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ABSTRACT. This paper is devoted to the numerical solu-
tion of the axially symmetric linear sloshing problem. A math-
ematical model of linear sloshing in a tank filled by an inviscid
incompressible liquid is considered. The problem is rewritten
as a linear evolution problem on a free surface with an opera-
tor coefficient. First, by Laguerre transformation with respect
to time, we reduce the non-stationary problem to a sequence
of operator equations. Then, using potential theory for the
Laplace equation in a bounded domain with corners, a system
of boundary integral equations of the second kind is obtained.
Taking into account the axial symmetry, we obtain a system
of one-dimensional integral equations of the second kind, the
kernels of which are represented through the use of complete
elliptic integrals of the first and second kinds. A non-linear
mesh grading transformation is used to weaken the density
singularities. The logarithmic singularity is avoided as well.
The full discretization is realized by a Nyström method and
results of numerical experiments are presented.

1. Introduction and Problem Statement. Sloshing is a free sur-
face flow problem in a tank, which is subjected to forced oscillations.
In this paper we deal with an unsteady potential flow of an inviscid
incompressible liquid having a free surface, in a uniform gravitational
field. This problem is rewritten and considered by us as an evolu-
tion problem. The additional complexity of the problem is the time
dependence of the process. For the temporal discretization we use the
Laguerre transformation [1, 2]. The obvious advantage of the Laguerre
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transformation is the explicit representation of the solution, with the
aid of which we can determine the main characteristics of the motion
– velocity, pressure and free boundary.

For the solution of this problem we propose to use the boundary inte-
gral equation method, which for most cases consists in the reduction of
a boundary value problem in some domain to the corresponding integral
equation on the boundary of this domain. The main importance of the
boundary integral equation method lies in the reduction of the dimen-
sionality of the problem. Note that in our case we already have some
differential-operator equation on the boundary and the above method is
used only for the explicit representation of the given operator equation.

The linear sloshing problem in an infinite chute with a rib is con-
sidered in [3]. The problem was reduced to an abstract second order
differential equation in time with an operator coefficient on a free sur-
face. For the discretization a collocation quadrature method and Cay-
ley transform method are used. The same methods are considered in [4]
for the numerical solution of the evolution problem on the boundary. In
[5] the combination of Laguerre transformation and the integral equa-
tion method is used for the abstract evolution problem of second order
in time on the smooth closed curve. Some results of the numerical anal-
ysis of gravity waves in a channel with a free boundary are presented
in [1]. In [6] the authors announce a modified Nyström-Kress bound-
ary element scheme which has some advantages in capturing the local
singularities for admissible domains associated with two-dimensional
sloshing in a rectangular tank. In particular, they consider solving the
mixed Dirichlet-Neumann problem arising in sloshing simulations for
two-dimensional sloshing in a rectangular rigid tank for the case of
inviscid irrotational flows. By use of potential theory the problem is
reduced to an equation on the boundary. Then after employing a spe-
cial substitution the appropriate quadrature rules are used to obtain a
linear algebraic system.

The surveys by Moiseev&Rumyantsev [7], Lukovsky [8], Morand&
Ohayon [9], Ibrahim [10], Gavrilyuk&Timokha [11] describe the major
of theoretical and experimental results for the nonlinear fluid sloshing
problems.

The paper is organized in the following way. In Section 2 we apply
the Laguerre transformation in time for the semi-discretization of non-
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stationary problem. As a result the infinite sequence of operator
equations on the free boundary is obtained. Then by use of the
potential theory the system of boundary integral equations of the
second kind is derived. Taking into account the axial symmetry, we
obtain the system of one-dimensional integral equations of the second
kind. Section 3 is devoted to finding representations of the fundamental
solution and its normal derivative in the axially symmetric case. Note
that, in general, the integral equations have singularities in the densities
at corners of the domain and logarithmic singularities in the kernels.
In Section 4 we perform the non-linear mesh grading transformation to
weaken the singularities in the densities. The logarithmic singularity
is avoided by use of the special trigonometrical quadratures, which are
described in Section 5. The full discretization is realized by a Nyström
method. The results of numerical experiments are presented in Section
6.

Now we describe briefly the mathematical model for gravity waves
in a tank (for details we refer to [12, 13]). Let D be a bounded
domain in R

2. We consider the motion of water, supposed here to
be a perfect, incompressible and homogeneous fluid, in a tank with a
fixed boundary S ∪ S̃, where S is the wetted part of the tank surface
and S̃ is the dry part, and a free boundary St (see Fig. 1). Here
St := {(x1, x2, η(x1, x2, t)) ∈ R

3 : (x1, x2) ∈ D, t > 0}, where
η : D × [0,∞) → R. Note that surface S is located underneath St

and condition ∂S = ∂St holds on the plane x3 = 0, where ∂S and ∂St

denote boundaries of S and St, respectively. Thus, Ωt with ∂Ωt = S∪St

is the domain occupied by the liquid.

S

S

t

S
~

t

FIGURE 1. View of the domain Ωt occupied by the liquid.
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By scaling of equations we can replace the acceleration of gravity by
1 and assuming that the motion is irrotational we obtain the following
equations for the potential function ϕ and the pressure p in Ωt:

υ = grad ϕ,(1.1)
�ϕ = 0,(1.2)

∂ϕ

∂t
+

1
2
(grad ϕ)2 = −x3 − p− p0

ρ0
.(1.3)

Here υ is the velocity vector, the constant ρ0 is the density of the
fluid, and p0 is the constant value of the pressure in the air. The
potential function ϕ satisfies the following boundary conditions. On
the free surface St the conditions of kinematic and dynamic type must
be satisfied.

• Kinematic boundary condition. The fluid does not cross the free
boundary, therefore the normal component of the velocity division
coincides with the normal component of the surface division, from
which we deduce

(1.4)
∂η

∂t
+
∂ϕ

∂x1

∂η

∂x1
+
∂ϕ

∂x2

∂η

∂x2
=

∂ϕ

∂x3
on St.

