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ABSTRACT. For integral equations of the first kind

Kϕ :=

∫ x

0

k (x − t) ϕ (t) dt = f (x) , x ∈ (0, b)

where 0 < b < ∞, in the case of a certain class of almost
decreasing Sonine kernels k(t) we prove weighted estimates
of continuity moduli ω(Kϕ, h) and ω(K−1f, h). This al-
lows us to show that the weighted generalized Hölder spaces
Hω(ρ) and Hω1(ρ) are suitable well-posedness classes for
these integral equations of the first kind under the choice
ω1(h) = hk(h)ω(h).

1. Introduction. We consider integral equations of the first kind

(1.1) Kϕ :=
∫ x

0

k (x − t)ϕ (t) dt = f (x) , x ∈ (0, b),

where 0 < b < ∞, and k(x) ∈ L1(0, b).

As is well known, one of the main problems for integral equations
of the first kind is to find ”nice” well-posedness classes. Spaces of
integrable functions do not suit well for this purpose in the following
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sense: when looking for solutions ϕ, for instance, in the space Lp1 , the
range K(Lp1) does not coincide with any space Lp2 . Therefore, the
scale of the spaces Lp, as it is, cannot provide well-posedness classes:
the range K(Lp1), if imbedded into a certain Lp2 , is usually a subset of
Lp2 . The same is true for weighted Lp-spaces.

We show – for a rather wide class of kernels – that there exists a
scale of spaces, within which it is possible to have both the space
for solutions ϕ and the space of right-hand sides f . For this goal
we consider spaces of functions continuous for x > 0 with possible
singularity at x = 0 - the situation rather typical for applications. The
continuity properties of functions will be characterized in terms of their
continuity modulus, while behavior at the origin will be described in
terms of weight functions ”fixed” to the origin. That is, we consider
the generalized Hölder spaces Hω

0 (ρ) (see definitions in Subsection 2.3).

The main result of the paper is the following: given ω and ρ from
certain classes, there exists an exact isomorphism:

(1.2) K(Hω
0 (ρ)) = Hω1

0 (ρ), where ω1(x) = xk(x)ω(x).

This isomorphism is proved for a certain class of positive almost
decreasing Sonine kernels. We recall that a kernel k(x) ∈ L1(0, b) is
called a Sonine kernel, if it is a divisor of the unit with respect to the
operation of convolution, that is, there exists a kernel �(x) ∈ L1(0, b)
such that the relation

(1.3)
∫ x

0

� (x − t) k (t) dt = 1,

is valid for almost all x ∈ (0, b).

We refer to the original papers [20, 21] by N.Sonine, the paper [11]
on imbedding theorems for ranges of operators of form (1.1), including
the case of Sonine kernels, and recent papers [15, 16] on inversion of
equations with Sonine kernels within the framework of Lp-spaces.

The class of Sonine kernels is sufficiently wide. We refer to [15, 16]
for classical examples which typically involve weighted special functions
with singularity at the origin; as shown in [11], any kernel for instance
of the form a(x)xα−1 lnm 2b

x , 0 < α < 1, where a(x) is an absolutely
continuous function with a(0) �= 0, is a Sonine kernel.



WEIGHTED GENERALIZED HÖLDER SPACES 439

Isomorphism (1.2) was known earlier for the simplest example of
Sonine kernels, k(x) = xα−1

Γ(α) , 0 < α < 1, which corresponds to fractional
integration operator K = Iα

0+. In the case of power characteristics
ω(x) = xλ the embedding Iα

0+(Hλ
0 ) → Hλ+α

0 , λ + α < 1, in the non-
weighted case goes back to G.Hardy and J.Littlewood [3] (see [17],
Theorem 3.1). The isomorphism Iα

0+(Hλ
0 (ρ)) = Hλ+α

0 (ρ) with power
weight ρ was proved in [10, 12], see [17], Theorem 13.13. A simpler
proof was given in [5]. An extension to general characteristics ω(x) for
the same example k(x) = xα−1

Γ(α) was given in [7, 8, 9, 18] (see [17],
Theorems 13.15-13.18), and in [6]; such an isomorphism for general
weights was proved in [19], Theorem 6.

The case of general kernels was considered in [19], where only the
imbedding K(Hω

0 (ρ)) → Hω1
0 (ρ) was studied in terms somewhat differ-

ent from those in this paper. One of the results obtained in this paper,
Theorem C1, is a certain refinement of imbedding theorem proved in
[19].

The main goal of this paper is to establish the exact isomorphism
(1.2) based on the study of properties of operators inverse to Sonine
integral operators in [15, 16] and technique of weighted estimations of
continuity moduli developed in [19].

N o t a t i o n :

C0([0, b]) = {f ∈ C([0, b]) : f(0) = 0};
Hω

0 (ρ), see (2.12);

Vλ is defined by Definition 2.4;

W is defined in (2.1);

Wμ is defined by Definition 2.2;

Z0, Z1, see (2.7);

Φ is the Zygmund-Bari-Stechkin class, see Definition 2.7;

2. Preliminaries. Throughout this paper b will denote a fixed
positive number.

2.1. Classes Wμ and Vλ. The following definition goes back to
S.Bernstein [2].
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Definition 2.1. A non-negative function f(x) defined on an
interval [0, b] is called almost increasing (a.i.) on this interval, or almost
decreasing (a.d.), respectively, if there exists a constant C ≥ 1 such
that

f(x) ≤ Cf(y) for all 0 ≤ x ≤ y ≤ b,

f(y) ≤ Cf(x) for all 0 ≤ x ≤ y ≤ b,

respectively.

We denote for brevity

(2.1) W = W ([0, b])
= {f ∈ C0([0, b]) : f(x) > 0, x > 0, f(x) is a.i. on [0, b].}

As in [19], we introduce the following class of weight functions.

Definition 2.2. By Wμ = Wμ([0, b]), μ > 0, we denote the class of
functions ρ ∈ W ([0, b]), which have the properties:

(1) ρ(x)
xμ is a.d.;

(2) there exists a constant C > 0 such that

(2.2)
∣∣∣∣ρ(x) − ρ(y)

x − y

∣∣∣∣ ≤ C
ρ(x∗)
x∗ , x∗ = max(x, y), x, y ∈ [0, b].

Property (1) of functions ρ ∈ Wμ, that is,

(2.3) ρ(x) ≤ C

(
x

y

)μ

ρ(y), 0 < y ≤ x ≤ b,

will be often used in the sequel, as well as property (2). The latter, in
the case 0 < μ ≤ 1 is equivalent to

(2.4)
∣∣∣∣ρ(x) − ρ(y)

x − y

∣∣∣∣ ≤ C min
{

ρ(x)
x

,
ρ(y)
y

}
.

Note that inequality (2.4) in the case 0 < μ ≤ 1 is satisfied automati-
cally with C = μ if ρ(x) is increasing (not just almost increasing) and
ρ(x)
xμ is decreasing (not just almost decreasing).
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Lemma 2.3. Let ρ ∈ Wμ([0, b]), μ > 0. Then

(2.5)
∣∣∣∣ρ(x) − ρ(y)

ρ(y)

∣∣∣∣ ≤ C

(
x

y

)γ−1
x − y

y
, 0 < y ≤ x ≤ b,

where γ = max(1, μ).

Proof. Let 0 < μ ≤ 1. By (2.4) we have |ρ(x)−ρ(y)| ≤ C(x− y)ρ(y)
y

which yields (2.5). Let μ ≥ 1. Then by (2.2) and (2.3) we get

∣∣∣∣ρ(x) − ρ(y)
ρ(y)

∣∣∣∣ ≤ C
x − y

x

(
x

y

)μ

= C
x − y

y

(
x

y

)μ−1

,

which is (2.5) for μ ≥ 1.

We also need the following class of positive a.d. kernels bounded
beyond the origin introduced in [19] (note that the condition (2.2) in
[19] must be read as condition (2.6) below).

Definition 2.4. A non-negative kernel k(x) is said to belong to the
class Vλ = Vλ([0, b]), λ > 0, if

(1) k(x) > 0 for 0 < x ≤ b;

(2) xλk(x) is a.i. on [0, b];

(3) xλ−εk(x) is a.d. on [0, b] for every ε > 0;

(4) condition of the type (2.2) is satisfied:

(2.6)
∣∣∣∣k(x + h) − k(x)

h

∣∣∣∣ ≤ C
k(x)
x + h

, h > 0 for all x, x + h ∈ [0, b].

