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ABSTRACT. An extension of the Euler-Maclaurin formula
to singular integrals was introduced by Navot [12]. In this
paper this result is applied to derive a quadrature rule for
integral equations of the Abel type. We present a stability and
convergence analysis and numerical results that are in good
agreement with the theory. The method is particularly useful
when combined with fast methods for evaluating integral
operators.

1. Introduction. The generalized Abel equation is a weakly
singular Volterra integral equation of the first kind which usually
appears in the form

(1) / (t— 1)~ k(t, 7)g(r) dr = f(2).

Here 0 <t <T,0 < a < 1, and the kernel k(-, -) is smooth and satisfies
k(t,t) = 1. The following solvability result was given by Atkinson [1].

Theorem 1.1. If f(t) = t'=* P f(t) with f € C°[0,T] and 8 < 1,
then (1) has a unique solution g which is of the form g(t) = t=P§(t)
and g € C*[0,T].

Numerical methods for (1) are usually based on collocation or product
integration methods. This subject has been studied extensively and is
reviewed in the monographs by Linz [6] and Brunner [2]. A more recent
approach to discretizing (1) is the use of the convolution quadrature
rules [9].
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The aforementioned discretization methods lead to a recurrence for-
mula for the numerical approximations g, of g(t,) which are of the
form

(2) hliazwn,jk(tn,tj)gj = f(tn), n:O,1,2,... )
j=1

where h is the stepsize, ¢, = nh and w, ; are quadrature weights.

The present paper examines another discretization method of (1)
which is based upon the generalization of the Euler-Maclaurin expan-
sion to integrals with algebraic singularities. The formula was first
discovered by Navot [12] and further generalized in a series of papers,
see e.g., [10, 11, 15]. We will use this result to obtain a discretization
of (1) in the form

n—1 n

(8) h Y (tn—t;) “k(tn tj)gy+h Y7 vl ik(tn, 1) 9 = (b)),
J=0 j=[n—pl+

n=0,1,2,.... The first sum, or history part, is the usual composite

trapezoidal rule. The second sum contains only a very small number
of terms and can be considered as a correction to account for the
singularity of the integrand at ¢ = 7. The parameter p controls the
order of the method; we will show that for p = 0 the order is O(h*~%)
and the scheme is stable for « € (0,1). When p = 1 and p = 2 the order
is O(h3~%) and O(h*~®), respectively, but the interval of a’s for which
the method is stable is reduced. For larger values of p the important
case @ = 1/2 is no longer stable, and therefore the resulting schemes
are probably only of limited interest for solving first-kind equations.

A complication we encounter is that the remainder in the generalized
Euler-Maclaurin expansion depends in a subtle way upon the interval
length. To ensure that we obtain uniform bounds in ¢ we must initially
restrict the discussion to the case that the solution has sufficiently
many vanishing derivatives at ¢ = 0. To handle the general case,
including singularities, we will discuss a correction of the righthand
side to maintain the convergence rates. This procedure is similar
to Lubich’s approach to overcoming a similar issue for convolutional
quadrature schemes [9]. We note however, that other techniques have
been discussed to handle singularities, see e.g., [5].
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The difference between the two recurrence formulas is that (2) con-
tains quadrature weights that depend on n and j, whereas the history
part in (3) does not. This simplifies matters significantly if fast sum-
mation methods are used to compute the history part in the recurrence
formula efficiently. Fast methods are based on separating the ¢, and ¢;
variables. In (3) this can be accomplished fairly easily, for instance, by
Taylor expanding the kernel in (1). On the other hand, recurrence (2)
involves in addition a separation of the n- and j-index of the weights,
which does not seem to be practical. It is not our goal to discuss fast
methods here. Instead, we refer to paper [14] where the p = 0 method
has been used as a time discretization for integral formulation of the
heat equation.

It should be noted that the idea to use the generalized Euler-
Maclaurin expansion to obtain discretizations of singular Volterra in-
tegral equations is not new, although it has received only very limited
attention in the past. It appears that the first paper to use this re-
sult for Volterra equations of the second kind is Tao and Yong [13].
Later, the equation of the first kind was treated by transformation to
an equation of the second kind, see [7, 8].

