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ABSTRACT. We study polynomial approximations of ver-
tex singularities of the type rλ| log r|β on three-dimensional

surfaces. The analysis focuses on the case when λ > − 1
2
.

This assumption is a minimum requirement to guarantee that
the above singular function is in the energy space for bound-
ary integral equations with hypersingular operators. Further-
more, such strong vertex singularities may appear in solutions
to boundary integral formulations of time-harmonic problems
of electromagnetism in Lipschitz domains. Thus, the approx-
imation results for such singularities are needed for the error
analysis of boundary element methods in three dimensions.
Moreover, to our knowledge, the approximation of strong sin-
gularities (− 1

2
< λ ≤ 0) by high-order polynomials is missing

in the existing literature. In this note we prove an estimate
for the error of polynomial approximation of the above vertex
singularities on quasi-uniform meshes discretising a polyhe-
dral surface. The estimate gives an upper bound for the error
in terms of the mesh size h and the polynomial degree p.

1. Introduction. In this note we analyse polynomial approxima-
tions of vertex singularities inherent to solutions of boundary integral
equations (BIE) on a Lipschitz polyhedral surface Γ. In particular,
denoting by r the distance to a vertex of Γ, we study approximations
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of singularities of the type rλ| log r|β under a minimum assumption on
λ ensuring that this singular function is in the space H1/2(Γ) (the en-
ergy space for the BIE with hypersingular operator on Γ; see §2 for
definitions of the Sobolev spaces on Γ).

It is well known that solutions to BIE on piecewise smooth surfaces
exhibit a singular behaviour in neighbourhoods of edges and vertices
of the surface. In [17, 18] explicit formulas are given to specify
this behaviour for polyhedral and piecewise plane open surfaces. In
particular, it has been shown that solutions of BIE can be decomposed
into a number of singular functions and a smooth remainder. Moreover,
taking enough singularity terms in this decomposition, one can obtain
the smooth remainder as regular as needed. Let r be the distance to a
vertex v of Γ and let ρ be the distance to one of the edges e ⊂ ∂Γ such
that ē � v. Then typical singularities are:

(i) vertex singularities of the type rλ| log r|β1 ;

(ii) edge singularities of the type ργ | log ρ|β2 ;

(iii) combined edge-vertex singularities of the type rλ−γργ | log r|β3 ;

here, λ and γ are real parameters to be specified below and βi (i =
1, . . . , 3) are non-negative integers.

The admissible values of λ and γ depend on the problem under
consideration. Let us consider the following model problem: Find
u ∈ H1/2(Γ) such that

(1.1) 〈Wu, v〉 = 〈f, v〉 ∀ v ∈ H1/2(Γ).

Here, f ∈ H−1/2(Γ) is a given functional, W is the hypersingular
operator

Wu(x) := − 1
4π

∂

∂nx

∫
Γ

u(y)
∂

∂ny

1
|x−y| dSy, W : H1/2(Γ) → H−1/2(Γ);

〈·, ·〉 = 〈·, ·〉L2(Γ) denotes the extension of the L2(Γ)-inner product by
duality, and H−1/2(Γ) is the dual space of H1/2(Γ).

As it follows from [18], for sufficiently smooth given f , the singularity
exponents λ and γ satisfy

(1.2) λ ≥ λ1 > 0 and γ ≥ γ1 > 1/2.
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We note that in the case of an open surface Γ, the energy space for
problem (1.1) is H̃1/2(Γ) and for sufficiently smooth given f there hold

(1.3) λ ≥ λ1 > 0 and γ ≥ γ1 ≥ 1/2.

Thus, conditions (1.2) (or (1.3)) appear, if singularities in the solution
to problem (1.1) are caused solely by the geometry of the surface.
However, for singular right-hand sides f in (1.1), it may also occur
that

(1.4) λ ≥ λ1 > −1/2 and γ ≥ γ1 > 0,

which are the minimum requirements to ensure u ∈ H1/2(Γ).

As an example, let us consider the model integral equation Wu = f
on the plane open surface Γ with smooth boundary ∂Γ. Assume
additionally that Γ ⊂ Ox1x2, O ∈ ∂Γ, and f = rλ−1, where r =
(x2

1 + x2
2)

1/2 and λ ∈ (− 1
2 , 0). To recover the behaviour of the solution

u, we apply the Fourier transform F to both sides of the equation and
recall that W is a pseudodifferential operator of order +1 with the
principal symbol |ξ| = (ξ21 + ξ22)1/2, ξ = (ξ1, ξ2) ∈ IR2\{O} (see [11,
16]). Then using a formula for the Fourier transform of power functions
in r (see [12, p. 363]) and omitting lower order terms in |ξ|, we find

F(u) =
1
|ξ| F(rλ−1) = C(λ) |ξ|−λ−2.

Applying now the inverse Fourier transform it is easy to see that the
leading singularity in the solution u is due to the singular right-hand
side function and this singularity is of order rλ with λ ∈ (− 1

2 , 0).