• Dynamic boundary condition. Since the forces applied to both sides of
the free surface are equal the pressure in the fluid and in the atmosphere
must be equal, which leads to

(1.5)
∂ϕ

∂t
+

1
2
(gradϕ)2 + η = 0 on St.

On the base of the tank S we have only that the velocity of the fluid is
tangential to the base, that is,

(1.6)
∂ϕ

∂ν
= 0,

where ν denotes the outward unit normal vector on S.

For the complete formulation of the problem we also need initial
conditions. It should be noted here that the mathematical validation
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of the initial value problem is still an open question (even in the two-
dimensional formulation) [14]. There is only a limited set of mathemat-
ical papers that report local existence theorems for the initial-boundary
value problems. Almost all of these results are documented by Shinbrot
[15], Ovsyannikov [16], Pawell&Günther [17] and Lukovsky&Timokha
[18].

Since there is not a proven theory on how to formulate initial condi-
tions for the free boundary value problem (1.1 - 1.6), we assume that
ϕ and ∂ϕ

∂t are known at the initial time, that is,

(1.7) ϕ|t=0 = ω0,
∂ϕ

∂t
|t=0 = ω1 on St.

Summarizing, we have to determine a function ϕ, which is harmonic
with respect to the space variables and fulfills boundary conditions (1.4
- 1.6) and the initial conditions (1.7). Then the velocity, the pressure
and the free surface can be obtained from (1.1), (1.3) and (1.5).

The problem described above is non-linear, but the hypothesis of
small perturbations will allow us to linearize it. We assume that for
small perturbations of the fluid, η and ϕ derivatives are small as well
and that the free surface occupies the ”equilibrium” position x3 = 0.
Thus the products of η and ϕ derivatives may be neglected, which leads
to the linear problem for the velocity potential ϕ:

Δϕ = 0 in Ω × (0,∞),(1.8)
∂2ϕ

∂t2
+
∂ϕ

∂x3
= f on Γ1 × (0,∞),(1.9)

∂ϕ

∂ν
= 0 on Γ2 × (0,∞),(1.10)

ϕ|t=0 = ω0,
∂ϕ

∂t
|t=0 = ω1 on Γ1.(1.11)

Here f is a function that describes the force field which acts on the
moving fluid, Γ1 = {(x1, x2, 0) ∈ R

3 : (x1, x2) ∈ D}, Γ2 = S and Ω is
the domain with boundary ∂Ω = Γ1

⋃
Γ2. Note that the domain Ω has

a rib Γ = Γ1

⋂
Γ2.

After the velocity potential is found, the free boundary can be
calculated by the formula

(1.12) x3 = η(x1, x2, t) = −∂ϕ
∂t

(x1, x2, 0, t).
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Now we rewrite the problem (1.8 - 1.11) as the linear evolution
problem on the boundary Γ1 with operator coefficient. We seek the
function u : Γ1 × [0,∞) → R, which satisfies the evolution equation of
second order

(1.13)
∂2u

∂t2
+Au = f in Γ1 × [0,∞)

and the initial conditions

(1.14) u|t=0 = ω0,
∂u

∂t
|t=0 = ω1 on Γ1.

Here ω0, ω1 and f are given functions on Γ1. The operator A is defined
as

(1.15) Au =
∂Ψ
∂ν

on Γ1,

where Ψ is the solution of interior mixed Dirichlet-Neumann boundary
value problem

ΔΨ = 0 in Ω,(1.16)

Ψ = u on Γ1,
∂Ψ
∂ν

= 0 on Γ2.(1.17)

The operator A is called Dirichlet-to-Neumann map or Poincaré-
Steklov operator and is a pseudo-differential operator. The existence
and uniqueness questions for the solutions of the evolution problem
(1.13) and (1.14) are discussed in [19, 20]. The authors show that for
enough smoothness of input data this initial value problem has a unique
solution in the corresponding space.

2. Semi-discretization in time and boundary integral equa-
tion method. It is known [21] that every bounded absolutely continu-
ous function g : (0,∞) → R can be expanded in a uniformly convergent
Fourier-Laguerre series

(2.1) g(t) = κ
∞∑

n=0

gnLn(κt),
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where Ln are the Laguerre polynomials, κ > 0 is some fixed parameter
and gn are the Fourier-Laguerre coefficients

(2.2) gn =

∞∫
0

g(t)e−κtLn(κt)dt, n = 0, 1, . . .

We interpret the formula (2.2) as the direct Laguerre transformation
for a given original function g and the formula (2.1) as the inverse
transformation for given images gn, n = 0, 1, . . . Note that the La-
guerre polynomials form a complete orthogonal system with respect to
the corresponding scalar product and the expansion (2.1) converges in
the weighted L2 norm [21].

The relation

L′′
n =

n−2∑
m=0

(n−m)Lm, n = 2, 3, . . .

follows from the classic properties of the Laguerre polynomials [23].
Then by the definition of the Fourier-Laguerre coefficients (2.2) and by
partial integration we find the representation

(2.3) g̃n = −g′(0) − κ(n+ 1)g(0) +
n∑

m=0

(n−m+ 1)gm, n = 0, 1, . . .

for the Fourier-Laguerre coefficients g̃n of the derivative g′′. Now we
use the Laguerre transformation with respect to the time variable for
the problem (1.13) and (1.14), in other words, we seek the solution in
the form

(2.4) u(x, t) = κ

∞∑
n=0

un(x)Ln(κt).

Then, according to (2.3), the coefficients un must satisfy the sequence
of operator equations

(2.5) (κ2I +A)un = Fn −
n−1∑
m=0

βn−mum on Γ1
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for n = 0, 1, . . . with Fn = fn + ω1 + κ(n + 1)ω0 and βn = κ2(n + 1).
Here fn are the Fourier-Laguerre coefficients for the function f .

