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ABSTRACT. It is an interesting question for the analysis of
linear ill-posed operator equations Ax = y and it seems to be
of some importance for regularization theory whether a non-
compact linear operator with non-closed range applied to a
compact linear operator mapping between Hilbert spaces can
alter the degree of ill-posedness determined by the singular
value decay rate σn(A) → 0 as n → ∞ of the compact opera-
tor A. For giving some more answer to that question we work
in the space L2(0, 1) and focus on non-compact multiplication
operators M applied to the integration operator J such that
A = M ◦ J determines the operator governing the equation.
Compositions of this type occur as linearizations of different
nonlinear inverse problems in natural sciences, engineering,
and finance. Specifically, we are interested in the case of mul-
tiplication operators M generated by a multiplier function m
having an essential zero in [0, 1]. In particular, in a toy prob-
lem of inverse option pricing multipliers m with exponential-
type zeros occur. By analyzing the strength of source condi-
tions for obtaining convergence rates in regularization it was
conjectured that the ill-posedness situation tends to the worse
in the exponential case compared to the case of power-type ze-
ros in m, for which we have shown in [9] that the degree of
ill-posedness is uniformly one. Now we are going to extend
this result to some family of exponential weight functions m
and prove that the asymptotics σn(A) � n−1 also holds for
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that family. In this context, we emphasize that for integration
operators with outer weights the use of the operator AA∗ is
more appropriate for the analysis of eigenvalue problems and
the corresponding asymptotics of singular values than the for-
mer use of A∗A in [9].

1. Introduction. In this paper, for a specific situation, we are
going to analyze the degree of ill-posedness of linear ill-posed operator
equations

(1.1) Ax = y (x ∈ X, y ∈ Y )

for injective, non-degenerating, compact linear operators A : X → Y
mapping between infinite dimensional separable Hilbert spaces X and
Y with norms ‖ · ‖. If preferably the smoothing properties of the
operator A governing the equation (1.1) are under consideration, then
the decay rate of the positive, non-increasing sequence {σn(A)}∞n=1 of
singular values of A tending to zero as n → ∞ measures the strength
of ill-posedness of (1.1) (see, e.g., Kress [13, p.235], Engl, Hanke,

Neubauer [3, p.40] and Hofmann [7, p.31]). This strength can be
expressed by a single number μ = μ(A) ∈ (0,∞) called the degree of
ill-posedness of equation (1.1) if

σn(A) � n−μ

is valid1 . This a rather specific situation for A, but it plays some
important role in the literature (see, e.g., Louis [15] and Mathé,

Pereverzev [16]). Wide families of forward operators A in numerous
inverse problems of form (1.1) have single-valued finite degrees μ of
ill-posedness, for example the problem of finding the μ-th fractional
derivative of a function y. With increasing μ the numerical difficulties
occurring in the corresponding differentiation process systematically
grow.

If, on the other hand, the linearization of a nonlinear inverse problem

(1.2) F (x) = y (x ∈ D(F ) ⊆ X, y ∈ Y )

1As usual we use the notation an � bn for sequences of positive numbers an and
bn satisfying inequalities c1 ≤ an/bn ≤ c2 for positive constants c1 and c2 and all
n ∈ N. If moreover lim

n→∞
an/bn = 1 we write an ∼ bn. If the quotients an/bn are

only limited from above by a constant, then we write an = O(bn).
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with continuous nonlinear forward operator F : D(F ) ⊆ X → Y yields
a linear operator equation (1.1) with the Fréchet derivative A = F ′(x0)
at an inner solution point x0 ∈ D(F ) with a single-valued degree
μ = μ(F ′(x0)) of ill-posedness, then μ can be interpreted here as local
degree of ill-posedness for evaluating the local stability behavior of
the nonlinear operator equation (1.2) at x0. As an important class
of nonlinear ill-posed problems (1.2) we should mention the class of
equations with compact nonlinear operators F (see [3, Chapt. 10])
leading to compact linear operators A = F ′(x0) in the linearization
(see Colton, Kress [2, Theorem 4.19]).

