -1 0

where I;,,(t) is the modified Bessel function of the first kind [1], which
is represented by the series

oo /2 2n+iy
(7) L) =3 e 1T

n=0

Substituting (3.6) into (3.5), we change the order of integration in the
right-hand side of (3.5) to obtain

68 [ eri@do= [Cert [ @ dyde.

™

Canceling the Laplace transformation (1.17) in both sides of (3.8) by
virtue of the uniqueness theorem for the Laplace transform of summable
functions [2] we arrive at the unique solution (3.2) of the Kontorovich-
Lebedev integral equation (1.4) in the Lj-sense, i.e., for almost all
x > 0. Our goal now is to motivate the change of the integration order
in the right-hand side of (3.8) and to justify the fact that our solution
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is indeed from the class £,,(Ry). To do this we begin to estimate the
modified Bessel function (3.7). We deduce

(m/2)2n
[Ziy(z)] < an‘l“(n+ly+1)‘

Z (z/2)*"|B(iy +1/2,n + 1/2)|
1/2+zy| nT'(n +1/2)

/7 . (2/2)™
STzt 2 )y

00 n\ 2
c ()
T PA2+w) |\ Zm n!
= e%y/coshy < e*7Iv1/2,

We note here that B(a,b) is the Euler beta-function [1]. Consequently,
since g € Ly (R; |yle™ W dy), § € (0,7/2) and the following iterated
integral is absolutely convergent

/ / yg(y)Liy ()| dy dow

_/ e~ (P=1)e dw/ lyle™1/2|g(y)| dy
0 —00

< / e e dm/ [yle™=¥lg(y)| dy < 00, p > 1,
0 —o0

we justify immediately the interchange of the order of integration in
the right-hand side of (3.8) by the Fubini theorem.

In order to complete the proof of the theorem we show finally that
solution (3.2) belongs to the class £,,(R4). But first we write it in a
different form. Making use of the formula [1], [5, Vol. 2]

[1iy(2) = Liy ()],

7r
Kiy(x) = 5o
v(®) 2i sinh 7y

and the evenness of g we find the classical form of the solution (3.2) for
the Kontorovich-Lebedev integral equation (1.4) (cf. [6, 7, 10])

(3.9) f(z) = * /_00 ysinh myK;, (z)g(y) dy.

T2
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Hence via (2.7) it follows

F(@)] < Cryp €050 / e g(y)| dy < 00, @3> 1,

— 00

where Cy, s > 0 is a constant and § € (0,7/2). Therefore f(x) €
L1((1,00);dz). On the other hand, returning to the form (3.2) for the
solution we substitute (3.7) into the integral and split it in two sums.
Hence with elementary substitutions we deduce

(3.10) / L2 ()] de

0

l 1
< _/ o (mt3)/2
S

1 1
+ = / l_f(m+3)/2
™ Jo

=1+ L.

[(m+1)/4]

x 2n 0o eiylog(2/z)
> (/2) / 4 79w) dy

d
n! o Mn—dy+1 v

n=0

00 0 x/2)2n 6iy10g(2/w)
/ > (z/2)™y 9(y) dy

S S Y n!ll'(n —iy + 1)

dxr

However (see (3.1)),

[((m+1)/4] 1

1
hos - 221y

n=0

00 . Com)e 0o yeiy(erlog 2)
X/ o([(m+1)/2]-2n) / o) dy| da
0 —o0

I(n—iy+1
<An max /oo el(m+1)/2]z
n=0,1,...,[(m+1)/4] Jg
o yeiy(m-HOg 2)
T 1 1) dy|d
* /—oo F(?’Lfly_f_l)g(y) Y| axr < 00,
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where A,, > 0 is a constant. Finally we estimate I>. We have

1 ~ 1 >
< L L [T mryz—ame
2= > 22n(n!)2/0 ¢ z

1 - 1 >
- T Z 220 (n1)2(2n — (m + 1/2)) /ﬁ)o lyg(y)le™'* dy

n=[(m-+1)/4]+1

< Bm/ lyg(y)|e™ M dy, &€ <0,g),

where By, > 0 is a constant. Thus via (3.10) we confirm that solution
(3.2) belongs to Ly((0,1);2~(m+3/2) dz) as well and we complete the
proof of Theorem 1.