2. The generalized Euler-Maclaurin expansion. The result by
Navot is a generalization of the Euler-Maclaurin formula for integrals
with an algebraic singularity at one endpoint of the interval of inte-
gration [12]. Later, the formula was generalized and its derivation was
simplified in various ways. Probably the most efficient tool is the Mellin
transform, which was initiated by Verlinden and Haegemans [15]. The
methodology in their paper applies for integrals over a semi-infinite
interval, but can be easily extended to integrals over [0, 1] using neu-
tralizer functions [11]. We will briefly recall this technique and then
discuss arbitrary length intervals.

Basic expansion for the semi-infinite interval. The Mellin
transform of a function ¢ is given by
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and the inverse transform is given by

1 c+i00
o) =5m [ e
where ¢ € R is chosen such that ® is analytic for Re (z) > c.

Suppose ¢(z) = z~*@p(x) where § € C*[0,00) decays superalge-
braically, that is,

lim z*3(z) =0, for every k > 0.

T—>00

From the inverse transform it follows that

oo

h ct+ioco OO
Ry e(ih) = 2—m/ Y (k) Fe(2)d2
(4) = e =
ctio0
1 C(2)®(2)h!* dz,

2mi c—1i00

where h > 0 is the stepsize, ¢ > 1 and ((-) is the Riemann zeta function.
Integration by parts leads to

(6)  @(2) =ws(z— @) / e*mots G ) () de, s=0,1,...
0

where w;(+) is defined by

(71)s+1

(6) ws(z) = 27(24‘8)

The integral in (5) is an analytic function for Re (z) > —(s + 1 — «).
Furthermore, Res ({(z), z = 1) = 1, so the integrand in (4) has residuals

Res (C(2)@(z)h' %,z =1) = &(1) = /000 o(x)dz

and

o(s)
Res (G()B(I % 2 = o) = ) cla— et
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for s =0,1,.... Thus we may move the integration contour in (4) into
the left plane and obtain

oo

[eS) 9 ~(s)
(7) tho(jh):/ ga(a:)d:c—i—Z(’D !(0) Cla—s)h*Ho 4 RO (p)

0 S

Jj=1

for some integer ¢. This is the generalized Euler-Maclaurin expansion.
The remainder is given by

¢’ +ico
(8) RO (h) = = / ((2)B(2)h~" dz,

27TZ ¢ —ioo

wherea—g—1<d <a—q.

The remainder R(? can be estimated by

¢ +ioco B hlfc’ o) ' '
[ o < P [ e e + i)l d

/ —i00 —o0

From (5) it follows that |®(c¢’ + iy) decays superalgebraically as y —
F00. On the other hand, it is known that for a fixed real part, the zeta
function increases at most like a polynomial, see [15]. Therefore the
integral on the righthand side converges and the remainder is O(hl_cl).

Expansion for the interval [0,¢]. We now derive a similar
expansion for integrals of the type that appear in (1). Of course, the
form of the generalized Euler-Maclaurin expansion for a finite interval
is well known. However, in Volterra integral equations, the length is
time dependent and enters the constants in the estimates. We will
discuss this dependence in the following.

It turns out that we must assume that the solution is of the form
g(7) = 77g(7) where g is smooth in [0, 7] and 7 is sufficiently large to
ensure that the estimates are independent of time. Later, it will become
clear that v = p + 2 — a, where p is the order of the method, defined
in (3). By Theorem 1.1 this is equivalent to limiting the discussion to
righthand sides of the form f(t) = t'~*+7 f(t). Section 5 will describe a
modified method that maintains its convergence properties for general,
even singular solutions.



120 JOHANNES TAUSCH

To simplify notations, we will write

o(t,7) =k(t,7)g(r) and ¢(t,7) = 77 5(t, T)

where § € C*°[0,7] and v > 0 is a not yet specified parameter. Fur-
thermore, we introduce a neutralizer function X (z) with the properties

9) xeC>R), X(z)=1, z< 3, X(z) =0, z>

W =
Wl N

and, in addition,
(10) X(1—2z)=1-x(x).

An example of such a function is

X(m)z%{l—i—tanh(m21/3)—(2/596)}, %<m<§.