It is an interesting question for the analysis of linear ill-posed operator
equations whether a non-compact, bounded linear operator with non-
closed range applied to a compact linear operator mapping between
Hilbert spaces can alter the degree of ill-posedness. We asked this
question in the recent paper [9] and gave some partial answer for the
Hilbert space X = Y = L2(0, 1) and for the composition A = M ◦J of a
multiplication operator M generated by a weight (multiplier) function
m with essential zeros in [0, 1] and the integration operator

(1.3) [J x](t) =
∫ t

0

x(s)ds (0 ≤ t ≤ 1).

Compositions of this type occur as linearizations of different nonlinear
inverse problems in natural sciences, engineering and finance. For more
details we refer to the paper [8] which was communicated by Rainer

Kress. Precisely, for A from

(1.4) [Ax](t) = m(t)
∫ t

0

x(s)ds a.e. on [0, 1]

and weight functions m of power-type m(t) = tα with α > −1 we
proved that the well-known degree μ(J) = 1 of ill-posedness carries
over to the composition in the form μ(M ◦ J) = 1. We will recall this
result in detail as a proposition in Section 2.

Now we learned from Klann, Maaß, Ramlau that such a resis-
tance of the degree of ill-posedness of a compact operator to additional
influence factors can be advantageous, since they developed a new two-
step regularization approach in [14], for which convergence rates results
require a fixed single-valued degree of ill-posedness. So it seems to be of
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some interest to extend the results of [9] to further families of composite
operators. We will do this in the following for a family of exponential
weight functions m(t) = 1

t2 exp
(− c

t

)
with c > 0 in (1.4). The decay

rate of m(t) → 0 as t→ 0 for exponential weights is much faster than in
the power-case. Nevertheless, we can formulate a theorem on the non-
altering degree of ill-posedness for that exponential family in Section
4 based on an equivalence result proven in Section 3. In this context,
we emphasize that for integration operators with outer weights the use
of the operator AA∗ is more appropriate for the analysis of eigenvalue
problems and the corresponding asymptotics of singular values than
the former use of A∗A in [9].

Example 1.1. Another specific reason for studying exponential
multipliers m is due to the paper [6] of Hein, Hofmann, where as
an inverse toy problem in finance the determination of a purely time-
dependent volatility function x(t) (t ∈ [0, 1]) from maturity-dependent
option prices y(t) on the same interval can be written in the form (1.2)
withX = Y = L2(0, 1). In this example, the nonlinear forward operator
F = N ◦ J with domain D(F ) = {x ∈ L2(0, 1) : x(t) ≥ c > 0 a.e.}
mapping in L2(0, 1) is a composition of the integration operator J and
a nonlinear Nemytskii operator N determined by a smooth generator
function k(t, u) with (t, u) ∈ [0, 1] × [c,∞) of the form

(1.5) [F x](t) = k(t, [J x](t)) (0 ≤ t ≤ 1).

The function k(t, u) and its partial derivative ku(t, u) can be derived
in an explicit manner from the structure of the well-known Black-
Scholes formula generalized to time-varying volatlities. For an inner
point x0 ∈ D(F ) the Fréchet derivative of F then has the form

[F ′(x0)h](t) = m(t) [J h](t) with(1.6)
m(t) = ku(t, [J x0](t)) (0 < t ≤ 1)

With the exception of the case of at-the-money options it could be
shown in [6] that the weight function m(t) in (1.6) has an essential
zero at t = 0. This zero is of exponential type. Precisely, it satisfies
the inequalities

(1.7)
C
4
√
t

exp
(
−c
t

)
≤ m(t) ≤ C√

t
exp

(
− c√

t

)
(0 < t ≤ 1)

for some positive constants c, c, C and C.
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2. A review of well-known results and conjectures for the
integration operator with weights. We begin this section with
a sufficient condition for the compactness of the operator A = M ◦ J
defined in (1.4). In this context, we note that we are focused throughout
the paper on injective operators M and A which occur if and only if
m(t) �= 0 a.e. in [0, 1].

Lemma 2.1. The linear operator A : L2(0, 1) → L2(0, 1) defined
by formula (1.4) is compact if m is a measurable function on [0, 1]
satisfying the condition.