Taking into account that the domain Ω is bounded, the solution of
the boundary value problem (1.16) and (1.17) can be represented in
the form of a single-layer potential

(2.6) Ψ(x) =
∫

∂Ω

μ(y)Φ(x, y)ds(y), x ∈ Ω,

where Φ(x, y) = (4π)−1|x− y|−1 is the fundamental solution of (1.16)
and μ is an unknown density. Then from properties of this potential
[30] we have the following integral representation for the operator A:

(2.7) (Aυ)(x) =
1
2
μ(x) +

∫
∂Ω

μ(y)
∂

∂ν(x)
Φ(x, y)ds(y), x ∈ ∂Γ1\Γ.

Thus the operator equations (2.5) can be reduced to the sequence of
systems of integral equations of the second kind

(2.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2
μn(x) +

∫
∂Ω

μn(y)
[
κ2Φ(x, y) +

∂

∂ν(x)
Φ(x, y)

]
ds(y)

= Fn(x) −
n−1∑
m=0

βn−m

∫
∂Ω μm(y)Φ(x, y)ds(y), x ∈ Γ1\Γ,

1
2
μn(x) +

∫
∂Ω

μn(y)
∂

∂ν(x)
Φ(x, y)ds(y) = 0, x ∈ Γ2\Γ,

where n = 0, 1, . . .

In the next step we assume that the surface ∂Ω is created by the
rotation of some curve L := L1

⋃
L2 about the 0x3 axis, where L is

given through a parametric representation (see Fig. 2).

In this case it is convenient to introduce the cylindrical coordinate
system (r, z, ϕ).

Let Li := {xi(ξ) = (ri(ξ), zi(ξ)), (i − 1)π ≤ ξ ≤ iπ} with ri ≥ 0 and
|x′i(ξ)| > 0 for all ξ ∈ [(i− 1)π, iπ] , i = 1, 2. Then the boundary ∂Ω
can be represented in the form

(2.9) ∂Ω := {x(ξ, ϕ) = (r(ξ) cos(ϕ), r(ξ) sin(ϕ), z(ξ)), 0 ≤ ξ, ϕ ≤ 2π},
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FIGURE 2. View of the domain Ω.

where r(ξ) = ri(ξ), z(ξ) = zi(ξ) for ξ ∈ [(i− 1)π, iπ] , i = 1, 2.

We also assume that the functions Fn do not depend on ϕ. Then,
due to above assumptions, we can write the integral equations (2.8) in
the parametric form

(2.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
μ̄n(ξ) +

1
4π

2π∫
0

μ̄n(τ)Q(τ)[κ2Φ̂(ξ, τ) + Φ̂1(ξ, τ)]dτ

= F̄n(ξ) − 1
4π

n−1∑
m=0

βn−m

2π∫
0

μ̄m(τ)Q(τ)Φ̂(ξ, τ)dτ, ξ ∈ [0, π),

1
2
μ̄n(ξ) +

1
4π

2π∫
0

μ̄n(τ)Q(τ)Φ̂1(ξ, τ)dτ = 0, ξ ∈ (π, 2π],

where F̄n(ξ) = Fn(x1(ξ)), μ̄n(ξ) = μn(x(ξ)),
Q(ξ) = r(ξ)

√
[r′(ξ)]2 + [z′(ξ)]2. Here Φ̂ and Φ̂1 denote the fundamental

solution and its normal derivative, respectively, in the axially symmet-
ric case.

3. Fundamental solution and its normal derivative in axially
symmetric case. In this section we find a representation of the
fundamental solution and its normal derivative in the axially symmetric
case. After introducing the notation R(ξ, τ, ϕ) = ([r(ξ)]2 + [r(τ)]2 −
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2r(ξ)r(τ) cos(ϕ) + [z(ξ)− z(τ)]2)
1
2 analogously to [22], we can write Φ̂

and Φ̂1 as

(3.1) Φ̂(ξ, τ) =

2π∫
0

dϕ
R(ξ, τ, ϕ)

and

(3.2) Φ̂1(ξ, τ) =

2π∫
0

∂

∂ν(ξ)
dϕ

R(ξ, τ, ϕ)
,

where ν(ξ) denotes the unit normal vector at the point x(ξ) =
(r(ξ), z(ξ)) directed into the exterior of the domain.

Next we substitute ϕ = π + 2α into the integral (3.1), after which it
can be written in the following form

(3.3) Φ̂(ξ, τ) =
4

[p(ξ, τ)]
1
2
K(k2(ξ, τ)),

where p(ξ, τ) = (r(ξ) + r(τ))2 + (z(ξ) − z(τ))2, k2(ξ, τ) =
2r(ξ)r(τ)
p(ξ, τ)

and K(k) =

π/2∫
0

[1 − k2 sin(α)]−
1
2 dα is the complete elliptic integral of

the first kind [23].

For the case of Φ̂1 from (3.2) we have

(3.4) Φ̂1(ξ, τ) =
∂Φ̂(ξ, τ)
∂r(ξ)

z′(ξ)
|x′(ξ)| −

∂Φ̂(ξ, τ)
∂z(ξ)

r′(ξ)
|x′(ξ)| ,

where

∂Φ̂(ξ, τ)
∂r(ξ)

= 4p(ξ, τ)−
3
2

(
2r(τ)

E (k(ξ, τ)) −K (k(ξ, τ))
k2(ξ, τ)

+ (r(τ) − r(ξ))
E (k(ξ, τ))
1 − k2 (ξ, τ)

)
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and
∂Φ̂(ξ, τ)
∂z(ξ)

= 4p(ξ, τ)−
3
2 (z(τ) − z(ξ))

E
(
k2(ξ, τ)

)
1 − k2(ξ, τ)

.

Here E(k) =

π/2∫
0

[1 − k2 sin(α)]
1
2 dα is the complete elliptic integral of

the second kind [23].