However, the main motivation to consider strong vertex singulari-
ties is the fact that such singularities naturally appear in solutions to
BIE stemming from time-harmonic problems of electromagnetism in
domains with piecewise smooth boundaries. It is known that solu-
tions to the latter problems (e.g., boundary value problems for time-
harmonic Maxwell equations in domains with edges and corners) are
vector fields whose components exhibit singularities analogous to those
in (i)–(iii) (see [10]). Using these results and a trace argument, we
studied the behaviour of the solution to the electric field integral equa-
tion (EFIE) at edges and corners of piecewise smooth (open or closed)
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Lipschitz surfaces and derived explicit formulas for edge, vertex, and
combined edge-vertex singularities (see [8]). In particular, the leading
vertex singularities are of the type

curl
(
rλ1 | log r|β1

)
+

(
rλ2 | log r|β̄1 , rλ2 | log r|β̄1

)
, λ1, λ2 > −1/2,

and the leading edge singularities are of the type

curl
(
ργ1 | log ρ|β2

)
+

(
ργ2 | log ρ|β̄2 , ργ2 | log ρ|β̄2

)
, γ1, γ2 ≥ 1/2

(here, r, ρ are the same as in (i)–(iii) above and βi, β̄i (i = 1, 2) are in-
tegers). Moreover, it has been shown in [8] that the analysis of polyno-
mial approximations of such singular vector fields in the corresponding
energy space (which is either H−1/2(div,Γ) or H̃−1/2(div,Γ)) can be
reduced to the analysis of scalar singularities (i)–(iii) in Sobolev spaces
H1/2(Γ) or H̃1/2(Γ). Thus, approximation results for scalar singulari-
ties (i)–(iii) in these Sobolev spaces (i.e., in the same framework as for
the BIE with hypersingular operator) are critical for the error analysis
of the boundary element method (BEM) for the EFIE.

In the framework of the p-version of the BEM, approximations of sin-
gularities (i)–(iii) were first analysed in [15] under assumptions (1.2) on
λ, γ. These assumptions guarantee that all singular functions (i)–(iii)
are H1(Γ)-regular. Due to this fact, a rigorous analysis of polynomial
approximations of these singularities in L2(Γ) and in H1(Γ) was per-
formed in [15]. Then, using interpolation between these spaces, the pa-
per culminated in the optimal a priori error estimate for the p-version of
the BEM with hypersingular operator on a (closed) polyhedral surface
Γ (for smooth right-hand side f).

Later, in [4], we extended the results of [15] to the case of open
surfaces, where singularity exponents λ, γ satisfy (1.3). Moreover, our
analysis in [4] for the p-BEM and then in [6] for the hp-BEM with
quasi-uniform meshes, covers the least regular cases (λ, γ satisfying
(1.4)), but only for edge and vertex-edge singularities (on both open
and closed piecewise plane surfaces). In these cases the corresponding
singularities are not in H1(Γ) and one cannot apply the results of [15].
To the author’s knowledge, the analysis of the high-order polynomial
approximations of the least regular vertex singularities is missing in the
existing literature. With this note we aim to fill this gap. As in [4, 6],
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we perform the error analysis on a scale of fractional order Sobolev
spaces. However, in contrast to [4], the analysis of p-approximations
in this note relies on explicit definitions of corresponding norms by the
K-method of interpolation.

We also note that for BIE with weakly singular operators, where the
energy space is H−1/2(Γ) (or H̃−1/2(Γ), if Γ is an open surface), the
minimum assumptions for singularity parameters are

λ ≥ λ1 > −3/2 and γ ≥ γ1 > −1.

Polynomial approximations of singularities (i)–(iii) under these mini-
mum assumptions were studied in [5, 7] in the context of the p-BEM
and the hp-BEM with quasi-uniform meshes.

The rest of the paper is organised as follows. In the next section we
introduce a quasi-uniform mesh discretising a Lipschitz polyhedral sur-
face, define corresponding sets of piecewise polynomials, recall defini-
tions of Sobolev spaces and norms, and collect several auxiliary results.
Section 3 is focused on p-approximations of vertex singularities on a
separate element of the fixed size. Then in §4 we prove the main result
(Theorem 4.1), which states an error estimate (in terms of the mesh
parameter h and polynomial degree p) for the approximation of vertex
singularities by piecewise polynomials on quasi-uniform meshes.

2. Preliminaries. Throughout the paper, Γ denotes a Lipschitz
polyhedral surface with plane faces Γ(i) and straight edges. In what
follows, h > 0 and p ≥ 1 will always specify the mesh parameter and a
polynomial degree, respectively. We will denote by C a generic positive
constant which does not depend on h and p.

For any bounded domain Ω ⊂ IRn we will denote ρΩ = sup{diam(B);
B is a ball in Ω}. By A 
 B we mean that A is equivalent to B, i.e.,
there exists a constant C > 0 such that C B ≤ A ≤ C−1B where B
and A may depend on a parameter (usually h or p) but C does not.

Let M = {Δh} be a family of meshes Δh = {Γj ; j = 1, . . . , J} on Γ,
where Γj are open triangles or parallelograms such that Γ̄ = ∪J

j=1Γ̄j .
For any Γj ∈ Δh we will denote hj = diam(Γj) and ρj = ρΓj . Let
h = max

j
hj . In this paper we will consider a family M of quasi-uniform

meshes Δh on Γ. This implies the existence of positive constants σ1, σ2
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independent of h such that for any Γj ∈ Δh and arbitrary Δh ∈ M

(2.1) h ≤ σ1hj , hj ≤ σ2ρj .

Let Q = (0, 1)2 and T = {(x1, x2); 0 < x1 < 1, 0 < x2 < x1} be
the reference square and triangle, respectively. Then for any Γj ∈ Δh

one has Γj = Mj(K), where Mj is an affine mapping with Jacobian
|Jj | 
 h2

j and K = Q or T as appropriate.