(2.1)

1∫
0

tm2(t) dt <∞ .

Proof. In view of (2.1) the kernel

K(s, t) =

{
m(t) for 0 ≤ t ≤ s ≤ 1

0 for 0 ≤ s < t ≤ 1

of the operator A (considered a linear Fredholm integral operator) has
a finite double-norm

1∫
0

1∫
0

K2(s, t) dt ds =

1∫
0

tm2(t) dt <∞,

i.e., K is a Hilbert-Schmidt kernel. This implies the compactness of A
(see, e.g., [20, Chapter 11, §2]).

Remark 2.2. Condition (2.1) is fulfilled in the two cases

(i) m ∈ L2(0, 1) and (ii) m(t) = tα (α > −1) ,

which are of main importance in our study.

By using the explicit structure of the integral operator A∗A and
motivated by the paper [19] of Vu Kim Tuan, Gorenflo we have
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derived in [9, Theorem 2.1] a result on the singular value asymptotics
of A for all relevant power functions, which is recovered here in the
following proposition.

Proposition 2.3. For the singular values of a compact linear
operator A : L2(0, 1) → L2(0, 1) defined by the formula (1.4), where the
multiplier function m is of power-type

m(t) = tα (0 < t ≤ 1)

with some exponent α > −1, we have

σn(A) ∼ 1
(α+ 1)πn

=
1
πn

⎛
⎝ 1∫

0

m(t)dt

⎞
⎠ .

Moreover, we had conjectured in [9] that the formula

(2.2) σn(A) ∼ 1
πn

⎛
⎝ 1∫

0

m(t)dt

⎞
⎠

implying a constant degree of ill-posedness μ(A) = 1 for A from (1.4)
remains valid for the whole family of weights

0 < m(t) ≤ C tα a.e. on [0, 1],

where α > −1 and C > 0. This would involve the exponential case
(1.7) arising in the finance application. The formula (2.2) could be fully
confirmed by a series of numerical experiments of Freitag reported in
[5], which also included exponential weight functions m.

On the other hand, source conditions

(2.3) x0 = A∗v (v ∈ Y )

yielding convergence rates of order

‖xβ − x0‖ = O(
√
β)
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as β → 0 for the method of Tikhonov regularization with

xβ = (A∗A+ βI)−1A∗y (y = Ax0)

and other linear regularization methods also measure the strength
of ill-posedness of an operator equation (1.1). So we can compare
the strength of condition (2.3) for the case A = J with the simple
integration operator J defined by formula (1.3) written as

(2.4) x0(t) = [J∗ v](t) =

1∫
t

v(s) ds (0 ≤ t ≤ 1; v ∈ L2(0, 1))

and the strength of condition (2.3) for the case A = M ◦ J with the
composite integral operator from (1.4) with weights m having zeros.
Provided that weight functions m occur we can write (2.3) as

(2.5) x0(t) = [J∗M∗ v](s) = [J∗M v](t) =

1∫
t

m(s) v(s) ds

(0 ≤ t ≤ 1; v ∈ L2(0, 1)).

If we assume that the multiplier function m has an essential zero only
at t = 0, then the condition (2.4) that implies

(2.6) x0 ∈ H1(0, 1) with x0(1) = 0

is weaker than the condition

(2.7)
x′0
m

∈ L2(0, 1) with x0(1) = 0

obtained from (2.5) by differentiation, since the new factor 1
m occurring

in (2.7) in not in L∞(0, 1). Note that the pairs of conditions (2.4) and
(2.6) on the one hand and (2.5) and (2.7) on the other hand are even
equivalent.

Consequently in order to satisfy the source condition (2.5), the
generalized derivative of the function x0 has to compensate in some
sense the pole of 1

m at t = 0. The level of compensation grows when
the decay rate of m(t) → 0 as t → 0 gets accelerated. Hence, the
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strength of the requirement (2.5) imposed on x0 grows for the families
of weights m with exponential zeros compared to weights with power-
type zeros. Nevertheless, the degree of ill-posedness is not altered as
we will see below.