Using these definitions the integrand in (1) can be written as the sum
of two functions,

(t—7)"%(t,7) = T7do(t,7) + (t — 7)1 (t,t — T)

where

Gult,o) =x( ) €~ 2) (e, 0),

$i(t,z) = x(%) (t— )3t t — x).

Furthermore, we set @o(t,z) = 27¢o(t, ) and ¢1(t,x) = o~ ¢y (t, ).
All these functions can be trivially extended to the semi-infinite interval
x > 0. With these definitions it follows that

/ot(t -7 et r)dr = /Ooo po(t,x) dx + /Ooo o1(t,x) da

and

n—1

D (tn— 1) “pltn, ts) = Zsao(tmtj) + 2801(%751)-

i=1
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We can apply the generalized Euler-Maclaurin formula to both sums
and combine the expansions. The definitions of functions @; and ¢
imply that

41 ¢

t,0) = t,t)(—1)°.

21(1,0) = (1, 0)(-1)
If v > g the derivatives up to order g of ¢ (¢, ) vanish for = 0. Thus,
the function will not contribute to the residuals and will only appear
in the remainder.

(11)

DYt~ 1)l ts) = [ (00— 7) (e, dr

q S S
3 ELTe G - sppetie
s=0

sl Ors
+RY (tn, h),

where the remainder is given by

(12)  RW(t,n) = L/cfﬂoo g(z)<<b0(t,z)+¢1(tvz)>h_z+1dz

27TZ ¢ —ioo

and ®y(t,2z) and ®q(¢,2) are the Mellin transforms of ¢o(t,z) and
¢1(t, ) with respect to the z-variable.

Lemma 2.1. If g(t) = t"g(t) with g € C*°[0,T], then there is a
smooth function Ig(t,h) such that the remainder is given by

R(Eq)(t, h) — t7+c’7ahlfc’IE(t, h), —q— l+a< C, < —q+a.

Proof. As in (5) we obtain from integration by parts

oo a s+1
D(t,2) = ws(z — oz)/0 prots (%> o1(t, z) de.

Changing variables  — z/t and sorting out the powers of ¢ show that

B (t,2) = 7w, (2 — ) I)(t, 2),
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2/3 8 s+1
1) = [ e () w0 - e Eln e - o) e
0 8:6
Likewise, we find for ®( that
Qo(t,z) = " Mwy(z + 'y)IéS) (t, 2),

where

2/3 P s+1
I(SS)(t, z) = /(; Ftrts (%> X(z)(1 — z) “p(t, tx) dx.

By the properties of parameter-dependent integrals the functions
Iés) (t,z) and Il(s)(t,z) are smooth in ¢ and in z. Furthermore, they
are bounded in ¢ € [0,7] and Im (z), when Re(z) is fixed. Hence, it
follows from (12) that

(Q) 1 'y—l—c’—a 1—c’ C’+i00

¢/ —ico

X (ws(z + V)I(()s)(t, 2) +ws(z — a)Il(s)(t, z)) (th)™™ () g,

The zeta function increases like a polynomial on the integration con-
tour, whereas w, decreases like |z|7*~1. Thus we can choose s large
enough such that the integral converges absolutely with bounds in-
dependent of ¢ and h. Then the integral is a smooth function of all
parameters. ul

Quadrature rule. To derive a quadrature rule we retain the first

p terms in expansion (11) and replace derivatives by finite difference
approximations. The weights r§p ) are determined such that

> cla-s) S T g ypiess

sl Ors

p
s=0

p
= —h'7o > " g(t,t — hy)r? + RE (¢, h).

i=0
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Here we set ¢ = 0 if the second argument is negative. If v > p + 1,
then this extension is p + 1-times continuously differentiable. Thus we

can apply the Taylor expansion to obtain a linear system for the r(p )
p

(13) Z]sr(p) C(a—=3s), s=0,...,p.
7=0

Note that the weights are independent of t. We list the weights for the
important cases p =0, 1,2,

ry” = —((a),

M 1 -1 ¢(a)
)=o) L)
ri? 1 -3/2 1/2 ()
Pl =-10 2 —1||¢a—1)
r® 0 —1/2 1/2| | ¢(a—2)

In view of Lemma 3.5 below, it is necessary to express the remainder
as the product of certain powers of A and ¢ and a function that is
sufficiently regular on the triangle

(14) Ar:={(t,h):0<h<t<T}.