From conditions (2-3) of the above definition it follows that kernels
k(x) ∈ Vλ have the properties

(2.7) k(y) ≤ Ck(x)
(

x

y

)λ

, 0 < y ≤ x ≤ b,
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(2.8) k(y) ≤ Ck(x)
(

x

y

)λ−ε

, 0 < x ≤ y ≤ b

for every ε > 0.

Observe that condition (2.2) fits to a.i. functions, while condition
(2.6) fits to a.d. functions, which may be easily seen by power examples:
ρ(x) = xμ, μ > 0 and k(x) = x−α, α > 0. Note also that the power
kernel k(x) = 1

xα , α > 0, belongs to any Vλ with λ > α. The same is
true for power-logarithmic kernels

k(x) =

(
ln 2b

x

)θ
xα

, b < ∞

with any exponent θ. Condition (2.6) is satisfied for a wide class of a.d.
functions, see Section 9.

Remark 2.5. If a non-negative function k(x) satisfies condition
(2.6) and there exists k′(x), then

(2.9) |k′(x)| ≤ C
k(x)
x

, 0 < x ≤ b.

Lemma 2.6. The inequality

(2.10) f(x) ≤ C

b∫
x

f(t)
t

dt, 0 < x ≤ b

2

with the constant C > 0 not depending on f , holds for all non negative
functions f(x) on [0, b] such that there exists a λ ∈ R

1 such that xλf(x)
is a.i. on ([0, b]).

Proof. The proof is direct:

b∫
x

f(t)
t

dt ≥ Cxλf(x)

b∫
x

dt

t1+λ
≥ Cxλf(x)

2x∫
x

dt

t1+λ
= Cf(x).
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2.2. Zygmund-Bari-Stechkin class Φ. The class Φ defined below
was introduced in [1] and is known as Bari-Stechkin or Zygmund-Bari-
Stechkin class, see also a study of properties of functions ω ∈ Φ in [4,
13, 14].

Definition 2.7. The class Φ is defined as Φ = Φ([0, b]) := Z0 ∩Z1,
where Z0 = Z0([0, b]) is the class of functions ω ∈ W ([0, b]) satisfying
the condition

(Zβ)
∫ h

0

ω(x)
x

dx ≤ cω(h), 0 < h ≤ b

and Z1 = Z1([0, b]) is the class of functions ω ∈ W ([0, b]) satisfying the
condition

(Zγ)
∫ b

h

ω(x)
x2

dx ≤ c
ω(h)

h
, 0 < h ≤ b

where c = c(ω) > 0 does not depend on h ∈ (0, b].

It is known ([1]) that there exist exponents 0 < λ1 < λ2 < 1 and
constants c1 > 0, c2 > 0 such that

(2.11) c1x
λ2 ≤ ω(x) ≤ c2x

λ1 , 0 ≤ x ≤ b.

As shown in [13] (see also [14]), in (2.11) one may take any λ1 < mω

and any λ2 > Mω, where the numbers

mω = sup
x>1

ln
[
limh→0

ω(xh)
ω(h)

]
ln x

, Mω = inf
x>1

ln
[
limh→0

ω(xh)
ω(h)

]
ln x

mω ≤ Mω, are known as the lower and upper indices of a function
ω ∈ W . Besides this, the membership of a function ω ∈ W in the Bari-
Stechkin class Φ is characterized by the condition mω > 0, Mω < 1.

2.3. Weighted generalized Hölder spaces. Let

ω(f, h) = max
x,y∈[0,b]
|x−y|≤h

|f(x) − f(y)|
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be the continuity modulus of a function f . By Hω = Hω([0, b]) we
denote the generalized Hölder space

Hω = {f(x) : ω(f, h) ≤ cω(h), 0 < h < b} .

The function ω(h), referred to in the sequel as the characteristic
function of the space, or characteristic, will be supposed to belong
to the Zygmund-Bari-Stechkin class Φ.

We define the weighted space Hω
0 (ρ) as

(2.12) Hω
0 (ρ) =

{
f(x) : ρ(x)f(x) ∈ Hω , lim

x→0
ρ(x)f(x) = 0

}
.

When equipped with the norm

‖f‖Hω
0 (ρ) = ‖ρf‖Hω

0
= ‖ρf‖C([0,b]) + sup

h>0

ω(ρf, h)
ω(h)

,

this is a Banach space.

2.4. The operator inverse to a Sonine operator. In [16] (see also [15]
for the case b = ∞) there was constructed the operator inverse to a
Sonine operator under the following assumptions on the initial Sonine
kernel k(t) and its associate Sonine kernel �(t):

monotonicity near the origin: there exists a neighborhood 0 <
x < ε0 where

(2.13) k(x) ≥ 0, �(x) ≥ 0 and k(x) ↓ , �(x) ↓, 0 < x ≤ ε0.

absolute integrability of k′(x) and �′(x) beyond the origin: it
is assumed that derivatives exist in the generalized sense and

(2.14)
∫ b

δ

|k′(x)| dx < ∞,

∫ b

δ

|�′(x)| dx < ∞.

for any 0 < δ < b.
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The expression for the inverse operator generalizes the known Mar-
chaud form ([17], p.224) of fractional differentiation; it has the form

(2.15) K
−1f := lim

ε→0
K

−1
ε f = �(x)f(x)+ lim

ε→0

x∫
ε

�′(t)[f(x−t)−f(x)] dt.

The following results were obtained in [16].

Theorem 2.8. Let k(x) be a Sonine kernel satisfying assumptions
(2.13) and (2.14) on [0, b], 0 < b < ∞. Then for any f = Kϕ with
ϕ ∈ Lp(0, b), 1 < p < ∞ the inversion is given by ϕ(x) = K

−1f , where
the convergence of the integral in K

−1f = lim
ε→0

K
−1
ε f is treated in the

Lp-sense:

(2.16) lim
ε→0

∥∥K−1
ε f − ϕ

∥∥
Lp(0,b)

.

Theorem 2.9. Let a Sonine kernel k(x) satisfy assumptions (2.13)
and (2.14) on [0, b], 0 < b < ∞. A function f ∈ L1(0, b) belongs to the
range K(Lp), 1 < p < ∞, if and only if

(2.17) �(x)f(x) ∈ Lp(0, b)

and one of the following conditions is fulfilled:

(2.18) lim
ε→0
(Lp)

Ψεf ∈ Lp(0, b) or sup
0<ε<b

‖Ψεf‖Lp(0,b) < ∞.

where

Ψεf(x) =

x∫
ε

�′(t)[f(x − t) − f(x)] dt for x > ε

and Ψεf(x) = 0 otherwise.
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3. Formulation of the main results. The main contributions of
this paper are Theorems A-D.

Theorem A gives an estimate of Zygmund type which characterizes
the ”improvement” of the behavior of the continuity modulus of a
function f after the application of the operator K or its weighted version
ρK

1
ρ to f . Theorem B shows worsening of the continuity modulus of a

function f after the application of the inverse operator K
−1 or ρK

−1 1
ρ

to f .

These estimates allow us to obtain in Theorems C1 and C2 results on
mapping properties of the operators K and K

−1 within the frameworks
of weighted generalized Hölder spaces. The statements of Theorems C1

and C2 are exact in the sense that they allow us to obtain in Theorem D
a statement on the isomorphism between the spaces Hω

0 (ρ) and Hω1
0 (ρ)

realized by the Sonine operator K.

Remark 3.1. Zygmund type estimates (3.2, 3.3) and (3.6, 3.7) in
Theorems A and B are understood in the usual sense: they are valid
under the assumption that the right-hand-sides of the estimates exist;
in (3.6, 3.7), for instance, this implies that

(3.1)

δ∫
0

�(t)ω(f, t)
tmax(1,μ)

dt < ∞ for some δ > 0.

Theorem A. Let k(x) ∈ Vλ, 0 < λ < 1, and ϕ(x) ∈ C0([0, b]). Then

(3.2) ω (Kϕ, h) ≤ Chk(h)ω(ϕ, h) + ch

b∫
h

k(t) ω(ϕ, t)
t

dt, 0 < h ≤ b.

For the weight ρ ∈ Wμ, 0 < μ < 1 + λ, the following weighted estimate
also holds

ω

(
ρK

ϕ

ρ
, h

)
≤Chγk(h)

h∫
0

ω(ϕ, t)
tγ

dt+Ch

b∫
h

k(t) ω(ϕ, t)
t

dt,(3.3)

0 < h ≤ b

where γ = max(1, μ).
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To formulate Theorem B below, we introduce an additional assump-
tion on smoothness of the kernel �(x) beyond the singular point x = 0.
We suppose that

(3.4) �(x) ∈ C2([δ, b]) for every δ ∈ (0, b),

and there exists δ0 > 0 such that �′(x) satisfies condition of type (2.6):

(3.5)
∣∣∣∣�

′(x) − �′(t)
x − t

∣∣∣∣ ≤ c
|�′(t)|

x
, 0 < t < x ≤ δ0.