Further, Pp(I) denotes the set of polynomials of degree ≤ p on an
interval I ⊂ IR. Moreover, P1

p(T ) is the set of polynomials on T of total
degree ≤ p, and P2

p (Q) is the set of polynomials on Q of degree ≤ p in
each variable. Let K ⊂ IR2 be an arbitrary triangle or parallelogram,
and let K = M(T ) or K = M(Q) with an invertible affine mapping
M . Then by Pp(K) we will denote the set of polynomials v on K such
that v ◦ M ∈ P1

p (T ) if K is a triangle and v ◦ M ∈ P2
p (Q) if K is

a parallelogram (in particular, we will use this notation for K = Q
and K = T ). For given p, we then consider the space of continuous,
piecewise polynomials on the mesh Δh ∈ M,

Shp(Γ) := {v ∈ C0(Γ); v|Γj ∈ Pp(Γj), j = 1, . . . , J}.

Let us recall definitions of the Sobolev spaces and norms. First, for
t ∈ IR we define the Sobolev space Ht(IRn) (n ≥ 1) in the usual way,
via Fourier transform (see, e.g., [14]). This space is equipped with the
norm

‖u‖Ht(IRn) =
∥∥∥(1 + |ξ|2)t/2 û

∥∥∥
L2(IRn)

.

Here û(ξ) = (2π)−n/2
∫

IRn

u(x)e−i x·ξdx denotes the Fourier transform

of the function u, x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn), x · ξ = x1ξ1 +
. . .+xnξn, and L2(IRn) is the usual Lebesgue space of square integrable
functions on IRn with the standard norm ‖ · ‖L2(IRn).

Then for a Lipschitz domain Ω ⊆ IRn we set

Ht(Ω) = {u = ϕ|Ω; ϕ ∈ Ht(IRn)} with norm
‖u‖Ht(Ω) = inf

ϕ∈Ht(IRn)
u=ϕ|Ω

‖ϕ‖Ht(IRn)
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and

H̃t(Ω) = {u ∈ Ht(IRn); suppu ⊆ Ω̄} with norm
‖u‖H̃t(Ω) = ‖u‖Ht(IRn).

For any t ∈ IR the space Ht(Ω) is the dual space of H̃−t(Ω) with
L2(Ω) = H0(Ω) = H̃0(Ω) as pivot space. When Ω is bounded and
t > 0 we will also use the space Ht

0(Ω) being the closure of C∞
0 (Ω) with

respect to the norm in Ht(Ω).

Note that Ht(Ω) = H̃t(Ω) = Ht
0(Ω) if 0 ≤ t < 1

2 , and H̃t(Ω) = Ht
0(Ω)

if t − 1
2 is not an integer (see [13]). Moreover, in the latter case, the

norms ‖ · ‖H̃t(Ω) and ‖ · ‖Ht(Ω) are equivalent.

The Sobolev spaces satisfy the interpolation property (see [3]): let
t1, t2 ∈ IR, t1 < t2, and t = (1 − θ)t1 + θt2 for 0 < θ < 1, then

Ht(Ω) =
(
Ht1(Ω), Ht2(Ω)

)
θ

and H̃t(Ω) =
(
H̃t1(Ω), H̃t2(Ω)

)
θ
.

Here we use the real K-method of interpolation where, for two normed
spaces A0 and A1, the interpolation space (A0, A1)θ (0 < θ < 1) is
equipped with the norm

‖a‖(A0,A1)θ,2 :=
(∫ ∞

0

t−2θ inf
a=a0+a1

(‖a0‖2
A0

+ t2 ‖a1‖2
A1

)
dt

t

)1/2

.

If Ω is a bounded Lipschitz domain, then the following equivalent
norms can be defined for spaces Ht(Ω), t ≥ 0 (we will use the same
notation ‖ · ‖Ht(Ω) for these norms). First, we set

‖u‖H0(Ω) = ‖u‖L2(Ω).

If t ≥ 1 is an integer, then

‖u‖2
Ht(Ω) = ‖u‖2

Ht−1(Ω) + |u|2Ht(Ω)

where
|u|2Ht(Ω) =

∫
Ω

|Dtu(x)|2 dx.
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Here, |Dtu(x)|2 =
∑

|α|=t |Dαu(x)|2 in the usual notation with multi-
index α = (α1, . . . , αn) and with respect to Cartesian coordinates
x = (x1, . . . , xn). For a positive non-integer t = m + σ with integer
m ≥ 0 and 0 < σ < 1, the norm in Ht(Ω) is defined as

‖u‖2
Ht(Ω) = ‖u‖2

Hm(Ω) + |u|2Ht(Ω)

with semi-norm

|u|2Ht(Ω) =
∑

|α|=m

∫
Ω

∫
Ω

|Dαu(x) −Dαu(y)|2
|x− y|n+2σ

dx dy.

We also note that if Ω ⊂ IRn is a bounded Lipschitz domain, then
its boundary ∂Ω is locally the graph of a Lipschitz function. Since
the Sobolev spaces Ht for |t| ≤ 1 are invariant under Lipschitz (i.e.,
C0,1) coordinate transformations, the spaces Ht(∂Ω) with |t| ≤ 1 can
be defined in the usual way via a partition of unity subordinate to a
finite family of local coordinate patches (see [1, 14]). Due to such a
definition, the properties of Sobolev spaces on Lipschitz domains in IRn

carry over to Sobolev spaces on Lipschitz surfaces. If Γ̃ is an open
surface in IRn, then the Sobolev spaces Ht(Γ̃), H̃t(Γ̃) for |t| ≤ 1 and
Ht

0(Γ̃) for 0 < t ≤ 1 are constructed in terms of the above Sobolev
spaces Ht(∂Ω), where ∂Ω in this case is a closed Lipschitz surface
which contains Γ̃ (see [14]).

Now let us collect several technical lemmas. We will need the
following scaling result.