3. An equivalence lemma and its consequences. We note
that the singular values σn(A) of a compact operator A are the square
roots of the eigenvalues of both positive definite operators A∗A and
AA∗. Now we consider A from (1.4), where the corresponding adjoint
operator A∗ of A can be explicitly expressed by the formula

(3.1) [A∗y](s) =

1∫
s

m(t) y(t) dt (0 ≤ s ≤ 1) .

In detail we consider for measurable m satisfying (2.1), where m(t) �= 0
a.e. on [0, 1], the explicit structure

[AA∗x](t) = m(t)

t∫
0

⎡
⎣ 1∫

τ

m(s)x(s) ds

⎤
⎦ dτ

= m(t)

t∫
0

⎡
⎣ t∫

τ

m(s)x(s)ds +

1∫
t

m(s)x(s)ds

⎤
⎦ dτ

= m(t)

⎡
⎣ t∫

0

⎛
⎝ t∫

τ

m(s)x(s)ds

⎞
⎠ dτ + t

1∫
t

m(s)x(s) ds

⎤
⎦

= m(t)

⎡
⎣ t∫

0

sm(s)x(s) ds+ t

1∫
t

m(s)x(s) ds

⎤
⎦

following from the expressions (1.4) for Ax, (3.1) for A∗y, and by
considering the fact that interchanging the order of integration yields
the identity

t∫
0

⎛
⎝ t∫

τ

ψ(s) ds

⎞
⎠ dτ =

t∫
0

s ψ(s) ds

for any integrable function ψ(s) (0 ≤ s ≤ t).
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We search for reciprocals λ > 0 of the eigenvalues of AA∗ and corre-
sponding non-zero eigenfunctions x ∈ L2(0, 1) satisfying the equation
λAA∗x = x. To do so we have to solve the integral equation

(3.2) x(t) = λm(t)

⎡
⎣ t∫

0

sm(s)x(s) ds+ t

1∫
t

m(s)x(s) ds

⎤
⎦ .

Putting u(t) = x(t)/m(t) from (3.2) we have the relation

(3.3) u(t) = λ

⎡
⎣ t∫

0

sm2(s)u(s) ds+ t

1∫
t

m2(s)u(s) ds

⎤
⎦ .

Differentiating (3.3) yields

(3.4) u′(t) = λ

1∫
t

m2(s)u(s) ds ,

and by differentiating (3.3) a second time we obtain the second order
differential equation

(3.5) u′′(t) + λm2(t)u(t) = 0 (0 < t < 1) .

Furthermore, from (3.3) and (3.4) the boundary conditions

(3.6) u(0) = u′(1) = 0

can be derived. Conversely, integrating (3.5) two times and observing
(3.6) we come back to (3.2). So, we have proven the following lemma.

Lemma 3.1. The integral equation (3.2) and the eigenvalue problem
(3.5 - 3.6) are equivalent with respect to the substitution x = mu.

Remark 3.2. In accordance with the boundary conditions (3.6) we
are looking for solutions u ∈ C[0, 1] of problem (3.5 - 3.6). In case
(i) m ∈ L2(0, 1) then it follows x = mu ∈ L2(0, 1). In case (ii)
m(t) = tα (α > −1) the functions u(t) behave like t as t → 0 (see
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Example 3.3 below) so that the functions x(t) behave like t1+α as
t → 0 and we obtain x ∈ C[0, 1]. In general, by assumption (2.1),
we have x ∈ L2(0, 1) if u ∈ C[0, 1] with u(t) = O(t1/2) as t → 0. We
also mention that the condition m(t) �= 0 a.e. in [0, 1] can be omitted if
we are only interested in the construction of x = mu via the solutions
u of (3.5 - 3.6).

Example 3.3. First we apply Lemma 3.1 to power functions

(3.7) m(t) = tα (0 < t ≤ 1) with exponents α > −1

as multiplier functions in (1.4). In that case we can rewrite the
differential equation (3.5) by multiplying t2 on both sides in the form

(3.8) t2 u′′(t) + λ t2(α+1) u(t) = 0 .