We show in Section 9 that condition (3.5) is satisfied for a large class
of kernels, in particular for those which occur in applications.

In the following theorem ε0 is a number from (2.13).

Theorem B. Let the kernel �(t) satisfy the conditions

(1) �′(x) fulfills integrability condition (2.14) on [δ, b] for every δ > 0,

(2) �(x) is positive, decreasing and satisfying the condition in (2.6)
on (0, δ0] for some δ0.

Then for any f ∈ C0([0, b]) the estimate

(3.6) ω
(
K

−1f, h
) ≤ C

h∫
0

�(t)ω(f, t)
t

dt, 0 < h ≤ ε0

is valid. If �(t) satisfies additional assumptions (3.4 - 3.5), then the
following weighted estimate holds

ω

(
ρK

−1 f

ρ
, h

)
≤ Chγ−1

h∫
0

�(t) ω(f, t)
tγ

dt(3.7)

+ ch

b∫
h

|�(t)|ω(f, t)
t2

dt, 0 < h ≤ ε0

where ρ ∈ Wμ([0, b]), 0 < μ < 2, and γ = max(1, μ).
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Theorem C1. Let k(t) ∈ Vλ and the characteristic ω(t) satisfy the
conditions

(3.8) ω(t) ∈ Z0 and ω1(t) := tk(t)ω(t) ∈ Z1.

Then the operator K is bounded from the space Hω
0 to the space

Hω1
0 . The operator K is also bounded from Hω

0 (ρ) to Hω1
0 (ρ) with

ρ ∈ Wμ, 0 < μ < 1 + λ, if in the case μ > 1 the following additional
condition is satisfied:

(3.9) t1−μω(t) ∈ Z0.

Theorem C2. Let

(1) the kernel �(x) satisfy assumptions of Theorem B;

(2) the weight function ρ(x) belong to ∈ Wμ([0, b]), 0 < μ < 2;

(3) the characteristic ω(x) meet the conditions

(3.10) x−max(0,μ−1)ω(x) ∈ Z0 and ω(x) ∈ Z1.

Then the operator K
−1 maps continuously the space Hω2

0 (ρ) with
ω2(x) = ω(x)

�(x) into Hω
0 (ρ).

Theorem D. Let k(x) and �(x) be a pair of associated Sonine kernels
and let the following conditions be satisfied

(1) k(x) ∈ Vλ, 0 < λ < 1 ;

(2) �(x) satisfies assumptions of Theorem B;

(3) ρ(x) ∈ Wμ, 0 < μ < 1 + λ;

(4) x1−γω(x) ∈ Z0, ω1(x) := xk(x)ω(x) ∈ Z1, where γ = max(1, μ).

Then the operator K maps isomorphically the space Hω
0 (ρ) onto the

space Hω1
0 (ρ). The non-weighted case is contained in the above state-

ment with ρ ≡ 1 under conditions (1), (2) and (4) with γ = 1.

Remark 3.2. Note that in all the statements on action of the inverse
operator, which ”worsens” the behavior of the continuity modulus, we
do not impose on the kernel �(t) the condition that it belongs to Vλ.
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We needed the Vλ-condition only for the kernel k(t) of the operator K

which ”improves” the behavior of continuity modulus.

Remark 3.3. Comparing characteristics ω1(x) and ω2(x) of Theorems
C1 and C2, observe that

Hω1 ⊆ Hω2 , ‖f‖Hω2 ≤ C‖f‖Hω1

because

(3.11) ω1(x) ≤ ω2(x) ⇐⇒ xk(x)�(x) ≤ 1

for small x. Inequality (3.11) holds for arbitrary associated Sonine
kernels positive and a.d. near the origin. Indeed, from Sonine condition
(1.3), we obtain:

(3.12) 1 =

x∫
0

k(t)�(x − t)dt ≥ c1k(x)

x∫
0

�(x − t)dt ≥ c1c2k(x)�(x)x.

Note that the characteristics ω1(x) and ω2(x) are even equivalent,
that is, the inequality

(3.13) xk(x)�(x) ≥ c0 > 0

also holds, if we additionally assume that k(x) ∈ Vα and �(x) ∈ Vβ for
some α, β ∈ (0, 1), which is seen from the following estimation

1 =

x∫
0

tαk(t)(x − t)β�(x − t)
dt

tα(x − t)β
(3.14)

≤ c3x
α+βk(x)�(x)

x∫
0

dt

tα(x − t)β
= c3B(1 − α, 1 − β)xk(x)�(x).

Remark 3.4. Assumptions on the almost monotonicity of the kernels
k(x), �(x) in Theorems A-D are satisfied in various applications, in
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particular, in the examples mentioned in Section 9. However we should
mention that the condition of positivity of the kernels is not always
satisfied globally on a given interval [0, b], but is always fulfilled in a
neighborhood of the origin. Therefore, in the case where the kernels
may have negative values, the statements of Theorems A- D are proved
on any interval [0, a], a < b, up to the first zero of the kernels k(t), �(t).
The estimation of the continuity moduli of convolutions with non-
positive kernels requires a more elaborate technique (in the region
where the kernel changes the sign, the ideas of almost monotonicity
are not applicable). The authors hope to develop this approach in
another paper.

4. Principal lemmas. The proof of Zygmund type estimates in
Theorems A and B will be essentially based on the crucial technical
lemmas below on estimation of the following integrals

(4.1) I(k, ϕ; x, h) = (x + h)γ−1

x+h∫
x

k(x + h − t)|ϕ(t)|
tγ

dt,

(4.2) J1(k, ϕ; x, h) = h(x + h)γ−1

x∫
0

k(x − t)|ϕ(t)|
tγ(x + h − t)

dt.

and

(4.3) J2(k, ϕ; x, h) = h(x + h)γ−1

x∫
0

k(x + h − t)|ϕ(t)|
tγ

dt,

where 1 ≤ γ < 2.

Lemma 4.1. Let ϕ(x) ∈ C0([0, b]), γ ∈ [1, 2) and k(x) be non-
negative on [0, b]. Then

(4.4) sup
x∈[0,b]

I(k, ϕ; x, h) ≤ Chγ−1

h∫
0

k(t)ω(ϕ, t)
tγ

dt, 0 < h < b
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if k(t) is a.d. and

(4.5) sup
x∈[0,b]

I(k1, ϕ; x, h) ≤ Chγ−1k(h)

h∫
0

ω(ϕ, t)
tγ

dt, 0 < h < b

if k(t) is a.i.

Proof. To prove (4.4), we observe that ϕ(0) = 0, so that

(4.6) I(k, ϕ; x, h) ≤ (x + h)γ−1

h∫
0

ω(ϕ, x + t)
(x + t)γ

k(h − t) dt

= (x + h)γ−1

h
2∫

0

ω(ϕ, x + t)
(x + t)γ

k(h − t)dt(4.7)

+ (x + h)γ−1

h
2∫

0

ω(ϕ, x + h − t)
(x + h − t)γ

k(t)dt.

Let x ≤ h first. Then (x+h)γ−1 ≤ Chγ−1. We observe that h− t > t
in the first integral in (4.7) and x + h − t > t in the second one. Since
the functions ω(ϕ,x)

xγ and k(x) are a.d., the estimates in (4.6 - 4.7) imply
(4.4).

When x ≥ h, we use
(

x+h
x+t

)γ−1

≤ 2γ−1 in (4.6) and get

(4.8) I(k, ϕ; x, h) ≤ C

h∫
0

ω(ϕ, x + t)
x + t

k(h − t)dt.

Hence estimate (4.4) follows as above from estimates (4.6 - 4.7) with
γ = 1.

The proof of (4.5) is easier. From (4.6) we have

I(k, ϕ; x, h) ≤ C(x + h)γ−1k(h)

h∫
0

ω(ϕ, x + t)
(x + t)γ

dt.
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If x ≤ h, the estimation is obvious. If x ≥ h, then x+h
x+t ≤ 2 and we

obtain

I(k, ϕ; x, h) ≤ Ck(h)

h∫
0

ω(ϕ, x + t)
x + t

dt ≤ Ck(h)

h∫
0

ω(ϕ, t)
t

dt

≤ Chγ−1k(h)

h∫
0

ω(ϕ, t)
tγ

dt.