Lemma 2.2. If g(t) = tPT2724(t) with g € C*°[0,T], the remainder
R%’) (t,h) is of the form

(15) RY (t,h) = hpt2=egl=a D¢ p),

where Ig)) € C>*(Ar).

Proof. Using the integral form of the remainder in the Taylor
expansion, we get

8g0p+1

R (1,1 = he e

(t,t —h+71)dr
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Since p(t, 7)= TPT27%5(t, 7) there is a smooth § such that 9P p(t, 7) =
Tifaﬁ(t, 7), where 7 is the positive part of 7. Hence

R(p)( h) Bl (*DPi (p) /jh( h )1 Po(t, 7) d
t,h) =h"%—= > r; t—jh+7) " %Pp(t,7)dr
D p| gt J o + 14

Changing variables 7 — hr leads to

) pt2—opi—a (CDP S )
R (t,h) = h t > rP It h)
j=0

p!
where
7 h -«
nen = [ (1-36-0) et
0 t +
which is a smooth and bounded function when ¢ > h. O

3. Stability analysis. We first discuss the stability of discretiza-
tions of the p = 0 rule for the constant kernel k(¢,7) = 1. In this case
the discretization rule leads to the semi-circulant matrix
ao
a1 Qap

(16) ~(()h' A = —((a)n'

az aip ap

whose coefficients are

1 n =0,
(17) “"‘{mav«m» n>l

The characteristic function associated with a semi-circulant matrix
with entries a,, is given by

oo
a(z) = Z anz".
n=0

The stability of recurrence (3) hinges on the properties of the inverse
matrix which is another semi-circulant matrix whose coeflicients are
the expansion coefficients of a=1(2),

(18) at(z) = Z Apz".
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Here and in the following we will use the convention that capitalized
coeflicients denote the expansion coefficients of the reciprocal function.
A frequently used tool is the following result which goes back to Hardy
[4]-

Lemma 3.1. Ifco=1,¢, >0,n>0, ) ¢, =00 and

(19) Gty B ons,
Cn Cn—-1
then
(20) C,<0, n>0and ZC’n:—l.

n=1

From the behavior of the zeta function in the interval (0,1), shown
in Figure 1, it follows that the sequence a,, in (17) is indeed positive.
Furthermore, (19) is fulfilled when —((«) > 2%, which implies that «
must be in the interval (@,1) with @ = 0.4836.... In this case the
inverse is a bounded operator and we have

(21) A, <0, n>0, and ||Al|c =2, when a € (@, 1).

Unfortunately, there is no information for o € (0,@). Furthermore,
in the subsequent analysis it is necessary to have asymptotic estimates
of the A,’s. More information on the A,’s for all o can be obtained
from Eggermont’s analysis of the product integration method for the
Abel equation. We summarize the development in the appendix of the

paper [3].

Lemma 3.2. Let ¢, be a sequence with co = 1, and set

1 =(1/2)cx n=1,
(22) gn_{(l/Q)(cn_l—cn) n>1.

If the g, satisfy

(23) gn >0, Il s,
gn—1 dn



126 JOHANNES TAUSCH

and, in addition, if there is an's € R and 8 € [0,1) such that

y
(24) Z Cp ™~ §y'8, Yy — 00,
n=1
then
sin(Bm) 1
(25) Can -0

Our main stability result depends upon Lemma 3.2. Note, however,
no information on the sign of the C),’s is given; thus, the conclusions
from Lemma 3.1 will be still important later on.