Now, due to the expressions Φ̂ and Φ̂1 through the complete elliptic
integrals, the system (2.10) can be rewritten in the form

(3.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
μ̄1,n(ξ) +

1
π

2∑
j=1

jπ∫
(j−1)π

μ̄j,n(τ)
{
K1j(ξ, τ)H11

1j (ξ, τ)

+E1j(ξ, τ)H21
1j (ξ, τ)

}
dτ = F̄n(ξ)

− 1
π

n−1∑
m=0

βn−m

2∑
j=1

jπ∫
(j−1)π

μ̄j,m(τ)Bj(ξ, τ)K1j(ξ, τ)dτ,

ξ ∈ [0, π),

1
2
μ̄2,n(ξ) +

1
π

2∑
j=1

jπ∫
(j−1)π

μ̄j,n(τ){K2j(ξ, τ)H12
2j (ξ, τ)

+E2j(ξ, τ)H22
2j (ξ, τ)}dτ = 0, ξ ∈ (π, 2π].

Here

μ̄i,n(ξ) = μ̄n(ξ), ξ ∈ [(i− 1)π, iπ], i = 1, 2,
Kij(ξ, τ) = K(kij(ξ, τ)), Eij(ξ, τ) = E(kij(ξ, τ)), i, j = 1, 2,
k2

ij(ξ, τ) = k2(ξ, τ), ξ ∈ [(i− 1)π, iπ], τ ∈ [(j − 1)π, jπ], i, j = 1, 2,

H11
ij (ξ, τ) =

Qj(τ)

(pij(ξ, τ))
1/2

(
κ2 − 2rj(τ)

k2
ij(ξ, τ)pij(ξ, τ)

z′i(ξ)
|x′i(ξ)|

)
,

H21
ij (ξ, τ) =

Qj(τ)

(pij(ξ, τ))
3/2

(
2rj(τ)
k2

ij(ξ, τ)
z′i(ξ)
|x′i(ξ)|

+
〈ν(ξ), xj(ξ) − xi(ξ)〉

1 − k2
ij(t, τ)

)

for i �= j and ξ �= τ,
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H21
ii (ξ, ξ) =Qi(ξ)

(
2ri(ξ)

k2
ii(ξ, ξ) (pii(ξ, ξ))

3/2

z′i(ξ)
|x′i(ξ)|

+
r′′i (ξ)z′i(t)−r′i(ξ)z′′i (ξ)

4ri(ξ)|xi(ξ)|3
)
,

H12
ij (ξ, τ) = − Qj(τ)

(pij(ξ, τ))
3/2

2rj(τ)
k2

ij(ξ, τ)
z′i(ξ)
|x′i(ξ)|

, H22
ij (ξ, τ) = H21

ij (ξ, τ),

Bj(ξ, τ) =
Qj(τ)(

p1j(ξ, τ)1/2
) , Qi(ξ) = Q(ξ), ξ ∈ [(i− 1)π, iπ], i = 1, 2,

pij(ξ, τ) = p(ξ, τ), ξ ∈ [(i− 1)π, iπ], τ ∈ [(j − 1)π, jπ], i, j = 1, 2.

Taking into account the representations of the complete elliptic inte-
grals [23], we can write the following identities

(3.6) Kij(ξ, τ) = K1 (ηij(ξ, τ)) ln
1

η2
ij(ξ, τ)

+K2 (ηij(ξ, τ)) ,

Eij(ξ, τ) = E1 (ηij(ξ, τ)) ln
1

η2
ij(ξ, τ)

+ E2 (ηij(ξ, τ)) ,

where ηij(ξ, τ) = 1 − k2
ij(ξ, τ), i, j = 1, 2 and K�, E�, � = 1, 2 –

functions, which are given in the view of power series. Since these series
are slowly convergent for some values of argument, it is convenient to
use a hyper accurate Chebyshev approximations (see [24]) for these
functions

(3.7) K� (ηij(ξ, τ))≈
NK∑
m=0

am�η
m
ij (ξ, τ), E� (ηij(ξ, τ))≈

NE∑
m=0

bm�η
m
ij (ξ, τ),

where am�, bm� are given coefficients. Note that, in particular, for
NK = NE = 10 the maximal absolute error of calculations by formulas
(3.6), using (3.7), has order 10−18.

Thus we can rewrite the system (3.5) as
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(3.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
μ̄1,n(ξ) +

1
π

2∑
j=1

jπ∫
(j−1)π

μ̄j,n(τ){N11
1j (ξ, τ) ln

1
1 − k2

1j(ξ, τ)

+N21
1j (ξ, τ)}dτ = F̄n(ξ)

− 1
π

n−1∑
m=0

βn−m

2∑
j=1

jπ∫
(j−1)π

μ̄j,m(τ){M1
j (ξ, τ) ln

1
1 − k2

1j(ξ, τ)

+M2
j (ξ, τ)}dτ, ξ ∈ [0, π),

1
2
μ̄2,n(ξ) +

1
π

2∑
j=1

jπ∫
(j−1)π

μ̄j,n(τ){N12
2j (ξ, τ) ln

1
1 − k2

2j(ξ, τ)

+N22
2j (ξ, τ)}dτ = 0, ξ ∈ (π, 2π],

where N �k
ij (ξ, τ) = K� (ηij(ξ, τ))H1k

ij (ξ, τ) + E� (ηij(ξ, τ))H2k
ij (ξ, τ),

M �
j (ξ, τ) = K� (η1j(ξ, τ))Bj(ξ, τ), i, j, k, � = 1, 2.

4. Weakening of Singularities. It is known [25] that the density
μ in (2.6) must have the form

(4.1) μ(x) = O(|x− P |λ), x→ P, λ = min
{
π

2Θ
,

π

2(2π − Θ)

}
− 1

near the point P , where Θ is the interior angle of the curve L (see Fig.
2), i.e., the density has a singularity at the corner.

For the purpose of weakening of the above singularity we follow [26,
28, 29] by making a special non-linear mesh grading transformation,
the main idea of which is to introduce a parameterization γ, which
varies more slowly than arc-length parameterization in the vicinity of
the corner P . By forcing γ to vary slowly enough near the corner, the
solutions μ̄i,n of (3.8) can be made as smooth as desired on [0, 2π].