Lemma 4.2. Let k(x) be non-negative and a.d. on [0, b] and let
1 ≤ γ < 2. Then for ϕ(t) ∈ C0([0, b]) and 0 < h < b the following
estimate is valid

(4.9) sup
x∈[0,b]

J1(k, ϕ; x, h)≤Chγ−1

h∫
0

k(t)ω(ϕ, t)
tγ

dt+Ch

b∫
h

k(t)ω(ϕ, t)
t2

dt.

If we additionally assume that xγ−1k(x) is a.d. on [0, b], then also

(4.10) sup
x∈[0,b]

J2(k, ϕ; x, h)≤Chγk(h)

h∫
0

ω(ϕ, t)
tγ

dt+Ch

b∫
h

k(t)ω(ϕ, t)
t

dt.

Proof.

(i) Proof of inequality (4.9). We consider first the case where
x ≤ 4h. Splitting the integration in J1(k, ϕ; x, h), we obtain

(4.11) J1(k, ϕ; x, h≤Chγ−1

x
2∫

0

k(t)ω(ϕ, t)
tγ

dt+Chγ

x∫
x
2

k(x − t)ω(ϕ, t)
tγ(x − t + h)

dt.

In the second term we use the fact that ω(ϕ,t)
t ≤ C ω(ϕ,x−t)

x−t and get

(4.12) J1(k, ϕ; x, h)≤Chγ−1

2h∫
0

k(t)ω(ϕ, t)
tγ

dt+Chγ−1

x
2∫

0

k(t)ω(ϕ, t)
tγ

dt
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which yields

(4.13) J1(k, ϕ; x, h) ≤ Chγ−1

h∫
0

k(t)ω(ϕ, t)
tγ

dt.

We pass to a more difficult case where x ≥ 4h. We split the integration
as follows

J1(k, ϕ; x, h) ≤ h(x + h)γ−1

h∫
0

k(x − t)ω(ϕ, t)
tγ(x + h − t)

dt

+h(x + h)γ−1

x∫
h

k(x − t)ω(ϕ, t)
tγ(x + h − t)

dt = : D1(x, h) + D2(x, h).

In the term D1(x, h) we use the fact that k(t) is a.d. and the
inequality x + h − t > x+h

2 and obtain

(4.14) D1(x, h)≤Ch(x+h)γ−2

h∫
0

k(t)ω(ϕ, t)
tγ

dt≤Chγ−1

h∫
0

k(t)ω(ϕ, t)
tγ

dt.

For the term D2(x, h) we have

D2(x, h) ≤ h(x + h)γ−1

x
2∫

h

k(x − t)ω(ϕ, t)
tγ(x + h − t)

dt

+h(x + h)γ−1

x∫
x
2

k(x − t)ω(ϕ, t)
tγ(x + h − t)

dt = : D21(x, h) + D22(x, h).

Observe that x + h − t > x+h
2 in the term D21(x, h). Consequently

D21(x, h) ≤ Ch(x + h)γ−2

x
2∫

h

|k(x − t)|ω(ϕ, t)
tγ

dt.
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It is easily seen that (x+h)γ−2

tγ ≤ 1
t2 . Taking also into account that

k(x − t) ≤ Ck(t), we get

(4.15) D21(x, h) ≤ Ch

b∫
h

k(t)ω(ϕ, t)
t2

dt.

We split the term D22(x, h) in the following way

D22(x, h) = h(x + h)γ−1

⎛
⎜⎝

x+h
2∫

x
2

+

x−h∫
x+h

2

+

x∫
x−h

⎞
⎟⎠

= : E1(x, h) + E2(x, h) + E3(x, h).

In the term E1(x, h) we make use of the fact that x + h − t > x+h
2

and obtain

E1(x, h) ≤ h(x + h)γ−2

x+h
2∫

x
2

k(x − t)ω(ϕ, t)
tγ

dt

≤ hγ−1

h
2∫

0

k(x
2 − t)ω(ϕ, t + x

2 )(
t + x

2

)γ dt.

Since the functions ω(ϕ,t)
tγ and k(t) are a.d. and t+ x

2 > t and x
2 − t > t,

we obtain

(4.16) E1(x, h) ≤ Chγ−1

h∫
0

k(t)ω(ϕ, t)
tγ

dt.

In the term E2(x, h) we observe that t > x+h
2 so that

ω(ϕ, t)
tγ

=
1

tγ−1

ω(ϕ, t)
t

≤ C

(x + h)γ−1

ω(ϕ, x − t)
x − t
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where there was taken into account that t > x − t and ω(ϕ,t)
t is a.d.

Therefore,

E2(x, h) ≤ Ch

x−h∫
x+h

2

k(x − t)ω(ϕ, x − t)
(x − t)(x + h − t)

dt = Ch

x−h
2∫

h

k(t)ω(ϕ, t)
t(t + h)

dt.

Hence

(4.17) E2(x, h) ≤ Ch

b∫
h

k(t)ω(ϕ, t)
t2

dt.

Finally, in the term E3(x, h) we use the fact that t > x − h > x+h
2

which yields 1
tγ = 1

tγ−1
1
t ≤ C

(x+h)γ−1
1
t . Then

E3(x, h) ≤ Ch

x∫
x−h

k(x − t)ω(ϕ, t)
t(x − t + h)

dt

= Ch

h∫
0

k(t)ω(ϕ, x − t)
(x − t)(t + h)

dt ≤ C

h∫
0

k(t)ω(ϕ, x − t)
x − t

dt.

Since x − t > t, hence it follows that

(4.18) E3(x, h) ≤ C

h∫
0

k(t)ω(ϕ, t)
t

dt.

It remains to gather estimates (4.13 - 4.18) to arrive at estimate (4.9).

(ii) Proof of inequality (4.10). The proof of (4.10) follows more
or less the same arguments but needs other estimations because the
kernel k1(t) = tk(t) may be non-a.d. in contrast to k(t) which is a.d.
We omit some details, but give the main lines of the proof.
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Let first x ≤ 4h. Since k(x) is a.d., we obtain

(4.19) J2(k, ϕ; x, h) ≤ Chγk(h)

h∫
0

ω(ϕ, t)
tγ

dt.

Let x ≥ 4h. We have

J2(k, ϕ; x, h) ≤ h(x + h)γ−1

⎛
⎝

h∫
0

+

x∫
h

⎞
⎠ k(x + h − t)ω(ϕ, t)

tγ
dt

= : D1(x, h) + D2(x, h).

In the term D1(x, h) we have x+h− t > x+h
2 . Therefore, k(x+h− t) ≤

Ck
(

x+h
2

)
. Then

D1(x, h) ≤ Ch(x + h)γ−1k

(
x + h

2

) h∫
0

ω(ϕ, t)
tγ

dt.

Since γ − 1 < λ, the function xγ−1k(x) is a.d. Therefore,

(4.20) D1(x, h) ≤ Chγk(h)

h∫
0

ω(ϕ, t)
tγ

dt.

For the term D2(x, h) we split the integration as follows

D2(x, h) ≤ Ch(x + h)γ−1

⎛
⎜⎝

x
2∫

h

+

x∫
x
2

⎞
⎟⎠ k(x + h − t)ω(ϕ, t)

tγ
dt

= : D21(x, h) + D22(x, h).

In the term D21(x, h) we have x + h − t > 1
2 (x + h). Consequently

D21(x, h) ≤ Ch(x + h)γ−1k

(
x + h

2

) x
2∫

h

ω(ϕ, t)
tγ

dt.
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Since the function xγ−1k(x) is a.d., and x+h
2 ≥ t, we get

(4.21) D21(x, h) ≤ Ch

b∫
h

k(t)ω(ϕ, t)
t

dt.

We split the term D22(x, h) in the following way

D22(x, h) = Ch(x + h)γ−1

⎛
⎜⎝

x+h
2∫

x
2

+

x−h∫
x+h

2

+

x∫
x−h

⎞
⎟⎠

= : E1(x, h) + E2(x, h) + E3(x, h).

In the term E1(x, h) we have

E1(x, h) = Ch(x + h)γ−1

h
2∫

0

k
(

x
2 + h − t

)
ω
(
ϕ, t + x

2

)
(
t + x

2

)γ dt.