Theorem 3.3. The coefficients A, in (18) satisfy

Ay~ sin(1 - )1 - a)g(0) 5
(26) S
and ZA” =0

Proof. We first establish that the coefficients a,, of (17) satisfy the
conditions of Lemma 3.2. For this sequence, the g,’s are given by

(14 (1) net,
(27) "‘{—um«wxm—lra—Wﬂ>n21,

The positiveness of the g,’s follows easily from the fact that —((«)
increases from 1/2 to oo in the interval (0, 1), see Figure 1. To verify
the second hypothesis of (23), consider the case n = 2 first, which is
equivalent to

1—27> 27 _3-@

(28) 2(a) =1~ 1-2¢

This must be verified by computing function values. The validity of
this inequality is illustrated in Figure 1. When n > 2 the validity of
(23) for the g,,’s defined in (27) follows from elementary calculus.
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FIGURE 1. Graph of the function —((-) (left) and the ratios in (23) when n = 2
(right, bottom) and n = 3 (right, top).

From (17) it also follows that

S -1 l-«
2o fai-a)

hence the exponent in (24) is 8 = 1 — a which implies the asymptotic
estimate for the A,,’s.

Since Y, |A,| converges, it follows that a=*(z) is continuous on the
closed unit disk, and by the Abel limit theorem it follows that

z—1—

 Ap=lim a”'(z)=0. o
n=0

The following two lemmas will be necessary for the stability analysis.
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Lemma 3.4. Let ® € C*0,T), t; = hj. Then

(29) ZAn 1a;®(t;) = 8, 0®(t,) + O(h).

Proof. Write

iAnjaj ZAn ja;® ZAn ]aj< n) — <I>(tj)>.

The first term is the convolution product of {a;}; and its inverse and
accounts for the first term in the righthand side of (29). The first term
in the second sum is O(h). To estimate the remainder of the second
term, note that it follows from the generalized Euler-Maclaurin formula
that

n—1 tn
hY (tn —t;) 7ot = 0</ (t, — )"ty dT> =0 (t,).
j=1 0
Hence, using |®(t,) — ®(t;)| < C(tn —t;) and Theorem 3.3,
n—1
e (@(tn) - @(tj))a,- < Ch? Y (tn — t;) 1% = O(h).
j=1

This proves the assertion. ]
Lemma 3.5. Let ® € C'(Ar). Then for any A > 0

(30) ZAn J®(t5,h) = O (TRt 7).

Proof. For simplicity of notations, we omit the second argument from
®. Setting U (t) = t*®(t) we have

2@ () — t5D(t;)| = [ (tn) — U (t))]
/t.n V() dr

J

= < (ta —t5), max [¥(7)].
1< <t
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It follows from the chain rule that, if j < n,

Cltn, —t))th™t A>1
thd(t,) — 2 0(t;)| < n -
et - o) < { oot i 3Ty

Because of 3, A; =0,
(31)

ZA"]J

n n—1
N An it ®(tn) = > An_j (12 ®(tn) — ] 2(t;))
j=1 j=1

i A;trd(t,) — S Anj (0®(tn) — t32(t))) .

j=n—1

For A > 1 we estimate using Theorem 3.3

<C1t)\ 2372+a+ct)\ lhz —14a

=n j=1
<C (tg n” e T ) < Oy reR T

For the case 0 < A < 1 note that

n—1

tn
hZ(tn - tj)*1+at;—1 _ O</0 R dazo (t;\;ua) _

j=1
Hence, beginning with (31)

n

< Clt)\ Z j—2+a + C h2 « Z(tn _ tj)_1+at;\71

n— ] J
j=n+1 j=1
< O plze
Thus the assertion has been shown in both cases. O

Higher order methods. In the case p > 1 and a constant kernel
k(t,7) = 1 discretization (3) leads to the system

h71+a

¢(a)

Ag+RWg=— f
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where A is defined in (16) and R® is a semi-circulant matrix with
coeflicients

e -1 g =0,
(32) S 0Py 1<isp
0 j>p.
To determine stability we factor
A+ RW = A(I + A7'R®)

and investigate whether the second factor has a continuous inverse. To
that end, set S®) = A~'R®) and find the values of a and p for which
the coefficients of S satisfy

(33) 15 z s < 1,

If (33) is satisfied, then I+ A~1R® has a continuous inverse in lo,.The
following lemma gives a necessary condition for stability.

Lemma 3.6. For every p > 0 there is an o, € (0,1) such that
condition (33) is satisfied for o € (o, 1).