First we introduce a cubic polynomial

(4.2) v(s) =
(

1
q
− π

2

)(
π − 2s
π

)3

− 1
q

(
π − 2s
π

)
+
π

2
,
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where 0 ≤ s ≤ π and q ≥ 2. Then, setting

(4.3) w(s) = π
[v(s)]q

[v(s)]q + [v(π − s)]q
, 0 ≤ s ≤ π,

we define the mesh grading transformation

(4.4) γ(s) =
{
γ1(s) = w(s), 0 ≤ s ≤ π,

γ2(s) = π + w(s − π), π ≤ s ≤ 2π.

Then clearly

γ ∈ Cq−1[0, 2π], γ(�)(0) = γ(�)(π) = γ(�)(2π) = 0, � = 1, . . . , q − 1.

Now, using the transformation (4.4), we perform the substitution

(4.5) ξ =
{
γ1(s), 0 ≤ s ≤ π,

γ2(s), π ≤ s ≤ 2π,
τ =

{
γ1(σ), 0 ≤ σ ≤ π,

γ2(σ), π ≤ σ ≤ 2π,

and rewrite the integral equations (3.8) in the form

(4.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
ϕ1,n(s) +

γ′1(s)
π

2∑
j=1

jπ∫
(j−1)π

ϕj,n(σ){N̄11
1j (s, σ) ln

1
1 − k̄2

1j(s, σ)

+N̄21
1j (s, σ)}dσ = gn(s)

−γ
′
1(s)
π

n−1∑
m=0

βn−m

2∑
j=1

jπ∫
(j−1)π

ϕj,m(σ){M̄1
j (s, σ) ln

1
1 − k̄2

1j(s, σ)

+M̄2
j (s, σ)}dσ, s ∈ [0, π],

1
2
ϕ2,n(s) +

γ′2(s)
π

2∑
j=1

jπ∫
(j−1)π

ϕj,n(σ){N̄12
2j (s, σ) ln

1
1 − k̄2

2j(s, σ)

+N̄22
2j (s, σ)}dσ = 0, s ∈ [π, 2π].

Here we have introduced the functions

gn(s) = Fn(γ1(s))γ′1(s), ϕi,n(s) = μ̄i,n(γi(s))γ′i(s), i = 1, 2,
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and the notations

N̄ �k
ij (s, σ) = N �k

ij (γi(s), γj(σ)), M̄k
j (s, σ) = Mk

j (γ1(s), γj(σ)),

k̄2
ij(s, σ) = k2

ij(γi(s), γj(σ)), i, j, �, k = 1, 2.

In the next step we want to extend each of the functions γ1 and γ2

to be 2π-periodic. For this in addition we define

(4.7) γ1(s) =
{
γ1(s), 0 ≤ s ≤ π,

γ1(2π − s), π ≤ s ≤ 2π

(4.8) γ2(s) =
{
γ2(2π − s), 0 ≤ s ≤ π,

γ2(s), π ≤ s ≤ 2π,

together with

(4.9) γi(s+ 2π) = γi(s), i = 1, 2.

Thus γi are even and 2π-periodic and clearly these properties extend
to all functions in the system (4.6). Now we can write this system as

(4.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
ϕ1,n(s) +

γ′1(s)
2π

2∑
j=1

2π∫
0

ϕj,n(σ){N̄11
1j (s, σ) ln

1
1 − k̄2

1j(s, σ)

+N̄21
1j (s, σ)}dσ = gn(s)

−γ
′
1(s)
2π

n−1∑
m=0

βn−m

2∑
j=1

2π∫
0

ϕj,m(σ){M̄1
j (s, σ) ln

1
1 − k̄2

1j(s, σ)

+M̄2
j (s, σ)}dσ, s ∈ [0, 2π],

1
2
ϕ2,n(s) +

γ′2(s)
2π

2∑
j=1

2π∫
0

ϕj,n(σ){N̄12
2j (s, σ) ln

1
1 − k̄2

2j(s, σ)

+N̄22
2j (s, σ)}dσ = 0, s ∈ [0, 2π].
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The main importance of these transformations lies in the fact that now
the desired functions ϕi,n are in Cq−1[0, 2π].

Note that the kernels of the system (4.10) contain logarithmic sin-
gularities, which occur for i = j and s = σ, because 1 − k̄2

ij =
|x̄i(s) − x̄j(σ)|2

p̄ij(s, σ)
. For these kernels we perform the transformation

(4.11) ln
p̄ii(s, σ)

|x̄i(s) − x̄i(σ)|2 = − ln 4(cos(s) − cos(σ))2 + bi(s, σ),

where

bi(s, σ) = 2 ln
2| cos(s) − cos(σ)| (p̄ii(s, σ))

1
2

|x̄i(s) − x̄j(σ)|

with the diagonal terms

bi(s, s) = 2 ln
4| sin(s)|r̄i(s)

|x̄′i(s)|
.

Obviously, the function b is not defined at the four corners and the
center of the square [0, 2π] × [0, 2π] and we will take this fact into
account later. Next we note that all functions in (4.10) are even and
therefore the following identity

(4.12)

2π∫
0

ϕ(σ) ln
[
4(cos(s)−cos(σ))2

]
dσ=2

2π∫
0

ϕ(σ) ln
(

4 sin2 s−σ
2

)
dσ

for s ∈ [0, 2π] holds. Now, with the aid of (4.12), the system (4.10) can
be rewritten in the form



THE AXIALLY SYMMETRIC LINEAR SLOSHING PROBLEM 425

(4.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
ϕ1,n(s) +

γ′1(s)
2π

2π∫
0

ϕ1,n(σ)
{
L11

11(s, σ) ln
(

4 sin2 s− σ

2

)

+L21
11(s, σ)