Here the function ω(ϕ,t)
tγ is a.d., so that

(4.22) E1(x, h) ≤ Ch(x + h)γ−1

h∫
0

k
(

x
2 + h − t

)
ω(ϕ, t)

tγ
dt

≤ Ch(x + h)γ−1k

(
x + h

3

) h∫
0

ω(ϕ, t)
tγ

dt

where we have used the fact that k(t) is a.d. and x
2 + h − t > x+h

3 ,
Making use of the fact that xγ−1k(x) is a.d., we get

(4.23) E1(x, h) ≤ Chγk (h)

h∫
0

ω(ϕ, t)
tγ

dt.

For the term

E2(x, h) ≤ Ch(x + h)γ−1

x−h∫
x+h

2

k(x + h − t)ω(ϕ, t)
tγ

dt
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we observe that x + h ≤ 2t so that

(4.24) E2(x, h) ≤Ch

x−h∫
x+h

2

k(x + h − t)ω(ϕ, t)
t

dt

=Ch

x−h
2∫

h

k(t + h)ω(ϕ, x − t)
x − t

dt≤Ch

b∫
h

k(t)ω(ϕ, t)
t

dt.

Finally, in the term

E3(x, h) = Ch(x + h)γ−1

x∫
x−h

k(x + h − t)ω(ϕ, t)
tγ

dt

we use the fact that t > 2
5 (x + h) so that 1

tγ ≤ C
t(x+h)γ−1 . Then

E3(x, h) ≤ Ch

x∫
x−h

k(x + h − t)ω(ϕ, t)
t

dt

= Ch

h∫
0

k1(t)ω(ϕ, x − t)
x − t

dt ≤ Chk(h)

h∫
0

ω(ϕ, t)
t

dt.

Hence

(4.25) E3(x, h) ≤ Chγk(h)

h∫
0

ω(ϕ, t)
tγ

dt.

It remains to gather estimates (4.19 - 4.25) and we arrive at (4.10) in
the case 1 < γ < 2

5. Proof of Theorem A.

I. Non-weighted part. For the function f(x) = Kϕ(x) we represent
the difference Δhf(x) = f(x + h) − f(x) with x, x + h ∈ [0, b] as
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Δhf(x) =

0∫
−h

[ϕ(x − t) − ϕ(x)]k(t + h) dt

−
x∫

0

[ϕ(x − t) − ϕ(x)][k(t) − k(t + h)] dt

+ ϕ(x)

⎡
⎣

x∫
−h

k(t + h) dt −
x∫

0

k(t)dt

⎤
⎦ .

Hence

(5.1) |Δhf(x)| ≤
∣∣∣∣∣∣

0∫
−h

[ϕ(x − t) − ϕ(x)]k(t + h) dt

∣∣∣∣∣∣

+

∣∣∣∣∣∣
x∫

0

[ϕ(x − t) − ϕ(x)][k(t) − k(t + h)] dt

∣∣∣∣∣∣

+

∣∣∣∣∣∣ϕ(x)

x+h∫
x

k(t) dt

∣∣∣∣∣∣
=: A1(x, h) + A2(x, h) + A3(x, h).

Taking into account that ω(ϕ, t) is a.i. and making use of (2.7) we get

A1(x, h) ≤ C

h∫
0

ω(ϕ, t)k(h − t) dt ≤ Cω(ϕ, h)k(h)

h∫
0

(
h

h − t

)λ

dt,

whence

(5.2) A1(x, h) ≤ Chk(h)ω(ϕ, h).

For A2(x, h) by (2.6) we have

(5.3) A2(x.h) ≤ Ch

∫ x

0

ω(ϕ, t)k(t)
t + h

dt.
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Let first x ≤ h. By property (2.7) we obtain

A2(x, h)≤Ch1+λk(h)
∫ x

0

ω(ϕ, t) dt

tλ(t + h)
≤Ch1+λk(h)ω(ϕ, h)

∫ h

0

dt

tλ(t + h)
.

Hence

(5.4) A2(x, h) ≤ Chk(h)ω(ϕ, h), x ≤ h

In the case where x ≥ h from (5.3) we have

A2(x, h) ≤ Ch

∫ h

0

ω(ϕ, t)k(t)
t + h

dt + Ch

∫ x

h

ω(ϕ, t)k(t)
t + h

dt

where the first term is obviously estimated like in (5.4) so that

(5.5) A2(x, h) ≤ Chk(h)ω(ϕ, h) + Ch

∫ b

h

ω(ϕ, t)k(t)
t

dt, x ≥ h.

For the term A3(x, h) in the case x ≤ h we have

A3(x, h)≤Cω(ϕ, h)k(x + h)(x + h)λ

x+h∫
x

dt

tλ
≤Cω(ϕ, h)k(h)hλ

2h∫
0

dt

tλ

so that

(5.6) A3(x, h) ≤ Chk(h)ω(ϕ, h), x ≤ h.

Let us show that in the case x > h one has

(5.7) A3(x, h) ≤ Ch

b∫
h

k(t)ω(ϕ, t)
t

dt, x > h.

We have

(5.8) A3(x, h) ≤ Chω(ϕ, x)k(x)
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and then estimate (5.7) is derived from (5.8) by means of Lemma 2.6:

A3(x, h) ≤ Ch

δ0∫
x

ω(ϕ, t)k(t)
t

dt ≤ Ch

b∫
h

ω(ϕ, t) k(t)
t

dt,(5.9)

h ≤ x ≤ δ0

2
.

Collecting the estimates in (5.2) and (5.4 - 5.7), from (5.1) we obtain
(3.2).

II. Weighted part. We have

(5.10)
(

ρK
ϕ

ρ

)
(x) = Kϕ(x) + Aϕ(x)

where

Aϕ(x) =

x∫
0

ρ(x) − ρ(t)
ρ(t)

k(x − t)ϕ(t)dt =:

x∫
0

A(x, t)ϕ(t)dt

and

(5.11) A(x, t) =
ρ(x) − ρ(t)

ρ(t)
k(x − t).

The estimation of the continuity modulus of Kϕ(x) has already been
done in the part 1 of the proof. It remains to estimate ω(Aϕ, h). In
the estimation of ω(Aϕ, h) we follow some ideas of such estimations
suggested in [5] for the case k(x) = xα−1, 0 < α < 1, ρ(x) = xμ, 0 <
μ < 2 − α. We have

(5.12) ω(Aϕ, h) ≤ sup
x∈[0,b]

Ahϕ(x) + sup
x∈[0,b]

A1
hϕ(x))

where

Ahϕ(x) :=

x+h∫
x

A(x + h, t)ϕ(t)dt, A1
hϕ(x) :=

x∫
0

A1(x, h, t)ϕ(t)dt
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and
A1(x, h, t) = A(x + h, t) − A(x, t).

(i). Estimation of A(x, t). The estimate

(5.13) |A(x, t)| ≤ C
(x

t

)γ−1 (x − t)k(x − t)
t

, γ = max(1, μ).

for A(x, t) follows from inequality (2.5) of Lemma 2.3.

(ii). Estimation of Ahϕ(x). For the term Ahϕ(x) we have

(5.14) |Ahϕ(x)| ≤ Chγk(h)

h∫
0

ω(ϕ, t)
tγ

dt.

which follows from estimate (5.13) and inequality (4.5) applied to the
kernel tk(t).

(iii). Estimation of A1(x, h, t). For A1(x, h, t) the following
estimate is valid

|A1(x, h, t)| ≤ Ch

(
x + h

t

)γ−1 |k(x + h − t)|
t

.(5.15)

γ = max(1, μ).

To prove (5.15), we split A1(x, h, t) as follows:

A1(x, h, t) =
ρ(x + h) − ρ(x)

ρ(t)
k(x + h − t)

+
ρ(x) − ρ(t)

ρ(t)
[k(x + h − t) − k(x − t)]

= : A11(x, h, t) + A12(x, h, t).

For A11(x, h, t) by (2.2) and (2.3) we have

|A11(x, h, t)| ≤ Ch

(
x + h

t

)μ−1 |k(x + h − t)|
t

(5.16)

≤ Ch

(
x + h

t

)γ−1 |k(x + h − t)|
t

.
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For A12(x, h, t), by (2.5) and (2.6) we obtain

(5.17) |A12(x, h, t)| ≤ Ch
(x

t

)γ−1 (x − t)k(x − t)
t(x + h − t)

.

We use the fact that the function xk(x) is a.i., so that for 0 < x ≤ δ0
2

we have

(5.18) |A12(x, h, t)| ≤ Ch

(
x + h

t

)γ−1
k(x + h − t)

t
,

and then from (5.16) and (5.18) we obtain (5.15).