Proof. If p = 0, then S(® = 0 and there is nothing to show, and
hence we may set ap = 0. If p > 0 and @ > @ we have from
(21) that ||A™ s = 2. Hence ||S®)||, = [|[A"'RP)||o < 2||[RP)|oo
Furthermore, it follows from (13) and (32) that

P
(34) 7P = — %Zm”) C(a—s)
s=1

where m{) are the columns of [M®)]=1 and Ms(? = j°. Since the
zeta function is only singular when a = 1, it follows that for any p
fixed ||r®)||; — 0 as o — 1. Hence there is an «, < 1 for which
1S®)]|o < 1. u]

Using the technique of the proof we compute values of a; and as that
guarantee stability. When p = 1, we have

[jﬂ =z L h)
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FIGURE 2. Graph of the functions s; (bottom) and s2 (top).

When o > @ we can conclude that
_ = C(a—1)
3) 15l < A7 RV o = 15 e,

As shown in Figure 2, s1(«) is always less than unity, but (35) is valid
only if o € (@, 1); hence, we have a; =@ = 0.4836... .

When p = 2, we have

2

Y B R -],
%\52) C(a) 1/2 1/2 7(((1 - 2)
Figure 2 shows the graph of sy(a) := —2/(¢())|[7®|;. From the

graph it is evident that « € (a9, 1) with ay = 0.558. .. is necessary for
stability.
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4. Discretization error. The quadrature error consists of two
parts, the error introduced by truncating the Euler-Maclaurin expan-
sion and the error introduced by replacing the derivatives in the leading
terms of the expansion by finite differences. Setting ¢ = p+ 1 in (11),
the mth time step, the quadrature error is

(_1)p+1 3p+1<p o
Ay = ——————(tm, t a—p—1)ppt2-e
(36) = Dl grert G tm)C(@ =P =1)
+ REY (b, h) + RE (£, h).
Subtracting equations (1) and (3) shows that the discretization errors

e;j = g(t;) — g; and the quadrature error d,, are related by
(37)

hz )"kt t5)e; + hlo‘Zr”)k (s tn—i) €m—j = dun-
7=0
Equation (37) is equivalent to

m m ho—1
(38) Zam,jk(t j)ej + Z rp) ik (tm, )ej:—wdm

J —-p

where the coefficients 7 '@ ) are defined in (32).

To estimate the error we convolve both sides of the equation with the
sequence {A, },. For the first term in the lefthand side, we calculate

¢(1) - i A, miamfﬂc(tm’t])e]
m=0 j=0
= Z Z Anfmamfjk(tm’tﬂ) €j
j=0m=j
n n—j
_Z ZA" j—mQam (m+J’t )6]
j=0m=0

Lemma 3.4 applied to the inner sum with ®(7) = k(7 + t;,¢;) shows
that there are coefficients ' = O(1) such that

n,J

(39) o0 = e+ KWe;
j=0
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Proceeding in a similar manner shows that the second term satisfies
n p
¢ =33 An i P k(b ty) €5
j=0m=0

In the above sum one has k(tn1j,t;) = k(tj,t;) + O(h) = 1 + O(h).
Thus there are coefficients r'>) = O(1) such that

nYJ
(40) ¢ = Z sgf',)]- ej+h Z Hgﬁ;eja
j=0 Jj=0

where sg-p) are the coefficients of S(®) = A~1R(®). In matrix notation,

(39) and (40) can be combined as
(41) (1 + S(P)) e+ hKe=h*"14714,

where K is a lower triangular matrix with entries

which are bounded independently of h. We continue with an estimate
for the righthand side.

Lemma 4.1. If v =2+ p — « the coefficients of € = h* 1A~1d are
bounded by

€n = O(RPT279),
Proof. The coefficients of € = h* 1 A~1d are given by
e =h""" YA, _jd;.
j=1

In view of (36) we have to analyze the effect of the convolution on three
parts, all of which are in a form that fit the hypotheses of Lemma 3.5.
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For the first part note that the p + 1st derivative of ¢ is of the form
t!=«I(t), where I(-) is smooth; hence,

RN " A, s O I(t) P = O (RPT220) = O (hPH2e).
j=1

The estimate of the second part follows from Lemma 2.1. In that
lemma, we may set, for instance, ¢ = —p — 1, then