}
dσ +

γ′1(s)
2π

2π∫
0

ϕ2,n(σ)L31
12(s, σ)dσ

= gn(s) − γ′1(s)
2π

n−1∑
m=0

βn−m

⎡
⎣ 2π∫

0

ϕ2,m(σ)A31
12(s, σ)dσ

+

2π∫
0

ϕ1,m(σ)
{
A11

11(s, σ) ln
(
4 sin2 s−σ

2

)
+A21

11(s, σ)
}
dσ

⎤
⎦,

s ∈ [0, 2π],

1
2
ϕ2,n(s) +

γ′2(s)
2π

2π∫
0

ϕ2,n(σ)
{
L12

22(s, σ) ln
(

4 sin2 s− σ

2

)

+L22
22(s, σ)

}
dσ +

γ′2(s)
2π

2π∫
0

ϕ1,n(σ)L32
21(s, σ)dσ = 0,

s ∈ [0, 2π],

where

L11
11(s, σ) = −2N̄11

11 (s, σ),
L21

11(s, σ) = N̄11
11 (s, σ)b1(s, σ) + N̄21

11 (s, σ),

L31
12(s, σ) = N̄11

12 (s, σ) ln
1

1 − k̄2
12(s, σ)

+ N̄21
12 (s, σ),

A11
11(s, σ) = −2M̄1

1 (s, σ),
A21

11(s, σ) = M̄1
1 (s, σ)b1(s, σ) + M̄2

1 (s, σ),

A31
12(s, σ) = M̄1

2 (s, σ) ln
1

1 − k̄2
12(s, σ)

+ M̄2
2 (s, σ),

L12
22(s, σ) = −2N̄12

22 (s, σ),
L22

22(s, σ) = N̄12
22 (s, σ)b2(s, σ) + N̄22

22 (s, σ),

L32
21(s, σ) = N̄21

21 (s, σ) ln
1

1 − k̄2
21(s, σ)

+ N̄22
21 (s, σ).
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Let Hp
e , p ≥ 0 denote the Sobolev spaces of even 2π-periodic func-

tions. The following theorem establishes the existence of solutions of
the system (4.13).

Theorem 4.1. Assume that q ≥ 2. Then for every gn ∈ H0
e [0, 2π]

there exist unique solutions ϕ1,n, ϕ2,n ∈ H0
e [0, 2π] of the system (4.13).

Proof. The system (4.13) has only trivial solutions for gn = 0. To
prove this we will use the induction method. Let us consider the first
system of the sequence (4.13):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
ϕ1,0(s)+

γ′1(s)
2π

2π∫
0

ϕ1,0(σ)
{
L11

11(s, σ) ln
(

4 sin2 s−σ
2

)
+L21

11(s, σ)
}

dσ

+
γ′1(s)
2π

2π∫
0

ϕ2,0(σ)L31
12(s, σ)dσ = 0, s ∈ [0, 2π],

1
2
ϕ2,0(s)+

γ′2(s)
2π

2π∫
0

ϕ2,0(σ)
{
L12

22(s, σ) ln
(

4 sin2 s−σ
2

)
+L22

22(s, σ)
}

dσ

+
γ′2(s)
2π

2π∫
0

ϕ1,0(σ)L32
21(s, σ)dσ = 0, s ∈ [0, 2π].

Obviously, this system corresponds to the following mixed boundary
value problem for the Laplace equation

ΔU = 0 in Ω,(4.14)

U +
∂U

∂ν
= 0 on Γ1,(4.15)

∂U

∂ν
= 0 on Γ2.(4.16)

With use of Green’s formulas, considering that ∂Ω is continuous (see
[27]), it is easy to show that the boundary value problem (4.14 - 41.6)
has only the trivial solution which implies ϕ1,0 = 0, ϕ2,0 = 0. Then
due to induction we obtain that the systems (4.13) have only trivial
solutions for gn = 0 and n > 0.
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Let us define the following operators

(Siψ)(s) := − 1
π

∫ 2π

0

N̄1i
ii (s, σ) ln

(
4 sin2 s− σ

2

)
ψ(σ)dσ,

(Biψ)(s) :=
1
2π

∫ 2π

0

N̄1i
ii (s, σ)bi(s, σ)ψ(σ)dσ,

(Cijψ)(s) :=
1
2π

∫ 2π

0

L3i
ij(s, σ)ψ(σ)dσ,

(Diψ)(s) :=
1
2π

∫ 2π

0

N̄2i
ii (s, σ)ψ(σ)dσ,

(S̄ψ)(s) := − 1
π

∫ 2π

0

M̄1
1 (s, σ) ln

(
4 sin2 s− σ

2

)
ψ(σ)dσ,

(B̄ψ)(s) :=
1
2π

∫ 2π

0

M̄1
1 (s, σ)b1(s, σ)ψ(σ)dσ,

(C̄ψ)(s) :=
1
2π

∫ 2π

0

A31
11(s, σ)ψ(σ)dσ,

(D̄ψ)(s) :=
1
2π

∫ 2π

0

M̄2
1 (s, σ)ψ(σ)dσ

for s ∈ [0, 2π]. Then we can write (4.13) in the operator form

(4.17)
(

1
2
I + L

)
�ϕn = �gn −

n−1∑
m=0

βn−mK�ϕm,

where I is 2×2 identity matrix, �ϕn := (ϕ1,n, ϕ2,n)T , �gn := (α−1gn, 0)T ,

L :=
(
γ′1(S1 +B1 +D1) γ′1C12

γ′2C21 γ′2(S2 +B2 +D2)

)
,

K :=
(
γ′1(S̄ + B̄ + D̄) γ′1C̄

0 0

)
.

The operators D̄, C̄, Di, Cij , i, j = 1, 2 have continuous kernels and
therefore are compact in H0

e [0, 2π]. For the analysis of Si, Bi, S̄, B̄ we
refer to the results obtained in [28, 29] by Mellin transform techniques.
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It was shown that operators Si + Bi, i = 1, 2 and S̄ + B̄ are bounded
from H0

e [0, 2π] to H1
e [0, 2π] and therefore compact in H0

e [0, 2π].