An operational solution of the equation (1.11) will be treated in the
class M, (Ry), i.e., f satisfies the condition

fer, ((0, 1);31:_("”'3)/2 d:v) N L ((1,00);6_’%_3/2 da:) , m € Npy.
Theorem 2. Let f € M, (Ry). Then the right-hand side of

integral equation (1.11) g(y) necessarily belongs to C™(R..). Moreover,
if g € Li(Ry;ye™/? dy) and satisfies the condition

(3.11) max / ellm+1)/2z
n=0,1,...,[(m+1)/4] Jo
3] R eiy(z-{-log 2) il d
X e|——F+— T < 00,
/0 [F(n_lwl)]yg(y) y

then there exists a unique solution of equation (1.11) in the class
M (Ry) given by the formula

312)  f@=-2 [ el @l ds @ >0

™
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Proof. Differentiating in (1.12) with respect to y we easily get the
estimate similar to (2.5)

o0
= ‘ / e~ eoshuymgin <yu + gm) du
0

o0
< / e—wcoshuum du
0

(3.13)

O M, ()

ay™

oo
s p2
— efz/ 6721 sinh (u/2)um du
0

—x —(m+1)/2
e T m+1

Therefore if f € M,,(R), then we find from (1.11) and (3.13)

< efz/ e~ @u*)/2,m gy,
0

dx
T

0
<o dx
< [ | aterr)| =

< 2(m1)/2r(mT+1>/ e % )|z ™2 4
0

1
< 2<m1>/2p<m_+1> (/ ()| 92 gy
< 5 i
+/ F(@)]e a2 da:) < oo,
1
which implies g € C™(R.y). But g € L;(R,;ye™/?dy). Therefore it

belongs to Li(R.). Applying the sine Fourier transform (1.16) to both
sides of (1.11) we have

(Fug)(u) = @ / " gy sinyudy

2 A * d
=4/= lim / sinyu/ sz(x)f(:c)—xdy
0 0 z

T A—00

00 = | [ M) @)

(3.14)
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The change of the order of integration in the right-hand side of (3.14)
is possible via the uniform convergence with respect to y € [0, A] of the
inner integral (see the estimates above). Hence we obtain

(3.15)  (F.g)( \[Algx;o/ </ Miy(z Slnyudy> i )d:c

But integral (1.12) converges absolutely and uniformly with respect to
y € R,. Therefore,

/ 2)sin yu dy = 1 / e (sm)\(u —t) sinA(u+ t)> i
0

2 u—t u+t

Substituting the right-hand side of the latter equality into (3.15) we
change the order of integration for each A\, u by Fubini’s theorem. This
fact can be motivated by the condition f € M,,(R ), the estimate

o
/ e ¢ cosht
0

sinA(u—1t)  sinA(u+t¢)
u—t u+t

dt
<2) / e TSt gt = INK (),
0

where Ko(z) is the modified Bessel function of the index zero, and
asymptotic formulas (1.6), (1.8). Denoting by

(3.16) h(t) = / e=rcosht () 9
0 m
we come out with the equality (see (3.15))
(3.17) / 9(y) sinyudy
hm—[/ Wt sm)\ dt / Wt s1n)\u+t)dt‘
)\—)oo