RN An g BT (15, 1)
j=1

-0 (hlfc't;yLJrc'fl) = O (k¥4 P2)

h

ot 2

)a = O (hr+2e) 1

ne’

Hence this part is O(hPT2~%) multiplied by a decaying term. For the
third part of (36) use Lemma 2.2

pa—1 ZAn—jR(g) (tja h) = ppt1 ZA"—jtjl‘_aI(Dp)(tja h) = O(thera)‘

j=1 Jj=1

Adding the three parts together completes the proof. ]

If o and p are such that || 4+ S|, is bounded independently of n,
then (41) is equivalent to

(42) et h(1+5P) Ke=(1+59) 2

Here the matrix has entries bounded independently of A and the
righthand side has the same asymptotic estimate as €. Our final result
follows directly from the discrete Gronwall lemma.

Theorem 4.2. Ifa, < a < 1 and v = p+ 2 — «a, then the
discretization error satisfies the asymptotic estimate e, = O(hPT27%).
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5. The general case. In Section 2 we have introduced a quadrature
rule which has the desired order only if the integrand is O (7772~ ) as
7 — 0. We will write this rule in the form

n

/tn (tn - T)_a¢(tn7 T) dr = Z ¢(tn7 t])wnf‘g + O(hp—i-Q—oz)7
0

j=1
where the weights are

(p)

Ty 7 =0,
1— . .

wi =R e P 1< <p,
J e J>D.

We will show how to modify this rule if ¢ is replaced by 7 #¢(t,7),
where 8 < 1 and ¢ is a smooth function in both variables that has no
conditions on the behavior near 7 = 0. The modification depends on
the Taylor expansion of ¢ at 7 =0

S

(f (¢,0)7°,

(43) baltir) =32

s=0

which will be subtracted from ¢ to obtain a function of order 74t1=5.
The quadrature rule is applied to the difference and the rest is inte-
grated analytically, as shown in the following calculation

/Otn (tn, — T)_aT_B¢(tn, T)dr
_ /0 (tn — )7 ($(t,7) — Byltn,7)) dr

tn
+ / (tn — T)_aT_ﬂtbq(tn,T) dr
0
~ 3157 (9tns ) = Baltnsts) ) wa
j=1
+ / ; (tn — 7)1 Pdy(tn, ) dr
0

n

= Z t;ﬁ(]ﬁ(tn, tj)wn_j =+ Cp.

i=1
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This is the original quadrature rule with a correction term. Since only
polynomials appear in this term, the integral can be evaluated in closed
form

tn
Cn

(tn = 7) TP (tn, 7) dr = > t; by (tn, ;) wn

j=1

¢ tn -, __8S— - S—
— (tn,0) i (tn — )7 P dr = > 5 Pw,
j=1

n
(O B3P0 = 3,

J=1

Il
S—

I
(-
=
(S5
»

@
I
=]
Q Q
%
-

Il
[]=
“_| =
(o))

TS

@
I
=]

Here, E2® denotes the Euler integral

(1 —-a)l(1+s—p)
r2+s—a-p8)

1
E>P = / (1—z) 2" Pde =
0

We now give a recipe to solve the Abel integral equation with the
general hand side as it appears in Theorem 1.1.

1. Compute the coeflicients g;, ¢ = 0,...,q, in the expansion of
the solution §(7) = go + 917 + go72 + - -+ . These follow directly from
the expansion coefficients of the kernel and the righthand side. Set

9a(t) = (g0 + g17 + -+ + gg7% and Gy (t) = g(t) — 777Gy (t).
2. Subtract 777g,(t) in (1) and solve the equivalent Abel equation

/0 (t — 1) k(t,)3(r) dr = () - / (t = 7)~k(t, 7T "G, () dr,

with g(7) = O(7'+277) as the new unknown. To apply rule (3), ¢ must
satisfy 1 +q — 8 > p + 2 — «; hence, the order of the Taylor expansion
in (43) is the smallest integer ¢ with

gzp+1l+pB—o.

3. In every time step, compute the correction factors ¢, and evaluate
the integral on the righthand side with the corrected quadrature rule.