Thus the operator L is compact in H0
e [0, 2π]×H0

e [0, 2π]. Then from
Riesz-Shauder theory and by induction the proof of the theorem is
complete.

5. Full discretization by a Nyström method. For the
numerical solution of the integral equations (4.13) we use a Nyström
method [30]. We consider the following two quadrature rules on
equidistant grids s�

k = kh�, h� =
π

M�
, k = 0, . . . , 2M� − 1, M� ∈ IN,

� = 1, 2

(5.1)
1
2π

∫ 2π

0

f(s)ds ≈ 1
2M�

2M�−1∑
j=0

f(s�
j),

(5.2)
1
2π

2π∫
0

f(σ) ln
(

4 sin2 s− σ

2

)
dσ ≈

2M�−1∑
j=0

R�
j(s)f(s�

j),

where

R�
j(s) = − 1

M�

[
Ml−1∑
m=1

1
m

cos(s− s�
j) +

1
M�

cosM�(s− s�
j)

]
.

These quadratures are obtained by replacing the function f by its
trigonometric interpolation polynomial with respect to the points s�

k,
k = 0, . . . , 2Ml − 1 and exact integration [30]. The use of the
above quadratures for the integrals in (4.13) and the collocation in
the quadrature points leads to a sequence of linear systems. As we
remarked earlier, all functions in (4.13) are even with respect to π and
ϕ�,n(0) = 0 for � = 1, 2. Therefore we can write these linear systems in
the form
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(5.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
ϕn

1k + γ′1(s
1
k)

M1−1∑
p=1

ϕn
1p

{
L11

11(s
1
k, s

1
p)
(
R1

p(s
1
k) +R1

2M1−p(s
1
k)
)

+
1
M1

L21
11(s

1
k, s

1
p)
}

+
γ′1(s1k)
M2

M2−1∑
p=1

ϕn
2pL

31
12(s

1
k, s

2
p)

= Gn(s1k), k = 1, . . . ,M1 − 1,

1
2
ϕn

2k + γ′2(s
2
k)

M2−1∑
p=1

ϕn
2p

{
L12

22(s
2
k, s

2
p)
(
R2

p(s
2
k)+R2

2M2−p(s
2
k)
)

+
1
M2

L22
22(s

2
k, s

2
p)
}

+
γ′2(s

2
k)

M1

M1−1∑
p=1

ϕn
1pL

32
21(s

2
k, s

1
p) = 0,

k = 1, . . . ,M2 − 1,

where

Gn(s1k) = gn(s1k) − γ′1(s
1
k)

n−1∑
m=0

βn−m

[
1
M2

M2−1∑
p=1

ϕm
2pA

31
12(s

1
k, s

2
p)

+
M1−1∑
p=1

ϕm
1p

{
A11

11(s
1
k, s

1
p)
(
R1

p(s
1
k) +R1

2M1−p(s
1
k)
)

+
1
M1

A21
11(s

1
k, s

1
p)
}]

,

ϕn
�k ≈ ϕ�,n(s�

k), k = 1, . . . ,M� − 1, � = 1, 2 and n = 0, 1, . . . Here we
note that we do not need to calculate the function b at the singular
points. The approximate value of the function un can be calculated by
the formula

(5.4) ũn(x1(s)) =
M1−1∑
p=1

ϕn
1p

[
L11

11(s, s
1
p)
{
R1

p(s) +R1
p(π − s)

}

+
1
M1

L21
11(s, s

1
p)
]

+
1
M2

M2−1∑
p=1

ϕn
2pL

31
12(s, s

2
p).

The convergence analysis and the error estimate for above method
can be carried out in the same way as in [26, 28]. Specifically, from the
corresponding results in [26, 28] the next theorem about error estimates
follows in our case.
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Theorem 5.1. Assume that the corner of the curve L has the
interior angle (1 − ρ)π with 0 < |ρ| < 1 and assume that fn, ω� ∈
Hp+5/2(L) for p ∈ IN and q ≥ 2. Then for q > (p+ 1/2)(1 + |ρ|) there
holds the following error estimate

‖ϕn
� − ϕ̃n

� ‖H0
e [0,2π] ≤ CnM

−p

for the exact solution ϕn
� and the numerical solution ϕ̃n

� obtained by
Nyström method. Here M = min{M1,M2}, Cn > 0 and � = 1, 2.

Finally, for the numerical solution of the evolution problem (1.13 -
1.14) according to (2.4) we have the following approximation

(5.5) uM
N (x1(s), t) = κ

N∑
n=0

ũn(x1(s))Ln(κt).

Now, in order to find the velocity potential ϕ(x, t) corresponding to
the problem (1.8 - 1.11), we have to solve the following non-stationary
mixed Dirichlet-Neumann boundary value problem

Δϕ = 0 in Ω × (0,∞),(5.6)
ϕ = u on Γ1 × (0,∞),(5.7)

∂ϕ

∂ν
= 0 on Γ2 × (0,∞),(5.8)

where u is the solution of the evolution problem (1.13 - 1.14).

For the solving of (5.6 - 5.8) we also use the combination of the
Laguerre transform and boundary integral equation method. As result,
we have the following representation

(5.9) ϕ(x, t) = κ

∞∑
n=0

ϕn(x)Ln(κt),

where the Fourier-Laguerre coefficients ϕn satisfy the sequence of mixed
boundary value problems

Δϕn = 0 in Ω,
ϕn = un on Γ1,

∂ϕn

∂ν
= 0 on Γ2
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for n = 0, 1, . . . The numerical solution of these problems can be found
by potential theory using a single-layer potential. Then we obtain the
system of integral equations (2.8) with α = 0, βn = 0 and fn = un

for n = 0, 1, . . . This system can be solved by the method used in the
previous sections. Note that according to the representation (1.12) we
have the numerical representation

xM
N (x1(s), t) = κ

N∑
n=1

ũn(x1(s))
n−1∑
m=0

Lm(κt).

for the free boundary.