Lemma 2.1. Let Kh and K be two open subsets of IRn such that
Kh = M(K) under an invertible affine mapping M . Let diamKh 

ρKh 
 h and diamK 
 ρK 
 1. If u ∈ Hm(Kh) with integer m ≥ 0,
then û = u ◦ M ∈ Hm(K) and there exists a positive constant C
depending on m but not on h or u such that

(2.2) |û|Hm(K) ≤ Chm−n
2 |u|Hm(Kh).

Analogously for any û ∈ Hm(K) there holds

(2.3) |u|Hm(Kh) ≤ Ch
n
2 −m|û|Hm(K).
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Moreover, if û ∈ Hs(K) with real s ∈ [0,m], then

(2.4) C1h
n
2 ‖û‖Hs(K) ≤ ‖u‖Hs(Kh) ≤ C2h

n
2 −s‖û‖Hs(K).

For the proof of (2.2), (2.3) see [9, Theorem 3.1.2]. Inequalities (2.4)
then follow by interpolation (see [1, Lemma 4.3]).

The next theorem states the hp-approximation result for piecewise
smooth functions.

Theorem 2.1. Let m > 1. Assume that u ∈ H1(Γ) and
u ∈ Hm(Γ(i)) for any face Γ(i) of Γ. Then there exists uhp ∈ Shp(Γ)
such that for s ∈ [0, 1]

‖u− uhp‖Hs(Γ) ≤ Chμ−sp−(m−s̃)

( ∑
i

‖u‖2
Hm(Γ(i))

)1/2

,

where μ = min {m, p+ 1} and

(2.5) s̃ =

⎧⎨
⎩

1/2 if s ∈ [0, 1/2),
1/2 + ε, ε > 0 if s = 1/2,
s if s ∈ (1/2, 1].

This result has been proved in [6, Proposition 4.1] for a plane open
surface Γ. The proof of Theorem 2.1 repeats the arguments from [6]
and is skipped.

The following two lemmas have been also proved in [6], cf. Lemma 3.4
and Lemma 3.5 therein.

Lemma 2.2. Let Kh be a triangle (respectively, a parallelogram)
satisfying the assumptions of Lemma 2.1, and let lh be a side of Kh with
vertices v1, v2. Let whp ∈ Pp(lh) be such that whp(v1) = whp(v2) = 0,
and ‖whp‖L2(lh) ≤ f(h, p). Then there exists uhp ∈ P2p+1(Kh)
(respectively, uhp ∈ Pp(Kh)) such that uhp = whp on lh, uhp = 0
on ∂Kh\lh, and for 0 ≤ s ≤ 1

‖uhp‖Hs(Kh) ≤ C h1/2−s p−1+2s f(h, p).
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Lemma 2.3. Let Δh = {Γj} be a quasi-uniform mesh on Γ. Then
for 0 < s < 1

‖u‖2
Hs(Γ) ≥

∑
j

‖u‖2
Hs(Γj)

∀ u ∈ Hs(Γ),

and for 1/2 < s < 1 there holds

(2.6) ‖u‖2
Hs(Γ) ≤ C

∑
j

(
h−2s

j ‖u‖2
L2(Γj)

+ |u|2Hs(Γj)

)
∀ u ∈ Hs(Γ).

The positive constant C in (2.6) is independent of u and the mesh Δ.

3. p -approximation on a separate element of the fixed size.
We start with a model situation on the reference square Q = (0, 1)2.
This will lead us to the p-approximation result on a separate element
(either a triangle or a parallelogram) of the fixed size.

For the model situation, let κ > 1 and denote Sκ = {x ∈
Q; κ−1x1<x2<κx1}. We consider the following singular function
over the square Q:

(3.1) u(r, θ) = rλ| log r|βχ(r)w(θ),

where (r, θ) denote local polar coordinates with origin at (0, 0), λ >
−1/2, β ≥ 0 is an integer, w(θ) is sufficiently smooth, and χ is a C∞

cut-off function satisfying

(3.2) χ(r) = 1 for 0 ≤ r ≤ δ/2 and χ(r) = 0 for r ≥ δ.

Here, δ ∈ (0, 1) is small enough. If λ = 0, we will assume that β
is a positive integer, so that the function u has only a logarithmic
singularity in this case. Observing that u ∈ Hs(Sκ0) for κ0 > 1 and
for any s ∈ [0, λ + 1), we study polynomial approximations of u. We
emphasize again that for λ ∈ (−1/2, 0] the function u is not H1(Γ)-
regular, and one cannot apply the results of [2, 4, 15], were λ was
assumed to be positive.

Theorem 3.1. Let u be given by (3.1). Then there exists a sequence
up ∈ P2

p+2(Q), p = 1, 2, . . . , such that up = 0 at the origin (0, 0),

(3.3) ‖u− up‖Hs(Sκ0 ) ≤ C p−2(λ+1−s) (1 + log p)β ,

0 ≤ s < min {1, λ+ 1},
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and for any straight line � � (0, 0) there holds

(3.4) ‖u− up‖L2(�∩S̄κ0) ≤ C p−2(λ+1/2) (1 + log p)β .

Although the results of [2] and [15] cannot be applied directly, we
will use the approach developed in these papers (see, in particular,
Theorem 5.1 in [2] and Theorem 8.1 in [15]). First, we extend u
smoothly from Sκ0 to Sκ ⊃ Sκ0 . This can be done by multiplying
(3.1) by a C∞ cut-off function χ̃(θ) such that for κ > κ0

χ̃(θ) = 1 for arctanκ−1
0 ≤ θ ≤ arctanκ0,

χ̃(θ) = 0 for θ ≤ arctanκ−1 and θ ≥ arctanκ.