The additional error introduced in this procedure comes from replac-
ing the integral on the righthand side with the corrected quadrature
rule. The analysis of this error parallels the discussion of Sections 2
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and 4 and is therefore omitted.

6. Numerical example. Our test problem is the integral equation

¢ 5
/0 (t —7)"“exp(t — 7)g(r) dr = exp(t)t* P Z Eff’ﬂtk

with known solution g(t) = exp(t) 22:0 tF=P. We solve this equation

k=0

in the interval [0, 1] with stepsize h = 1/N and 8 = 0.5.

TABLE 1. Maximum errors and orders of convergence when p = 0.

a=0.15 a=0.5 a=0.85

N error order error order error order

10 | 0.10025 0.188351 0.162072

20 | 0.027132 1.8856 | 0.067565 1.4791 | 0.074338 1.1245

40 | 0.007534 1.8483 | 0.024040 1.4908 | 0.033800 1.1371

80 | 0.0020919 1.8487 | 0.008525 1.4958 | 0.015302 1.1433
160 | 0.0005805 1.8494 | 0.003018 1.4979 | 0.006913 1.1464
320 | 0.0001611 1.8497 | 0.001068 1.4989 | 0.003119 1.1480

TABLE 2. Maximum errors and orders of convergence when p = 1.

a=0.15 a=0.5 a = 0.85

N error order error order error order

10 | 0.05261 0.01707 0.01496

20 | 0.20980  -1.996 | 0.003117 2.4534 | 0.003496 2.0974

40 | 8.17868  -5.285 | 0.0005597 2.4776 | 0.0008020 2.1239

80 37781 -12.17 | 9.972e-05 2.4889 | 0.0001823 2.1370
160 | 2.384e+12 -25.91 | 1.770e-05 2.4944 | 4.127e-05 2.1435
320 | 2.749e+28 -53.36 | 3.134e-06 2.4972 | 9.320e-06 2.1467
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TABLE 3. Maximum errors and orders of convergence when p = 2.

a=0.15 a=0.5 a=0.85
N error order error order error order
10 2.1507 0.004426 0.001596

20 170.16 -6.305 | 0.0003550 3.6401 | 0.0001871 3.0927
40 | 6.022e+06 -15.11 | 6.273e-06 5.8223 | 2.148e-05 3.1225
80 | 4.267e+16 -32.72 | 1.013e-06 2.6301 | 2.442e-06 3.1369
160 | 1.212e+437 -67.94 | 1.044e-07 3.2788 | 2.763e-07 3.1439
320 | 5.534e+78 -138.3 | 9.241e-09 3.4981 | 3.118e-08 3.1473

Tables 1-3 display the convergence of the error for different values of o
and p, all of which are in good agreement with the theoretical analysis.
In particular, the method is unstable for small values of & when p > 1,
but otherwise the order-h?*t2=% convergence is clearly visible. When
p =2 and a = 0.5 the method still converges at the expected rate even
though this parameter combination is not in the range with guaranteed
stability that is implied by Figure 2. In Figure 3 we further illustrate
the stability of o = 0.5 for different p by displaying the coefficients of
the semi-circulant matrices (A + R®)~'. It appears that after some
transient effects the entries have the same asymptotic behavior when
p=0,p=1and p=2. For larger values of p the coefficients blow up
and the method is unstable.

Figure 4 shows the errors for « = 0.5 and p = 2 as a function of
time. Even though the analytical solution is singular at ¢ = 0, the
convergence happens at the expected rate and the error is small near
the singularity.

To put the results presented into the right perspective, it should be
noted that it is possible to derive stable rules of even higher order
based on convolutional quadrature. In fact, Lubich presents results for
a forth-order scheme [9]. However, the point here was to introduce
quadrature rules of the simpler form (3) which is advantageous, for
instance, for the fast evaluation of time-dependent boundary integral
operators.
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10° 10 10 10°

~ -1
FIGURE 3. Magnitude of the coefficients of (A - R(”)) for a = 0.5 and p =0,
p=1and p=2.

0 0.2 0.4 0.6 0.8 1

FIGURE 4. Errors for « = 0.5, 8 = 0.5, p = 2, N = 10,20, ... ,640 as a function
of t.
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