This is useful, because the equation (3.8) has an explicit general
solution (cf. Erdélyi [4, p.13, formula (62)]). Setting σ := 1/

√
λ

this solution can be verified as

u(t) = t1/2Z�

(
1

σ(α + 1)
tα+1

)

= t1/2

[
C1J�

(
1

σ(α+ 1)
tα+1

)
+ C2J−�

(
1

σ(α+ 1)
tα+1

)]
,

where Z� denotes the general cylinder function and J�, J−� are the
Bessel functions of first kind and order 	 = 1

2(α+1) > 0. For simplicity,
we have taken 	 �= 1, 2... . The boundary condition u(0) = 0 leads
to C2 = 0 and the other boundary condition u′(1) = 0 yields the
eigenvalue equation

	J�(z) + zJ ′
�(z) = 0 with z =

1
σ(α+ 1)

,

which by the relation 	J� + zJ ′
� = zJ�−1 (cf. [4, p.11, formula (54)]) is

equivalent to the equation

(3.9) J−ν

(
1

σ(α + 1)

)
= 0 with ν =

2α+ 1
2α+ 2

.
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Equation (3.9) was also obtained in [9] by working with the operator
A∗A and implies the asymptotics (2.2) for the singular values of A in
the case of weights m from (3.7) (cf. [9, Theorem 2.1]).2

Example 3.4. Our main interest in this paper is focused on the case of
exponential functions m, which was missing up to now. So let us consider as a
specific family of this type the multiplier functions

(3.10) m(t) =
1

t2
exp

(
− c

t

)
(0 < t ≤ 1) with constants c > 0

and taking into account Lemma 3.1 the associated differential equation

(3.11) t4 u′′(t) + λ exp

(
−2c

t

)
u(t) = 0 .

By substituting y := 2c
t

in (3.11), for the function v(y) = u(t) we then have the
differential equation

(3.12) v′′(y) +
2

y
v′(y) + η exp(−y) v(y) = 0 with η =

λ

4 c2
,

which has the general solution (cf. Kamke [12, p.442, formula (23)])

(3.13) v(y) =
1

y
Z0(2

√
η e−y/2)

=
C1

y
J0(2

√
η e−y/2) +

C2

y
Y0(2

√
η e−y/2) (2c < y < ∞) ,

where Z0, J0, Y0 denote the general, first kind and second kind Bessel function
of zero order, respectively. The boundary condition u(0) = 0 means v(∞) =

lim
y→∞

v(y) = 0. As y → ∞ it holds e−y/2 → 0, and therefore

v(y) ∼ C1

y
+

C2

y

2

π
ln

[√
η e−y/2

]
∼ −C2

π
as y → ∞ ,

since J0(z) ∼ 1 and Y0(z) ∼ 2
π

ln( z
2
) as z → 0 (cf. [4, p.8, formula (33)]). This

implies C2 = 0. Further, taking C1 = 1 we have

v(y) =
1

y
J0

(
2
√

η e−y/2
)

2We take the opportunity to correct a typo in the verfication of the asymptotic
relation (28) in [9, p.431]. In the second term of the asymptotic formula for J ′

−ν(t)

as t → 0 above formula (28) of [4] the factor (1 − 2
ν
) is missing.
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and

v′(y) =

√
η

y
e−y/2 J1

(
2
√

η e−y/2
)
− 1

y2
J0

(
2
√

η e−y/2
)

since J ′
0(z) = −J1(z). The boundary condition u′(1) = 0 is equivalent to the

condition v′(2c) = 0, i.e.,

(3.14) c z J1(z) − J0(z) = 0 with z = 2
√

η e−c =
e−c

c

1

σ
.

For σ → 0 we have z → ∞ and (cf. [4, p.85, formula (3)])

J0(z) =

(
1

2
πz

)−1/2

cos

(
z − π

4

)
+ O

(
z−3/2

)
as z → ∞

and

J1(z) =

(
1

2
πz

)−1/2 [
cos

(
z − 3

4
π

)
− 3

8z
sin

(
z − 3

4
π

)]
+ O

(
z−5/2

)
as z → ∞.