However, since f € M, (Ry) it follows (see (1.6), (1.8)) that f €
L (R, ; Ko(z)ztdz). Moreover,

e d
1< [ e @) 5 <o, £ 210 > 0,
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which means that h(t) is continuous for ¢ > 0. Further, (see (1.3))

h d d —z cosht hated
| mwnar< [ [ ey g
- | B@i@) 5 <o

and this yields that A € L; (R ). Hence

o sinA(utt %0 in At
TR B T Gl k) R Y P L

A—o00 Jq u+t A—=co [,

dt=0, u>0

by virtue of the Riemann-Lebesgue lemma. Now fixing small § > 0 and
splitting the first integral, the equality (3.17) becomes
(3.18)

o0 1 sin A\(u — t)
gy sinyudy:lim—{/ +/ ]htidt,
/0 ) A=o0 2| Jjp—ul<s |t—u|>6 ®) u—t

and in the same manner we obtain

lim sin A(u — 1) dt=0, u>0
A—00 |t—u|>6 u—t
Further,
in \(u — ¢ o in At
/ n(pySmAE =Y :/ h(u — )22 gt
lt—u|<5 u—t ) t
6 p— p—
:/ —h(u t) = h(u) sin At dt
-5 t
5 .
At
vy )/ sin At
st

But, in the meantime for each u > 0

5 SA .
At t
h(u) SRA gt = h(u) ST gt wh(u), X — oo.
t t
—6 —0A

Finally from (3.16) and the above estimates we find that h(t) € C*(R)
and its derivative is bounded on any compact set of R. Consequently,
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the Dini condition from the theory of Fourier integrals in L is satisfied
and s
lim h(u —t) — h(u)

A—00 —5

sin At dt = 0.

Hence, passing to the limit in the right-hand side of (3.18) it takes the
form

dx

™ T

2 oo oo
. = in dy = —x coshu
(3.19) | swsingudy = [~ eetepa)

As in the proof of the previous theorem we make the substitution

coshu = p in (3.19) to write

(3.20)

/ e’p””f(:v);x = ;/ g(y) sin (ylog (p+ Vp? - 1)) dy, p>1.
0 0

Since g € L;(R;ydy) and f € M,,(R;) we differentiate through in

(3.20) with respect to p to deduce

(3.21)

/Ooo e P? f(x)dr = —% /Ooo y9(y) = <y 10g\5};2—i——_1p2 _ 1>> dy.

The value of integral (3.6) yields the equality

cos (ylog <p+ Vp?— 1))
Vvpr—1
Substituting this into (3.21) we change the order of integration in the

right-hand side of (3.21) by Fubini’s theorem, motivating this as in the
proof of Theorem 1. Thus we obtain

_ /0 e Re [, (2)] da.

wm>Awaﬂmm=—Awa§Aww@mwn@n@m.

One can cancel the Laplace transformation (1.17) in both sides of
(3.22) by virtue of the uniqueness theorem for the Laplace transform
of summable functions [2], which is zero at least at the countable set
of points p; = pg + g9, po > 1, g0 > 0,1 =0,1,2,.... Consequently,
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we arrive at the unique solution (3.12) of the integral equation (1.11)
almost for all z > 0. In order to show that our solution is indeed from
the class M,, (R ) we have as in the proof of Theorem 1

/°° e /Ooo y Re[Liy (2)]g(y)| dy dz

1
S/ w‘3/2d:v/ ylg(y)|e™/? dy < oo.
1 0

Therefore f(z) € Ly((1,00); e %z 3/% dx). Meanwhile, by using condi-

tion (3.11) we derive
2 [t 32| [~
2 [Fammorz) [ ke 1y @)lgty) dy
™Jo 0

1
<2 / - (m+3)/2
0

dr

T
[(m+1)/4] p2n [ iy log(2/z) auld
x 2 7/ Y e[—F(n—iy+l)]g(y) y| ax
1 [eS) o 2n
+z/ x*(m+3)/2/ Z r
T Jo 0 n!
n=[(m+1)/4]+1
R ety log(2/x) il d
x e [m]g(y)y y| ax
<Cp max / elm+1)/2]e
- n=0,1,...,[(m+1)/4] Jq

dz

0o eiy(z+log2)
x / Re[4r )]yg(y)dy
0

(n—iy+1

+Dm/ ylg(y)|eV™? dy < oo,
0

where Cy,, D, > 0 are constants. Therefore solution (3.12) belongs to
L1((0,1); z=(m+3)/2 dz). Theorem 2 is proved.