We will retain the notation u for the extended function. Let

ξ(x1, x2) = (x1 − κx2)(κx1 − x2) = r2Φ1(θ)

and

u0(x1, x2) =
u(x1, x2)
ξ(x1, x2)

= rλ−2| log r|βχ(r)Φ2(θ),

where Φ2(θ) is smooth. Introducing a cut-off function ω such that

(3.5) ω ∈ C∞(IR), ω(z) = 0 for z ≤ 1, ω(z) = 1 for z ≥ 2,

we define for a small Δ ∈ (0, 1)

ωΔ(r) = ω
(

r
Δ

)
, ω̃Δ(r) = 1 − ωΔ(r), r ≥ 0.

Then we decompose u0 as

(3.6) u0(x) =
u(x)
ξ(x)

= u0(x)ωΔ(r) + u0(x)ω̃Δ(r) =: v0(x) + w0(x).

The function v0 in (3.6) is smooth and vanishes for 0 ≤ r ≤ Δ.
Moreover, for any non-negative integers k and l there exists a positive
constant C(k + l) independent of Δ such that for (x1, x2) ∈ Q and for
i = 1, 2

(3.7)
∣∣∣∣ ∂k+lv0

∂xk
1∂x

l
2

∣∣∣∣ ≤ C(k + l)
{

0 for 0 < r < Δ,
xλ−2−k−l

i | log Δ|β otherwise.
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Polynomial approximations of functions satisfying (3.7) (and not nec-
essarily having the explicit form given above) were investigated in [2]
when proving Theorem 5.1 therein, and were also studied in [15, Theo-
rem 8.1]. The estimate for the approximation error in the H1(Sκ)-norm
immediately follows from [2], while [15] gives also the estimate in the
L2(Sκ)-norm and then, by interpolation, in the norm of Hs(Sκ) with
0 ≤ s ≤ 1. Moreover, [15, Lemma 8.2] estimates the approximation er-
ror in the L2(�∩Sκ)-norm, where � is the line x1 = κ̃x2 (κ−1

0 ≤ κ̃ ≤ κ0).
We summarise the mentioned results in the following lemma.

Lemma 3.1. Let Δ = p−2. If v0 satisfies (3.7), then there exists
a sequence vp ∈ P2

p+2(Q), p = 1, 2, . . . , such that vp(0, 0) = 0 and for
any 0 ≤ s ≤ 1

‖ξv0 − vp‖Hs(Sκ0 ) ≤ C p−2(λ+1−s) (1 + log p)β .

Moreover,

‖ξv0 − vp‖L2(�∩S̄κ0) ≤ C p−2(λ+1/2) (1 + log p)β ,

where � denotes the line x1 = κ̃x2 (κ−1
0 ≤ κ̃ ≤ κ0).

The function w0 in (3.6) has a small support, suppw0 ⊂ K̄Δ = {x ∈
S̄κ; 0 ≤ r ≤ 2Δ}. In the next lemma we show that the function ξw0

being approximated by zero leads to the same estimates as in (3.3, 3.4).

Lemma 3.2. Let Δ = p−2. Then for 0 ≤ s < min {1, λ+ 1}
‖ξw0‖Hs(Sκ0 ) ≤ C p−2(λ+1−s) (1 + log p)β .(3.8)

‖ξw0‖L2(� ∩S̄κ0) ≤ C p−2(λ+1/2) (1 + log p)β ,(3.9)

where � is the same as in Lemma 3.1.

Proof. First, we prove (3.8) for s = 0. For sufficiently small Δ > 0
one has (hereafter, θ1 = arctanκ−1, θ2 = arctanκ)

(3.10) ‖ξw0‖2
L2(Sκ0 ) ≤ ‖ξw0‖2

L2(Sκ) = ‖ξw0‖2
L2(KΔ)

≤ C

2Δ∫
0

θ2∫
θ1

r2λ| log r|2β r dθdr ≤ CΔ2λ+2| log Δ|2β ,

λ > −1,
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where C > 0 is independent of Δ. Let 0 < s < min {1, λ+ 1}. Then

(3.11) ‖ξw0‖2
Hs(Sκ0)

=

∞∫
0

t−2s inf
ξw0=w1+w2

(
‖w1‖2

L2(Sκ0 ) + t2 ‖w2‖2
H1(Sκ0)

) dt
t
.

For any t ∈ (0,Δ) we define

ωt(r) = ω
(

r
t

)
, ω̃t(r) = 1 − ωt(r), r ≥ 0,

where ω is as in (3.5). Then by (3.11) we have

(3.12) ‖ξw0‖2
Hs(Sκ0) ≤

Δ∫
0

t−2s−1
(
‖ξw0ω̃t‖2

L2(Sκ0 )+t
2 ‖ξw0ωt‖2

H1(Sκ0)

)
dt

+

∞∫
Δ

t−2s−1‖ξw0‖2
L2(Sκ0 )dt.

Now we estimate the norms on the right-hand side of (3.12). Since
ω̃t(r) = 0 for r ≥ 2t, we obtain similarly to (3.10)

(3.13) ‖ξw0ω̃t‖2
L2(Sκ0 ) ≤ C

2t∫
0

r2λ+1| log r|2β dr ≤ Ct2λ+2| log t|2β .