Hence, as n → ∞ the eigenvalue equation (3.14) is asymptotically equal to the
equation J1(zn) = 0 which yields the asymptotic relation (cf. Jahnke-Ende [10,
p.146])

zn =
e−c

c

1

σn
∼ πn ,

and consequently the result

(3.15) σn(A) ∼ S

πn
with S =

∫ 1

0

m(t)dt =
1

c
e−c

for the exponential family of weights m from (3.10), which again is in correspondence
with the conjectured formula (2.2).

Based on Lemma 3.1 the conjecture (2.2) for general m follows from results by
Kac and Krein [11] (cf. also [17]) on weighted Sturm-Liouville problems for the
string applied to problem (3.5 - 3.6). In the examples above, we have shown this
explicitly for families of power-type and exponential-type functions, respectively.

4. The main theorem. Now we are ready to formulate the main theorem of
this paper that extends, based on both examples of Section 3, the Corollary 2.2 of
[9] concerning wider classes of weight functions m in (1.4) implying σn(A) � n−1

and hence a non-changing degree of ill-posedness of corresponding equations (1.1).

Theorem 4.1. For the singular values of a compact linear operator A :
L2(0, 1) → L2(0, 1) defined by the formulae (1.4), where the multiplier function

m satisfies for some exponent α > −1 and for some positive constants c, C, and C
the inequalities
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(4.1)
C

t2
exp

(
− c

t

)
≤ m(t) ≤ C tα a.e. on [0, 1] ,

we have

(4.2) σn(A) � 1

n
.

Proof. For Ax from (1.4),

[Adown x](t) =
C

t2
exp

(
− c

t

) ∫ t

0

x(s)ds a.e. on [0, 1]

and

[Aup x](t) = C tα
∫ t

0

x(s)ds a.e. on [0, 1]

from (4.1) we directly obtain

(4.3) ‖Adown x‖ ≤ ‖Ax‖ ≤ ‖Aup x‖ for all x ∈ L2(0, 1).

Now the Poincaré-Fischer extremum principle (see, e.g., [1, Lemma 4.18]) yields the
representation

σn(A) = max
Xn⊂L2(0,1)

min
x∈Xn, x 	=0

‖A x‖
‖x‖

for the n-th singular value of the compact operator A, where Xn denotes an arbitrary
n-dimensional subspace of the Hilbert space L2(0, 1). Both the existence of a
minimum of ‖Ax‖/‖x‖ over all non-zero elements from Xn and the existence of

a maximum of min
x∈Xn, x 	=0

‖A x‖
‖x‖ over all finite dimensional subspaces Xn are shown

in the context of the proof of this principle. As a consequence we have for compact
operators A and B mapping in L2(0, 1) which satisfy the inequality ‖Ax‖ ≤ ‖Bx‖
for all x ∈ L2(0, 1) that

min
x∈Xn, x 	=0

‖A x‖
‖x‖ ≤ min

x∈Xn, x 	=0

‖B x‖
‖x‖ and σn(A) ≤ σn(B).

This fact was already mentioned in [7, Lemma 2.46]. Then the results σn(Aup) � 1
n

from Example 3.3 and σn(Adown) � 1
n

from Example 3.4 together with (4.3) prove
the assertion of the theorem.

Finally we note that Theorem 4.1 also implies μ(A) = 1 for the situation of
Example 1.1. Precisely, with m from (1.7) the hypothesis (4.1) can be verified for

appropriate constants. On the one hand, the upper bound C√
t

exp

(
− c√

t

)
(0 <
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t ≤ 1) in (1.7) can be extended to a continuous function on [0, 1] by setting its

function value zero for t = 0. Hence m(t) ≤ Ĉ (0 < t ≤ 1) for some constant

0 < Ĉ < ∞. On the other hand, given positive constants C and c there exist other
positive constants C and c such that we can estimate the lower bound of (1.7) as

C

t2
exp

(
− c

t

)
≤ C

4√t
exp

(
− c

t

)
≤ m(t) (0 < t ≤ 1)

with some c > c, since the exponential decay is always faster than a power-type
decay of arbitrary order.
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