4. A solution of the general equation (1.1). An example. In
this section we will find solutions of the equation (1.1) and its particular
case in the closed form. We will seek them in the class £,,1,(R+) (see
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Theorem 1), where m € Ny is related to the order of the derivative of
a function g and n € N is defined by the kernel (1.2). We have

Theorem 3. Let f € L, (R+) and let a polynomial P,,(z) in (1.2)
have no zeros in the closed horizontal strip D = {z € C: [Imz| < 7}.
Then the right-hand side g(y) of the general equation (1.1) is necessarily
from C™(R). Moreover, ifg € Li(R;;|yle™ D)Wl dy), § € (0, (7/2)) and
the Fourier convolution

(4.1) (k) =)= [ " gWka(r — ) dy.
with
(4.2) oo () = % [ b ]fn(:) du,

satisfies condition (3.1), where m is substituted by m + n, there exists
a unique solution of equation (1.1) in the class Lmn(Ry) given by the
formula

(43 f@) = [~ Suwgto) dv
where the kernel S, (z,y) is defined as

~ 1 ot
(4.4) Sp(z,y) = — / I i (2)kn (T —y) dr.

Proof. The right-hand side g(y) of equation (1.1) belongs to C™(R).
Indeed, we use (2.8) and the condition f € £L,,;,(R4) to obtain

gl < [T

dx
T

1
< Bppge ([ om0 o
0

+ [T1@)ae) <,
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where B, 5 > 0 is a constant. Since via the latter estimate g € L; (R),
we apply the Fourier transform (1.15) to both sides of (1.1), and we
invert the order of integration by Fubini’s theorem. Hence, appealing
to (2.9), and taking into account that P,(u) in (1.2) has no real zeros
we come out with the equality

(45) /0 e—z Coshuf(m)d_x _ l/ g(y) e—lyu dy

T T J_o

Applying again the Fourier transform to both sides of (4.5), we use
representation (1.3) to arrive at the Kontorovich-Lebedev integral
equation like (1.4). Namely, we deduce

4 R0 = [ [T G

T

But conditions of the theorem imply that n has to be even. Further-
more, the estimate

/_Z du/_o;‘g(y) dyg/_i%/_ilg(y)ldy<oo

allows us to invert the order of integration in the right-hand side of the
equation (4.6) due to Fubini’s theorem. Consequently, it becomes

y)u

(u)

ei(T
P,

(4.7 | K@@ = k)0,

where the right-hand side of (4.7) is defined by (4.1), (4.2). In the
meantime, since P,(z) has no zeros in the strip D = {z € C: [Imz| <
7}, we use the Cauchy theorem to shift the contour of integration
into the upper (when z > 0) or lower (when z < 0) half-strip and to
establish the following estimate of kernel (4.2)

ocotim eiwz
dz| <
/—oo:l:ir Pn(Z)

—lx|

1

T or

e~ 7l /°° 1 i
u
2 oo | Pn(u £ im)|

|n ()]

< const. e
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Hence, as we observe from the corresponding condition (3.1) and the
estimate

@) [l [ gfekaty )l aay

=/ \g(t)l/ lu + t]e™ 1w |k (w)] dudt

< [ g0 [l + ) () duds

— 00
oo

< const. [~ eI at [ fule=

+ const. / |t]e(™= D1t |g(2)] dt/ el du < oo
the right-hand side of (4.7) satisfies conditions of Theorem 1. Therefore,
we get the following solution
1 [o9)

(4.9) (@ = [ itk b

which belongs to the class Ly, 1,(R4). Substituting the convolution
expression (4.1) into (4.9) and changing the order of integration, which
is motivated by estimate (4.8) and Fubini’s theorem, we find that
solution (4.9) can be written by formula (4.3). Theorem 3 is proved. O

Remark 1. We could add in Theorem 3 the case n = 0, extending
the definition of convolution (4.1) by considering not only regular dis-
tributions, but also convolutions with kg (z), which, in turn, represents
a delta-function. Then (4.5) leads immediately to the solution of the
Kontorovich-Lebedev equation (1.4).