(iv). Estimation of A1
hϕ(x). By estimate (5.15) and equation

(4.10) of Lemma 4.2 we have

(5.19) |A1
hϕ(x)| ≤ Chγk(h)

h∫
0

ω(ϕ, t)
tγ

dt + Ch

b∫
h

ω(ϕ, t)|k(t)|
t

dt.

Gathering estimates (5.14) and (5.19), from (5.12) we obtain estimate
of type (3.3) for ω(Aϕ, h) and therefore (3.3) holds for ω

(
ρK

ϕ
ρ , h
)

in
view of (5.10) and already proved non-weighted estimate (3.2).

6. Proof of Theorem B.

6.1. Auxiliary lemmas.

Lemma 6.1. Let a function �(x) be bounded on [δ, b] for every δ > 0
and non-negative, almost decreasing and satisfying condition (2.6) on
(0, δ0] for some δ0 > 0. Then for any f ∈ C0([0, b]) the estimate

(6.1) ω(�f, h) ≤ C

h∫
0

�(t)ω(f, t)
t

dt, 0 < h ≤ δ0

2
.

is valid, where C > 0 does not depend on h ∈ (0, δ0
2

)
.
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Proof. We denote F (x) = �(x)f(x). Let first 0 < x ≤ δ0
2 (and then

x + h ≤ δ0). We have so that

F (x + h) − F (x) = �(x + h)[f(x + h) − f(x)] + f(x)[�(x + h) − �(x)]
=: Δ1(x) + Δ2(x).

The estimate for Δ1(x) is direct:

(6.2) |Δ1(x)| ≤ C�(x + h)ω(f, h) ≤ C�(h)ω(f, h)

where the fact that �(x) is a.d., was used. For Δ2, taking into account
(2.6) for � and the fact that |f(x)| = |f(x)− f(0)| ≤ ω(f, x), we obtain

(6.3) |Δ2(x)| ≤ Ch
�(x)ω(f, x)

x + h
.

Observe that

(6.4) �(x)ω(f, x) ≤ C

x∫
0

�(t)ω(f, t)
t

dt forall x ∈ (0, b]

(which obviously follows from the fact that �(x)ω(x)
x is a.d. ). Therefore,

in the case x ≤ h we have

(6.5) |Δ2(x)| ≤ C

h∫
0

�(t)ω(f, t)
t

dt.

In the remaining case x ≥ h, from (6.3) we obtain

|Δ2(x)| ≤ Ch
ω(f, x + h)

x + h
�(x) ≤ Cω(f, h)�(x)

≤ Cω(f, h)�(h) ≤ C

h∫
0

�(t)ω(f, t)
t

dt.

Therefore, (6.5) holds for all x ∈ (0, δ0
2 ]. To state that (6.5) and

(6.2) prove estimate (6.1), it suffices to consider the case where x ≥
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δ0
2 which is trivial. Indeed, from the above estimations of Δ1(x)
and Δ2(x)and boundedness of �(x) beyond the origin, we see that
sup
x≥δ0

|F (x + h) − F (x)| ≤ Cω(f, h) which is obviously dominated by

the right-hand side of (6.1).

Lemma 6.2. Let the kernel �(t) satisfy the assumptions of Lemma
6.1 and let there exist almost everywhere the derivative �′(x) satisfying
the condition |�′(x)| ≤ C |�(x)|

x . Let ρ ∈ Wμ, 0 < μ < 2. Then for any
f ∈ C0([0, b]) satisfying condition (3.1), the function

g(x) : =

x∫
0

ρ(x) − ρ(t)
ρ(t)

�′(x − t)f(t) dt

is bounded on [0, b] and

(6.6) lim
x→0

g(x) = 0.

Proof. The function g(x) admits the following estimate

|g(x)| ≤ Cxγ−1

x∫
0

|�(t)|ω(f, x − t)
(x − t)γ

dt(6.7)

= Cxγ−1

x∫
0

|�(x − t)|ω(f, t)
tγ

dt,

where γ = max(1, μ). Indeed, let 0 < μ ≤ 1. Then by (2.4)

|g(x)| ≤ C

x∫
0

|�(t)|ω(f, x − t)
x − t

dt

Let 1 < μ < 2. Then by (2.2) and (2.3) we get

|g(x)| ≤ Cxμ−1

x∫
0

|�(t)|ω(f, x − t)
(x − t)μ

dt

which proves (6.7).
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From (6.7) and boundedness of �(t) on [δ0, b], it is easily obtained
that g(x) is bounded on [δ0, b]. So we consider only 0 < x ≤ δ0 below.
From (6.7) we have

|g(x)| ≤ Cxγ−1

x
2∫

0

|�(t)|ω(f, x − t)
(x − t)γ

dt(6.8)

+ Cxγ−1

x∫
x
2

|�(t)|ω(f, x − t)
(x − t)γ

dt = : I1 + I2.

Since x − t > t in the term I1 and ω(f,x)
xγ is a.d., we obtain I1 ≤

Cxγ−1
x∫
0

|�(t)|ω(f,t)
tγ dt. Similarly, since t > x− t in I2 and �(t) is a.d. for

small t, we have I2 ≤ Cxγ−1

x
2∫
0

|�(s)| ω(f,s)
sγ ds. Therefore,

(6.9) |g(x)| ≤ Cxγ−1

x∫
0

|�(t)| ω(f, t)
tγ

dt.

By assumption (3.1), from (6.9) the statements of the lemma follow.

6.2. Complete Proof of Theorem B.

I. Non-weighted part. The estimation of the continuity modulus of
the first term �(x)f(x) in (2.15) was already given in Lemma 6.1.

For the second term

Ψ(x) : =

x∫
0

�′(t)[f(x − t) − f(x)] dt

in (2.15) we have
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(6.10) Ψ(x+h)−Ψ(x) =

x∫
0

�′(t)[f(x+h−t)−f(x+h)+f(x)−f(x−t)]dt

+

x+h∫
x

�′(t)[f(x+h−t)−f(x+h)]dt=: B1+B2.

(a) Estimation of B1.

In the case x ≤ h we immediately get

|B1| ≤ 2

h∫
0

|�′(t)|ω(f, t) dt

and then by Remark 2.5

(6.11) |B1| ≤ C

h∫
0

�(t)ω(f, t)
t

dt.

Let x ≥ h. We decompose the integral
x∫
0

=
h∫
0

+
x∫
h

and use the estimate

(6.11) in the first term:

(6.12) |B1| ≤ C

h∫
0

�(t)
t

ω(f, t) dt + 2ω(f, h)Ih(x),

where Ih(x) =
x∫
h

|�′(t)|dt.

To estimate Ih(x) we observe that |�′(t)| = −�′(t) for small t ∈ (0, ε0)
according to (2.13). Therefore, for h ≤ t ≤ x ≤ ε0 we have

Ih(x) = −
x∫

h

�′(t) dt = �(h) − �(x) ≤ �(h).
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When h ≥ ε0, we obviously have

Ih(x) ≤
b∫

ε0

|�′(t)|dt = C < ∞

according to (2.14). When h ≤ ε0 ≤ x, we have

Ih(x) ≤
ε0∫

h

|�′(t)|dt +

b∫
ε0

|�′(t)|dt = �(h) − �(ε0) + C ≤ C�(h)

for small h. So Ih(x) ≤ C�(h) in all the cases and from (6.12) we arrive
at the same estimate (6.11) in the case x ≥ h as well.

(b) Estimation of B2. We have

|B2(x)| ≤
x+h∫
x

|�′(t)|ω(f, t)dt ≤ C

h∫
0

�(x + t)
ω(f, x + t)

x + t
dt.

Since both the functions �(x) and ω(f,x)
x are a.d., we get

(6.13) |B2(x)| ≤ C

h∫
0

�(t)ω(f, t)
t

dt.

Gathering estimates (6.1), (6.4), (6.11) and (6.13), we get at (3.6).

II. Weighted part. We have

(6.14)
(

ρK
−1 f

ρ

)
(x) =�(x)f(x)+

x∫
0

[
ρ(x)

ρ(x−t)
f(x−t)−f(x)

]
�′(t)dt

= K
−1f(x) + Bf(x)
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where

Bf(x) =

x∫
0

ρ(x) − ρ(x − t)
ρ(x − t)

�′(t)f(x − t)dt =:

x∫
0

B(x, t)f(t)dt

and

(6.15) B(x, t) =
ρ(x) − ρ(t)

ρ(t)
�′(x − t).