6. Numerical experiments.

1. Robin-Neumann mixed boundary value problem for the Laplace
equation. The first system of the integral equations in the sequence
(2.8) corresponds to the following mixed boundary value problem for
the Laplace equation

ΔU = 0 in Ω,(6.1)

U +
∂U

∂ν
= f0 on Γ1,(6.2)

∂U

∂ν
= 0 on Γ2.(6.3)

Assume that the boundaries Γ1 and Γ2 are created by the rotation of
the curves L1 and L2, respectively, which are given as (see Fig. 3 on
page 432)

L1 :=
{
x1(ξ) =

(
ξ/
√

2π, 0
)
, 0 ≤ ξ ≤ π

}
,

L2 :=
{
x2(ξ) =

(
− cos (3ξ/4) , sin (3ξ/4) − 1/

√
2
)
, π ≤ ξ ≤ 2π

}
and the boundary function f0 = 1. Obviously, the exact solution is
Uex = 1. Table 1 shows the H0-error between the exact solution Uex

and the numerical solution UM

εM =

(
π

M

M−1∑
k=1

[
Uex

(
x1(s1k)

)− UM

(
x1(s1k)

)]2 ∣∣x′1(s1k)
∣∣)1/2
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0

L1

L2

1

-1

r

z

FIGURE 3. View of the domain Ω

and the convergence order

(6.5) ordM =
ln εM − ln εM/2

ln 2
,

which are obtained by the above method. Here M1 = M2 = M .

M q = 3 q = 3 q = 4 q = 4 q = 5 q = 5
εM ordM εM ordM εM ordM

8 6.10×10−3 9.50×10−3 6.70×10−3

2.0 6.4 5.3
16 1.50×10−3 1.11×10−4 1.68×10−4

2.3 4.0 3.5
32 3.09×10−4 6.93×10−6 1.45×10−5

2.3 3.5 4.2
64 6.70×10−5 6.09×10−7 8.20×10−7

2.4 3.2 4.2
128 1.17×10−5 6.43×10−8 4.48×10−8

2.4 3.2 4.2
256 2.24×10−6 6.99×10−9 5.31×10−9

Table 1. εM -errors and convergence orders for the Example 1.

The numerical results illustrate the expected improvement of the
convergence order for increasing values of the grading exponent q. Note
that expected rates according to the Theorem 5.1 are equal to 1.9, 2.7,
3.5 for q = 3, 4, 5, respectively.
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2. Evolution problem on the free boundary. Now we consider the
non-stationary problem (1.13) and (1.14).

2.1. Assume that the boundaries Γ1 and Γ2 are created by the
rotation of the curves L1 and L2, respectively, given as (see Fig. 4)

L1 := {x1(ξ) = (ξ/π, 0) , 0 ≤ ξ ≤ π} ,
L2 := {x2(ξ) = (sin (ξ/2) , cos (ξ/2) /3) , π ≤ ξ ≤ 2π} .

0

L1

L2

1

-0.5

r

z

FIGURE 4. View of the domain Ω

Assume that f(x, t) = e−t and initial functions w0 = 1 and w1 = −1.
In this case the problem (1.13) and (1.14) has an exact solution given
by uex(x, t) = e−t. For our algorithm we used the Fourier-Laguerre
expansion

e−t = κ

∞∑
n=0

1
(κ+ 1)n+1

Ln(κt).

Table 2 demonstrates the H0-error between the exact solution and
the numerical solutions that is calculated numerically as

(6.6) εNM =

⎛
⎝h1h

K∑
i=0

ai

M−1∑
j=1

[
uM

N

(
x1(s1j), ti

)− uex (ti)
]2 ∣∣x′1(s1j)∣∣

⎞
⎠

1/2

with ti = ih1, h1 = T/K, K ∈ N, a0 = aK = 0.5 and ai = 1 for
i = 1, . . . ,K − 1. Here M1 = M2 = M , T = 2, K = 20 and q = 5 in
all cases.
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M N = 10 N = 20 N = 30
16 2.31 × 10−3 2.32 × 10−3 2.30 × 10−3

32 2.30 × 10−4 2.33 × 10−4 2.32 × 10−4

64 2.19 × 10−5 9.51 × 10−5 2.19 × 10−5

128 2.98 × 10−6 2.21 × 10−6 2.20 × 10−6

Table 2. εNM -errors for the Example 2.1.

2.2. Let f(x1(s), t) = εs cos(δt), ε, δ > 0 and the functions in the
initial conditions (1.14) have the form ω0(s) = 0 and ω1(s) = s for
s ∈ [0, π]. Note that we consider the same boundaries as in Example
2.1.

Table 3 shows the numerical solution of evolution problem (1.13) and
(1.14) for various discretization parameters. Here we used α = 1, κ = 2,
ε = 0.1, δ = 1 and M1 = M2 = M , q = 5.

The expected convergence of the Nyström method according to the
Theorem 5.1 and fast convergence of the Fourier-Laguerre series are
clearly exhibited.

t M N = 10 N = 20 N = 30
0.0 32 -0.0007519 0.0002682 0.0002662

64 -0.0007433 0.0002695 0.0002693
128 -0.0007426 0.0002697 0.0002694

0.5 32 0.7783628 0.7788306 0.7787446
64 0.7783628 0.7788301 0.7787434

128 0.7783682 0.7788301 0.7787434
1.0 32 1.4462481 1.4452752 1.4449508

64 1.4462499 1.4452847 1.4449591
128 1.4462500 1.4452855 1.4449597

1.5 32 1.8954851 1.8992701 1.8997868
64 1.8955412 1.8993248 1.8998538

128 1.8955457 1.8993293 1.8998586
2.0 32 2.1852703 2.1807374 2.1806811

64 2.1855055 2.1809513 2.1806893
128 2.1855247 2.1809687 2.1809104

Table 3. Numerical results for the Example 2.2.
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