To estimate the norm ‖ξw0ωt‖H1(Sκ0 ) we evaluate the derivatives of
ξw0ωt. We will use the following inequalities∣∣∣∣ ∂r∂xi

∣∣∣∣ ≤ 1,
∣∣∣∣ ∂θ∂xi

∣∣∣∣ ≤ 1
xi

≤ C(κ)
1
r
, x ∈ Sκ, i = 1, 2;

∣∣∣∣dωΔ(r)
dr

∣∣∣∣ =
∣∣∣∣dω̃Δ(r)

dr

∣∣∣∣ =

{ 0 for 0 < r < Δ or r > 2Δ,∣∣∣ω′
(
r
Δ

)∣∣∣ 1
Δ for Δ ≤ r ≤ 2Δ

≤ C r−1 for r > 0,
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and a similar estimate for
∣∣∣dωt(r)

dr

∣∣∣. Hence, for any x ∈ Sκ we find by
simple calculations

(3.14)
∣∣∣∣ ∂

∂xi
(ξw0ωt)

∣∣∣∣ =
∣∣∣∣ ∂

∂xi

(
rλ| log r|βχ(r)χ̃(θ)w(θ)ω̃Δ(r)ωt(r)

)∣∣∣∣
≤ C

[∣∣∣∣ ∂

∂xi
(rλ| log r|β)

∣∣∣∣ + rλ| log r|β
(∣∣∣∣dχdr

∣∣∣∣
+

∣∣∣∣dχ̃dθ
∣∣∣∣ 1
r

+
∣∣∣∣dwdθ

∣∣∣∣ 1
r

+
∣∣∣∣dω̃Δ

dr

∣∣∣∣ +
∣∣∣∣dωt

dr

∣∣∣∣
)]

≤ Crλ−1| log r|β , i = 1, 2.

Since ξw0ωt vanishes on ∂Sκ and outside the domain K1
Δ = {x ∈

Sκ; t < r < 2Δ}, we deduce from (3.14) that

(3.15) ‖ξw0ωt‖2
H1(Sκ0 ) ≤ C|ξw0ωt|2H1(K1

Δ)

≤ C

2Δ∫
t

θ2∫
θ1

r2λ−2| log r|2β r dθdr

≤ C

2Δ∫
t

r2λ−1| log r|2βdr

≤ C

{
t2λ| log t|2β if λ < 0,

Δ2λ| log Δ|2β if λ > 0.

If λ = 0, we introduce a small ε ∈ (0, 2 − 2s) and estimate the norm
‖ξw0ωt‖2

H1(Sκ0 ) as follows

‖ξw0ωt‖2
H1(Sκ0) ≤ C

2Δ∫
t

r−1| log r|2βdr(3.16)

≤ C| log t|2β

2Δ∫
t

r−1−εrεdr

≤ CΔεt−ε| log t|2β .
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Using estimates (3.10, 3.13, 3.15) for the norms on the right-hand side
of (3.12) we obtain for 0 < s < min {1, λ+ 1}

(3.17) ‖ξw0‖2
Hs(Sκ0) ≤ C

Δ∫
0

t2λ+1−2s| log t|2βdt

+ CΔ2λ+2| log Δ|2β

∞∫
Δ

t−2s−1dt

≤ CΔ2(λ+1−s)| logΔ|2β if −1 < λ < 0

and

(3.18) ‖ξw0‖2
Hs(Sκ0) ≤ C

Δ∫
0

t2λ+1−2s| log t|2βdt

+ CΔ2λ| log Δ|2β

Δ∫
0

t−2s+1dt

+ CΔ2λ+2| log Δ|2β

∞∫
Δ

t−2s−1dt

≤ CΔ2(λ+1−s)| log Δ|2β if λ > 0.

In the case when λ = 0 we proceed similarly and use (3.16) instead of
(3.15). Then recalling that 0 < ε < 2 − 2s we have for 0 < s < 1

(3.19) ‖ξw0‖2
Hs(Sκ0 ) ≤ C

Δ∫
0

t−2s−1
(
t2 + t2−εΔε

)
| log t|2βdt

+ CΔ2| log Δ|2β

∞∫
Δ

t−2s−1dt

≤ CΔ2−2s| log Δ|2β + CΔε

Δ∫
0

t−2s+1−ε| log t|2βdt

≤ CΔ2(1−s)| logΔ|2β if λ = 0.
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Taking Δ = p−2 and using estimates (3.10, 3.17 - 3.19) we prove (3.8).

Let � be the line x1 = κ̃x2, where κ−1
0 ≤ κ̃ ≤ κ0. Then, recalling that

suppw0 ⊂ K̄Δ, we find by simple calculations

‖ξw0‖2
L2(�∩S̄κ0 ) ≤ C(λ, β, κ̃)

2Δ(1+κ̃2)−1/2∫
0

z2λ| log z|2βdz

≤ CΔ2λ+1| log Δ|2β .

Setting Δ = p−2 we obtain (3.9).

Proof of Theorem 3.1. The desired statement follows from Lemmas
3.1 and 3.2 making use of decomposition (3.6).

Now we consider an element (triangle or parallelogram) K ⊂ IR2 of
the fixed size (i.e., we assume that diamK 
 ρK 
 1).

Theorem 3.2. Let K ⊂ IR2 and suppose that O = (0, 0) is a vertex
of K. Let u be given by (3.1) on K. Then there exists a sequence
up ∈ Pp(K), p = 1, 2, . . . such that for 0 ≤ s < min {1, λ+ 1}

‖u− up‖Hs(K) ≤ C p−2(λ+1−s) (1 + log p)β .

Moreover, up(0, 0) = 0, up = 0 on the sides li ⊂ ∂K, l̄i �� O, and

‖u−up‖L2(lk)≤C p−2(λ+1/2) (1+ log p)β for each side lk ⊂ ∂K, O ∈ l̄k.

The proof is based on Theorem 3.1 and repeats exactly the arguments
in [15, Theorem 8.2].