Estimate (3.6) for the continuity modulus of K
−1f(x) was already

obtained in the first part of the theorem. It remains to estimate
ω(Bf, h). It suffices to consider small values of h : 0 < h ≤ δ

2 , where
δ is from assumptions (3.4 - 3.5). In the case h ≥ δ

2 the estimation
of ω(Bf, h) is trivial, since the function Bf(x) is bounded as proved in
Lemma 6.2. Therefore, we assume that h < δ

2 in the sequel.

We denote
B1(x, h, t) = B(x + h, t) − B(x, t)

and have

(6.16) Bf(x+h)−Bf(x) =

x+h∫
x

B(x+h, t)f(t)dt+

x∫
0

B1(x, h, t)f(t)dt

= : Bhf(x) + B1
hf(x).

(i). Estimation of B(x, t). The following estimate is valid

(6.17) |B(x, t)| ≤ C
(x

t

)γ−1 �(x − t)
t

, γ = max(1, μ).

Indeed, when 0 < μ ≤ 1, by property (2.6) for �(x) we obtain

|B(x, t)| ≤ C
(x − t)|�′(x − t)|

t
≤ C

�(x − t)
t

, t < x.

When 1 < μ < 2, we use properties (2.2) and (2.3) and get (6.17) with
γ = μ − 1.
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(ii). Estimation of Bhf(x). For the term Bhf(x) the estimate is
valid

(6.18) |Bhf(x)| ≤ Chγ−1

h∫
0

ω(f, t)
tγ

�(t)dt.

which follows from (6.17) and inequality (4.4) of Lemma 4.1.

(iii). Estimation of B1(x, h, t). For B1(x, h, t) the following
estimate is valid

(6.19) |B1(x, h, t)| ≤ Ch
�(x − t)

t(x + h − t)

(
x + h

t

)γ−1

, γ = max(1, μ).

To prove (6.19), we split B1(x, h, t) as follows:

B1(x, h, t) =
ρ(x + h) − ρ(x)

ρ(t)
�′(x + h − t)

+
ρ(x) − ρ(t)

ρ(t)
[�′(x + h − t) − �′(x − t)] = : B11 + B12.

Making use also of properties (2.2 - 2.3), which yield

(6.20)
ρ(x + h) − ρ(x)

ρ(t)
≤ C

h(x + h)μ−1

tμ
,

and taking into account that |�′(x + h − t)| ≤ C �(x+h−t)
x+h−t , we obtain

(6.21) |B11| ≤ C
h(x + h)μ−1

tμ
�(x + h − t)
x + h − t

.

To estimate B12, we use (3.4 - 3.5). If x < δ
2 , then x− t+h < δ since

h < δ
2 . So we may make use of (3.5) and get

|�′(x + h − t) − �′(x − t)| ≤ C
h�′(x − t)
x + h − t

≤ C
h�(x − t)

(x − t)(x + h − t)
.
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This inequality and estimate (2.5) yield

(6.22) |B12| ≤ Ch
(x

t

)γ �(x − t)
t(x + h − t)

.

In the remaining case x ≥ δ
2 in the estimation of B12, the arguments

are similar if we consider separately the cases 0 < t < x − δ
2 and

x − δ
2 < t < x. In the former case we use exactly the same arguments

as above within the frameworks of assumptions (3.4 - 3.5), while in the
latter case we may use the fact that �(x) ∈ C2

([
δ
2 , b
])

and arrive at
the same estimate (6.22).

Gathering estimates (6.21) and (6.22), we obtain (6.19).

(iv). Estimation of B1
hf(x). The estimate

(6.23) |B1
hf(x| ≤ Chγ−1

h∫
0

�(t)ω(f, t)
tγ

+ Ch

b∫
h

�(t)ω(f, t)
t2

dt

immediately follows from (6.19) and inequality (4.9) of Lemma 4.2.

It remains to collect estimates (6.18) and (6.23) in order to obtain
the final estimate (3.7) from relations (6.14, 6.16).

7. Proof of Theorems C1 and C2.

Proof of Theorem C1: boundedness of the operator K. We treat
simultaneously the weighted and non-weighted (ρ ≡ 1) cases. By
Zygmund type estimates (3.2), (3.3) we have

(7.1) ω (ρKϕ, h) ≤ C‖ρϕ‖Hω
0

⎡
⎣hγ

h∫
0

k(t)ω(t)
tγ

dt + Ch

b∫
h

ω(t)k(t)
t

dt

⎤
⎦

whence

(7.2) ω (ρKϕ, h) ≤ Chk(h)ω(h)‖ρϕ‖Hω
0

by conditions (3.8) and (3.9).



472 R. CARDOSO AND S. SAMKO

It remains to check that ρϕ|x=0 = 0 for all ϕ ∈ Hω
0 (ρ). For

ϕ(x) = ϕ0(x)
ρ(x) with ϕ0(x) ∈ C0([0, b]) we have

|ρ(x)(Kϕ)(x)| ≤ ρ(x)

x∫
0

k(x − t)|ϕ0(t)|
ρ(t)

dt.

By properties (2.3) and (2.7) we obtain

|ρ(x)(Kϕ)(x)| ≤ Ck(x)

x∫
0

(x

t

)μ
(

x

x − t

)λ

ω(ϕ0, t) dt

= Cxk(x)

1∫
0

ω(ϕ0, xt) dt

tμ(1 − t)λ
.

Hence

|ρ(x)(Kϕ)(x)| ≤ Cxk(x) with C =

1∫
0

ω(ϕ0, bt) dt

tμ(1 − t)λ
< ∞.

Therefore, lim
x→0

ρ(x)(Kϕ)(x) = 0 since xk(x) ≤ Cx1−λ.

Proof of Theorem C2: boundedness of the operator K
−1. We have to

prove that

(7.3) sup
h>0

ω
(
ρK

−1 f
ρ , h
)

ω(h)
≤ C‖f‖H

ω2
0

, f ∈ Hω2
0 .

Making use of estimates (3.6), (3.7) of Theorem B, we obtain

ω

(
ρK

−1 f

ρ
, h

)
≤ C

⎡
⎣hγ−1

h∫
0

�(t)ω2(t)
tγ

dt + h

b∫
h

�(t)ω2(t)
t2

dt

⎤
⎦ ‖f‖H

ω2
0

= C

⎡
⎣hγ−1

h∫
0

ω(t)
tγ

dt + h

b∫
h

ω(t)
t2

dt

⎤
⎦ ‖f‖H

ω2
0
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By conditions (3.10) of the theorem, we get

ω

(
ρK

−1 f

ρ
, h

)
≤ Cω(h)‖f‖H

ω2
0

which proves (7.3).

It remains to prove that ρK
−1 f

ρ

∣∣∣
x=0

= 0 for f ∈ Hω2
0 . Making use

of relation (6.14) and the expression for the inverse operator K
−1, we

have

∣∣∣∣
(

ρK
−1 f

ρ

)
(x)
∣∣∣∣ ≤ |�(x)f(x)| +

∣∣∣∣∣∣
x∫

0

[f(x − t) − f(x)]�′(t)dt

∣∣∣∣∣∣

+

∣∣∣∣∣∣
x∫

0

ρ(x)−ρ(x−t)
ρ(x−t)

f(x−t)�′(t)dt

∣∣∣∣∣∣ = D1 + D2 + D3.

Since |�(x)f(x)| ≤ |�(x)ω(f, x)| ≤ C|�(x)ω1(x)| = C|ω(x)| and ω(x) ∈
Z0, it follows that D1 → 0 as x → 0. Also,

D2 ≤ C

x∫
0

ω(f, t)|�′(t)|dt ≤ C

x∫
0

�(t)ω2(t)
t

dt = C

x∫
0

ω(t)
t

dt → 0

as x → 0. As regards the term D3, it was estimated in Lemma 6.2, so
it also tends to zero as x → 0.

8. Proof of Theorem D.

8.1. Auxiliary lemma.

Lemma 8.1. Let 0 < μ < 2. If x1−γω(x) ∈ Z0, where
γ = max(1, μ), then there exists a p0 > 1 such that

ω(t)
xμ

∈ Lp(0, b) forall p ∈ [1, p0).
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Proof. In the case μ ≤ 1 we use the fact that ω(x) ∈ Z0 from which
it follows that there exists a δ1 ∈ (0, 1) such that ω(x) ≤ Cxδ1 . Then
ω(x)
xμ ≤ C

xμ−δ1 ∈ Lp(0, b), where 1 ≤ p < 1
μ−δ1

if δ1 < μ and 1 ≤ p < ∞
if δ1 ≥ μ.