Let us demonstrate that solution (4.3) can be represented in another
form. Indeed, it is not difficult to see from (4.7) that convolution (4.1)
is even with respect to 7. Hence via (3.9) we obtain from (4.7)

(4.10) f(z) = 1 /00 7" Kir () /00 9(y)kn(r —y)dydr.

)
T — o0 — o0

Changing the order of integration as above we write solution (4.10) as

(4.11) f@) = [ Suwvigt)av

— 00
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where

@2 Sew) = [ oK@k - y)dr
™

— 00

Meanwhile integral (4.2) can be calculated with the use of the residue
theorem. Precisely, due to conditions of Theorem 3, zeros of P, (z)
are situated symmetrically about the real line and out of the strip
D. Therefore n = 2I, [ € N, and we have [ different complex zeros
21,22, .. ,2; and their corresponding conjugates with the multiplicities
my, Mg, ... ,my such that my +mg + --- + m; = [. Consequently, by
virtue of the residue theorem

! iz
(4.13) kn(z) = ip;lResZ:Zp, Imzy > [m], x>0,
and
! iz
(4.14) k() = i;Reszzz [ 2 (Z)], z < 0.

But

Tz 1 dmp71 B mp
Resz_z;»|: > :| = ( lim T |:(Z ZP) ezzz:|

P,(z) my — 1) 2=z, dz™»— P, (2)
mp—1
1 . = m, — 1
— 1 1Tz P
(my 11 2,7 2 < r >
il (GRS e P
dzmp—r—l |: Pn(Z) (lZL')

= eiIZp,Pmpfl(w)v z Z 07

where Py, _1(x) is a polynomial of degree m, — 1. Combining with
(4.13) we get the expression for k, (z)

n/2
kn(z) = iZei“PPmp,l(a:), z>0, Imz,>m.
p=1
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Analogously, for case (4.14) we derive

n/2
kn(z)=1Y %Py, _1(z), z<0.
p=1

Substituting the values k,(z) into (4.12) we find the corresponding
formula for the kernel of the solution (4.11).

Finally let us consider an example of equation (1.1) and its solution.
Let n = 2 and Py(u) = u? + 472, Then, from (4.2), we immediately
obtain ko(x) = (1/4w)e~2712l. Thus the kernel (4.13) can be written
by the integral

N 1 [
(4.15) Sa(z,y) = H/ rer 2= K () dr.

— 00

In the meantime, with the integration by parts in (1.3) it is not difficult
to obtain that

o0
yKiy(z) = zlm [/ e @eoshutiyu ging o du | .
0

Substituting the latter integral into (4.16) and changing the order of
integration, we calculate an elementary inner integral and we come
out with the following value of the kernel (4.15) for the corresponding
solution (4.11)

sinh u du.

~ Ty oo 2 2\ o
= / e—@coshu (37% 4+ u?) sin uy + 27w cos uy
2
T

S2(@,y) = (2 + u?)(972 + u?)

On the other hand, due to (2.3), the kernel (1.2) for this case is equal

to
82
Sy(z,y) = Am* Ky (z) — a—yZsz(fU)

and equation (1.1) can be transformed to the ordinary differential
equation in terms of the Kontorovich-Lebedev operator (1.4) denoted

by sz[f]

(4.16) 12K f] - ;’—;Kiy[f] ~ o).
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It is easily seen that the respective homogeneous equation has non-
trivial solutions. Taking into account the evenness of the transforma-
tion Ky [f] with respect to y we arrive at the following solutions

(4.17) Kiy[f] = Acosh 27y,

where X is a constant. Therefore a general solution of equation (4.17)
is not unique and does not belong to the class L,,42(R4+). The
Kontorovich-Lebedev equation (4.17), in turn, can be solved in spaces
of distributions, and its solution is given accordingly by

A / T sinh 4y
0

f(z) = lim cosh 7y K;y(x)dy,

T 500 2772

where the latter limit is taken in D'(Ry) (see [11]).
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