4. hp -approximation on quasi-uniform meshes. In this sec-
tion we prove the result on the approximation of vertex singularities by
piecewise polynomials defined on the quasi-uniform mesh Δh discretis-
ing polyhedral surface Γ. Let us fix a vertex v of Γ. We will consider
the vertex singularity u given by (3.1), where (r, θ) now refers to local
polar coordinates (with origin at v) on each face of Γ containing v.
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Theorem 4.1. Let u be given by (3.1) with λ > − 1
2 and an integer

β ≥ 0. Then there exists uhp ∈ Shp(Γ) with p ≥ λ such that for
0 ≤ s < min {1, λ+ 1}
(4.1) ‖u− uhp‖Hs(Γ) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β+ν,

where ν = 1
2 if p = λ, and ν = 0 otherwise.

If 1 ≤ p < λ, then there exists uhp ∈ Shp(Γ) satisfying for s ∈ [0, 1]

(4.2) ‖u− uhp‖Hs(Γ) ≤ C hp+1−s.

Proof. Note that assumption 1 ≤ p < λ implies λ > 1. This case
was considered in [6, Theorem 6.1], where estimate (4.2) was proved.

To prove (4.1) we decompose u as u = ϕ1 + ϕ2, where

(4.3) ϕ1 := uχ(r/h0), ϕ2 := u(1 − χ(r/h0)), h0 = (σ1σ2)−1h,

χ is the cut-off function in (3.1), and σ1, σ2 are the same as in (2.1).

The singular function ϕ1 has small support, suppϕ1 ⊂ Āv :=
∪{Γ̄j ; v ∈ Γ̄j}. Let Kh = Γj ⊂ Av and let K ⊂ IR2 be a triangle
or parallelogram such that Kh = Mh(K) under the affine mapping
Mh : xi = hx̂i, i = 1, 2, x ∈ Kh, x̂ ∈ K. Then O = (0, 0) is a vertex
of K and for h < 1

2 we have

ϕ̂1(x̂) = ϕ1(hx̂1, hx̂2) = hλr̂λ

β∑
k=0

(
β

k

)
| log h|k| log r̂|β−kχ(σ1σ2r̂)w(θ̂),

where r̂ = (x̂2
1 + x̂2

2)1/2, θ̂ = arctan(x̂2/x̂1).

Let A = {li} contain those sides li ⊂ ∂K for which O ∈ l̄i, and
let B be the union of the other sides of K. Then applying Theorem
3.2 to each function r̂λ| log r̂|kχ(σ1σ2r̂)w(θ̂), k = 0, . . . , β, we find a
polynomial φ̂ ∈ Pp(K) such that φ̂(0, 0) = 0, φ̂ = 0 on B,

(4.4) ‖ϕ̂1 − φ̂‖Hs(K) ≤ C(β)hλ p−2(λ+1−s) (1 + log(p/h))β,

0 ≤ s < min {1, λ+ 1},
‖ϕ̂1 − φ̂‖L2(l) ≤ C(β)hλ p−2(λ+1/2) (1 + log(p/h))β(4.5)

for every l ∈ A.
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Let us define φj := φ̂ ◦M−1
h . Then φj ∈ Pp(Γj), φj = 0 at the vertex v

and on the sides lhi ∈ Bj = Mh(B). Furthermore, making use of Lemma
2.1, we obtain by (4.4, 4.5)

(4.6) ‖ϕ1 − φj‖Hs(Γj) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β ,

0 ≤ s < min {1, λ+ 1},
(4.7) ‖ϕ1 − φj‖L2(lh) ≤ C hλ+1/2 p−2(λ+1/2) (1 + log(p/h))β

for every lh ∈ Aj = Mh(A).

Suppose that Γi, Γj ⊂ Av are two elements having the common
edge lh = Γ̄i ∩ Γ̄j (these elements may lie on different faces of Γ).
Let φi ∈ Pp(Γi) and φj ∈ Pp(Γj) be the approximations of ϕ1

constructed above and satisfying estimates (4.6 - 4.7). Then the jump
g = (φj − φi)|lh vanishes at the end points of lh and

‖g‖L2(lh) ≤ C hλ+1/2 p−2(λ+1/2) (1 + log(p/h))β.

If Γi is a parallelogram, we use Lemma 2.2 to find a polynomial
z ∈ Pp(Γi) such that

(4.8) z = g on lh, z = 0 on ∂Γi\lh,
and for 0 ≤ s ≤ 1

(4.9) ‖z‖Hs(Γi) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β .

In the case that Γi is a triangle, we note that (4.6) and (4.7) also hold
for a polynomial ψj of degree

[
p−1
2

]
(with different constants C for the

upper bounds in (4.6) and (4.7)). Then Lemma 2.2 yields a polynomial
z ∈ Pp(Γi) which satisfies (4.8, 4.9) for Γi being a triangle.

Setting φ̃ = φi + z on Γi and φ̃ = φj on Γj we find a continuous
piecewise polynomial φ̃ such that the norms ‖ϕ1 − φ̃‖Hs(Γi) and ‖ϕ1 −
φ̃‖Hs(Γj) are bounded as in (4.6) for 0 ≤ s < min {1, λ+ 1}.

Repeating the above procedure we construct a continuous function
ψ1 ∈ C0(Āv) such that ψ1 = 0 on ∂Av, ψ1 ∈ Pp(Γj) for each Γj ⊂ Av,
and

‖ϕ1 − ψ1‖Hs(Γj) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β ,(4.10)
0 ≤ s < min {1, λ+ 1}.
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Now we extend ψ1 by zero onto Γ\Av (keeping the notation ψ1 for the
extension). Then ψ1 ∈ Shp(Γ) and there holds for 0 ≤ s < min {1, λ+1}
(4.11) ‖ϕ1 − ψ1‖Hs(Γ) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β .