In the case μ > 1 we use the fact that ω(x)
xμ−1 ∈ Z0 so that ω(x) ≤

xμ−1+δ2 with 0 < δ2 < 1. Then ω(x)
xμ ≤ C

x1−δ2 ∈ Lp(0, b) with
1 ≤ p < 1

1−δ2
.

It remains to note that in the case 0 < μ < 1 we have p0 = 1
μ−δ1

if
δ1 < μ and p0 = ∞ if δ1 ≥ μ, while in the case 1 < μ < 2 we have
p0 = 1

1−δ2
.

8.2. Complete Proof of Theorem D. By Theorems C1 and C2,
we have

(8.1) K : Hω
0 (ρ) → Hω1

0 (ρ), ω1(x) = xk(x)ω(x)

and

(8.2) K
−1 : Hω2

0 (ρ) → Hω
0 (ρ), ω2(x) =

ω(x)
�(x)

.

Then by Remark 3.3, from (8.2) we also have

(8.3) K
−1 : Hω1

0 (ρ) → Hω
0 (ρ), ω1(x) = xk(x)ω(x).

To state that the results in (8.1) and (8.3) already guarantee the
existence of an isomorphism between the spaces Hω

0 (ρ) and Hω1
0 (ρ), it

remains to prove that the range of the operator K coincides with the
space Hω1

0 (ρ):

(8.4) K(Hω
0 (ρ)) = Hω1

0 (ρ).

We do not have an independent characterization of the range K(Hω
0 (ρ)),

but in the case of the Lebesgue spaces Lp, a characterization of the
range K(Lp) is provided by Theorem 2.9. Therefore, to state that
a function f ∈ Hω1

0 (ρ) belongs to the range K(Hω
0 (ρ)), it suffices to
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prove that there exists p > 1 such that conditions (2.17) and (2.18) of
Theorem 2.9 are satisfied for f ∈ Hω1

0 (ρ). This will yield

Hω1
0 (ρ) ⊂ K(Lp)

and then Theorem 2.9 and mapping (8.3) will guarantee that coinci-
dence (8.4) holds.

Verification of condition (2.17). For f ∈ Hω1
0 (ρ) we have f = g

ρ

with g ∈ Hω1
0 . Therefore,

|�(x)f(x)| ≤ C
�(x)ω1(x)

ρ(x)
≤ C

ω(x)
ρ(x)

by (3.11). Since ρ(x)
xμ is a.d., we have

(8.5)
1

ρ(x)
≤ C

xμ
.

Then

|�(x)f(x)| ≤ C
ω(x)
xμ

∈ Lp

for any p ∈ [1, p0) by Lemma 8.1.

Verification of condition (2.18). For

Ψεf(x) =

x−ε∫
0

�′(x − t)
[
g(t)
ρ(t)

− g(x)
ρ(x)

]
dt, x > ε

we have

|Ψεf(x)| ≤ 1
ρ(x)

x∫
0

|�′(x − t)| |g(x) − g(t)|dt

+

x∫
0

|�′(x − t)||g(t)|
∣∣∣∣ 1
ρ(t)

− 1
ρ(x)

∣∣∣∣ dt = : F1(x) + F2(x).
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By (8.5)

F1(x) ≤ C

xμ

x∫
0

|�′(x − t)| ω(g, x − t)dt ≤ C

xμ

x∫
0

�(t)ω(g, t)
t

dt.

We take into account that ω(g, t) ≤ Ctk(t)ω(t) and by (3.11) we have
tk(t)�(t) ≤ 1 for small t and consequently we arrive at

F1(x) ≤ C

xμ

x∫
0

ω(t)
t

dt ≤ C
ω(x)
xμ

∈ Lp

by Lemma 8.1.

It remains to estimate the term F2(x). By (2.2 - 2.4) and (8.5) we
have ∣∣∣∣ 1

ρ(t)
− 1

ρ(x)

∣∣∣∣ ≤ C
x − t

xtμ

which yields

F2(x) ≤ C

x

x∫
0

�(x − t)ω(g, t)
tμ

dt ≤ C

x

x
2∫

0

�(x − t)ω1(t)
tμ

dt

+
C

x

x∫
x
2

�(x − t)ω1(t)
tμ

dt = : F21(x) + F22(x).

For the term F21(x) we observe that

F21(x) ≤ C

x

x
2∫

0

�(t)ω1(t)
tμ

dt ≤ C

x

x
2∫

0

ω(t)
tμ

dt

and then from the condition t1−μω(t) ∈ Z0 it follows that

F21(x) ≤ C
ω(x)
xμ

∈ Lp

by Lemma 8.1.
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For the term

F22(x) =
C

x

x
2∫

0

�(t)ω1(x − t)
(x − t)μ

dt

we distinguish the cases 0 < μ ≤ 1 and 1 < μ ≤ 2. In the case 0 < μ ≤ 1
we write

F22(x) ≤ C

x

x
2∫

0

�(t)k(x − t)(x − t)1−μω(x − t) dt.

Since the function x1−μω(x) is increasing in the case 0 < μ ≤ 1, we
obtain

F22(x) ≤ C
ω(x)
xμ

x
2∫

0

�(t)k(x − t) dt ≤ C
ω(x)
xμ

.

In the case 1 < μ < 2, we observe that the function ω1(x)
xμ is a.d. and

x − t > t so that

F22(x) ≤ C

x

x
2∫

0

�(t)
ω1(t)
tμ

dt =
C

x

x
2∫

0

tk(t)�(t)ω(t)
tμ

dt ≤ C

x

x
2∫

0

ω(t)
tμ

dt.

Therefore, in all the cases

F2(x) ≤ F21(x) + F22(x) ≤ C
ω(x)
xμ

and then

|Ψεf(x)| ≤ F1(x) + F2(x) ≤ C
ω(x)
xμ

,

where C > 0 does not depend on ε. Hence we conclude that sup
ε>0

‖Ψε‖Lp <

∞ for 1 < p < p0, where p0 is from Lemma 8.1.

The conditions of Theorem 2.9 having been verified, Theorem D is
proved.



478 R. CARDOSO AND S. SAMKO

9. Appendix: Concerning condition (3.5) First we observe
that condition (3.5) holds for instance, for functions

�(x) = x−α

(
ln

A

x

)p

,

on [0, b], b < ∞, where α ∈ (0, 1), p ∈ R
1, A > b, which may be

verified by direct differentiation of this function and checking condition
(3.5). Note that in the case p = 1 the associated Sonine kernel k(x)
is the special Volterra function studied in [22, 23] in connection with
the solution of the integral equation of the first kind with a power-
logarithmic kernel.

The same is also valid for similar functions which are obtained after a
finite number of operations of addition, multiplication and substitution
of the power function and the logarithmic function. In the following
lemma we give a simple general condition sufficient for a function �(t)
to satisfy condition (3.5). This lemma covers many examples known as
Sonine kernels, in particular the kernel

�(x) =
Iα(

√
x)

xα/2

which occurs in applications, Iα(x) =
∞∑

k=0

( x
2 )2k+α

k!Γ(k+α+1) is the Bessel

function of the second kind, as well as many others.

Lemma 9.1. Let �(x) = a(x)
xα where α > 0 and a(x) ∈ C2([0, b]), 0 <

b < ∞, and a(0) �= 0. Then condition (3.5) is satisfied for some δ0 > 0.

Proof. Rewrite condition (3.5) in the form

|�′(x) − �′(λx)| ≤ C(1 − λ)|�′(λx)|,
0 < λ < 1, 0 < x ≤ δ.

For the function �(x) = x−αa(x) this condition after some calculation
takes the form

|αa(λx)−αλ1+αa(x)+xλα+1a′(x)−λxa′(λx)|≤c(1−λ)|αa(xλx)−λxa′(λx)|.
Under the notation g(x) = αa(x) − xa′(λx), the last inequality turns
into
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|g(λx) − λ1+αg(x)| ≤ C(1 − λ)|g(λx)| or(9.1) ∣∣∣∣λ1+α g(x)
g(λx)

− 1
∣∣∣∣ ≤ C(1 − λ).

Obviously
∣∣∣∣λ1+α g(x)

g(λx)
− 1
∣∣∣∣ ≤ |1 − λ1+α| + λ1+α

∣∣∣∣g(x) − g(λx)
g(λx)

∣∣∣∣ .

Therefore, to obtain (9.1), it suffices to show that

|g(x) − g(λx)| ≤ C(1 − λ)|g(λx)|

which is valid for small x ∈ [0, δ0]) with some δ0 > 0, because
g(x) ∈ C1([0, b]) and g(0) = αa(0) �= 0.
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