In fact, for s = 0 estimate (4.11) on Γ immediately follows from
inequalities (4.10) on individual elements. If 1/2 < s < min {1, λ+ 1},
then we use Lemma 2.3:

‖ϕ1 − ψ1‖2
Hs(Γ) ≤ C

(
h−2s‖ϕ1 − ψ1‖2

L2(Γ) +
∑

j:Γj⊂Γ

|ϕ1 − ψ1|2Hs(Γj)

)

≤ C

(
h−2s‖ϕ1 − ψ1‖2

L2(Av)+
∑

j:Γj⊂Av

‖ϕ1 − ψ1‖2
Hs(Γj)

)
,

and (4.11) follows again from (4.10), because the number νv of elements
in Av is independent of h (νv ≤ ωv/θ0, where ωv is the total length of
the closed piecewise smooth arc cut out in the unit sphere S2 by the
edges of Γ having v as an endpoint, θ0 is the minimal angle of elements
in the mesh).

Finally, for 0 < s ≤ 1/2, estimate (4.11) follows via interpolation
between H0(Γ) and Hs′

(Γ) for some s′ ∈ (1
2 ,min {1, λ+ 1}).

Let Γ(i), i = 1, . . . , Iv be the faces of Γ at the vertex v. For the
function ϕ2 (see (4.3)) one has

ϕ2 = rλ| log r|βχ(r)(1 − χ(r/h0))w(θ) ∈ Hm(Γ(i)), i = 1, . . . , Iv,

where m depends on the regularity of w(θ), m is fixed and as large as
required. Furthermore,

suppϕ2 ⊂ R̄h, where Rh =
{
x ∈

Iv⋃
i=1

Γ̄(i); δ
2h0 < r(x) < δ

on each face Γ(i), i = 1, . . . , Iv

}
,

where δ is the same as in (3.2).

To bound the norm ‖ϕ2‖Hk(Γ(i)) we need the following inequalities:∣∣∣∣ ∂l+nr

∂xl
1∂x

n
2

∣∣∣∣ ≤ Cr1−l−n,

∣∣∣∣ ∂l+nθ

∂xl
1∂x

n
2

∣∣∣∣ ≤ Cr−l−n
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for any integer l, n ≥ 0, and

∣∣∣∣ ∂l

∂rl

(
1 − χ(r/h0)

)∣∣∣∣ =

{
0 for 0 < r < δ

2h0 and r > δh0,

|χ(l)|h−l
0 for δ

2h0 ≤ r ≤ δh0

≤ C r−l for r > 0

with any integer l ≥ 1.

Hence, we find by simple calculations

(4.12) ‖ϕ2‖2
Hk(Γ(i)) ≤ C(log(1/h))2β

δ∫
δh0/2

r2(λ−k) rdr, 0 ≤ k ≤ m.

Further, due to Theorem 2.1, there exists ψ2 ∈ Shp(Γ) such that for
s ∈ [0, 1]

(4.13) ‖ϕ2 − ψ2‖2
Hs(Γ) ≤ Ch2(μ−s)p−2(k−s̃)

Iv∑
i=1

‖ϕ2‖2
Hk(Γ(i)),

where k ∈ (1,m] is integer, μ = min {k, p+1}, and s̃ is defined by (2.5).

If λ+ 1 ≤ k ≤ m, then (4.12) and (4.13) yield

‖ϕ2 − ψ2‖Hs(Γ) ≤ Chμ−s+λ−k+1p−(k−s̃) logβ+ν̄(1/h),(4.14)
s ∈ [0, 1],

where ν̄ = 1
2 if k = λ+ 1, and ν̄ = 0 if k > λ+ 1.

If p > 2λ+ 3
2 , we select an integer k satisfying

2λ+ 5
2 < k ≤ p+ 1.

Then μ = k > 3
2 and p−(k−s̃) ≤ p−2(λ+1−s) for any s ∈ [0, 1].

If λ < p ≤ 2λ + 3
2 (i.e., p is bounded), we choose an integer k such

that
max {1, λ+ 1} < k ≤ p+ 1,

and if p = λ, then we take k = λ + 1 = p + 1. In both these cases
μ = k > 1 and p−(k−s̃) ≤ C(λ) p−2(λ+1−s) for any s ∈ [0, 1].
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Thus, for any p ≥ λ, selecting k as indicated above we find by (4.14)

(4.15) ‖ϕ2 − ψ2‖Hs(Γ) ≤ Chλ+1−sp−2(λ+1−s) logβ+ν(1/h), s ∈ [0, 1],

where ν = 1
2 if p = λ and ν = 0 otherwise.

Now combination of (4.11) and (4.15) gives (4.1) with uhp := ψ1 +
ψ2 ∈ Shp(Γ).

Remark 4.1. If Γ is an open piecewise plane surface and the function u
in (3.1) vanishes on ∂Γ, then u ∈ H̃s(Γ) for any 0 ≤ s < min {1, λ+1}.
In this case the same arguments as in the proof of Theorem 4.1 lead
to even stronger result: if p ≥ λ, then there exists uhp ∈ Shp

0 (Γ) :=
Shp(Γ) ∩H1

0 (Γ) such that for 0 ≤ s < min {1, λ+ 1}

‖u− uhp‖H̃s(Γ) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β+ν ,

where ν is the same as in (4.1); if 1 ≤ p < λ, then there exists
uhp ∈ Shp

0 (Γ) satisfying for s ∈ [0, 1]

‖u− uhp‖H̃s(Γ) ≤ C hp+1−s.
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