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ABSTRACT. Pontryagin’s theory for an optimal control
problem with dynamics described by an ODE has possible ex-
tensions to other systems, such as some PDEs. If the sys-
tem with state x and control u is described abstractly by
Dx = M(x, u), then some other linear mappings D than differ-
entiation can lead to a Pontryagin principle. Costate bound-
ary conditions are obtained by calculating an adjoint map-
ping. If the domain is not compact, but the problem reaches
a strict minimum, then under some continuity restrictions the
control problem can be approximated closely by one for which
Pontryagin’s principle holds.

1. Introduction. The optimal control problem:

MINx,u F (x, u) :=
∫ T

0

f(x(t), u(t), t)dt subject to

x(0) = x0, ẋ(t) = m(x(t), u(t), t) (0 ≤ t ≤ T ),
u(t) ∈ Γ(t) (0 ≤ t ≤ T ) ⇔ (∀t)g(x(t), t) ≤ 0

may be written as:

MINx,u F (x, u) subject to Dx = M(x, u),

where Dx = w ⇔ x = x0 +
∫ t

0 w(s)ds, M(x, u)(t) := m(x(t), u(t), t),
and D is made continuous by giving a suitable graph norm to the
space X of states. This formulation suggests a generalization in which
the domain [0, T ] is replaced by a closed subset E ⊂ Rr (r ≥ 1),
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380 B. CRAVEN

not necessarily compact, and a linear mapping D, made continuous by
suitable choice of norms. The state x and the control u will be assumed
to lie in specified normed spaces. This excludes some anomalous
instances where the state is unbounded.

The standard necessary conditions for the stated optimal control
problem (see Fleming & Rishel, 1975) assume E = [0, T ]; u is piecewise
continuous and x is piecewise smooth; f, m, and g are C1 functions; a
global minimum is reached at (x, u) = (x̄, ū); then the Hamiltonian:

h(x(t), u(t), t, λ(t)) := f(x(t), u(t), t) + λ(t)m(x(t), u(t), t).

satisfies

h(x̄(t), ·, t, λ̄(t)) → MIN, subject to g(u(t)) ≤ 0, for almost all t ∈ E,

where the costate λ̄(t) satisfies the adjoint differential equation:

− ˙̄λ(t) = hx(x̄(t), ū(t), t, λ̄(t)), λ̄(T ) = 0,

where subscript x denotes partial derivative. Two approaches will be
followed. The first is based on the Karush-Kuhn-Tucker necessary con-
ditions for a constrained optimum. With functions restricted to suit-
able normed spaces, boundary conditions follow from calculating an
adjoint mapping, and some anomalous cases do not occur.The second
approach uses the stability of a strict local minimum to small pertur-
bations, including here perturbations of the domain of the functions.
Several detailed proofs are given as lemmas in Section 6.

Some related results are given in Craven (1995), and Craven and
Islam (1995), where a domain [0,∞) is mapped to a compact domain
[0, T ], to which existing theory can be applied, assuming that x(t) and
u(t) tend sufficiently fast (e.g. exponentially) to finite limits as t→ ∞.
Craven (2000) gave an approach to Pontryagin for PDEs.

2. Approach via KKT conditions Assume for the abstract
control problem (ACP) on a domain E ⊂ Rr:

MINx,u F (x, u) subject to Dx = M(x, u), B1x = 0 (x ∈ E1), u ∈ Γ,



PONTRYAGIN PRINCIPLE IN ABSTRACT SPACES 381

where F (x, u) :=
∫

E
f(x(z), u(z), z)dz,M(x, u)(z) := m(x(z), u(z), z),

and E1 ⊂ ∂E, that:

(a) the control u has finite norm ‖u‖∞ on E, and the state x has
finite graph norm ‖x‖ := ‖x‖∞ + ‖Dx‖∞. (Thus, if E ⊂ R, then u
may be piecewise continuous, and x may be piecewise smooth. Sobolev
norms may also be considered, with ‖ · ‖2 replacing ‖ · ‖∞, but that is
not pursued here.)

(b) F and M are differentiable, with partial derivatives Fx, etc. (See
Lemma 1 in Section 4)

(c) D is a continuous linear mapping.

(d) a minimum is reached at (x, u) = (x̄, ū);

(e) the linearized mapping Mx(x̄, ū) is surjective. (A required con-
straint qualification)

Then necessary KKT conditions hold (see Craven 1995):

Fx(x̄, ū) + Λ(−D +Mu(x̄, ū)) = 0,
[Fu(x̄, ū) + ΛMu(x̄, ū)](Γ − ū) ≥ 0,

for some continuous linear mapping Λ, called a Lagrange multiplier.
Define H(x, u,Λ) := F (x, u) + ΛM(x, u). Λ may have a density λ(·),
defined by 〈Λ, w〉 =

∫
E
λ(z)w(z)dz.

Note that (c) is ensured by the choice of graph norm in (a). The
choice of norms excludes some solutions of the differential equation
where x is unbounded, or where Dx does not approach Dx̄ when x
approaches x̄. (There is a question of whether such excluded cases are
well-posed problems in economics or engineering applications.)

The mapping D has an adjoint D∗, defined by; < Ξ, Dx >=<
D∗Ξ, x > . If Λ has a density λ, then H has a density, called the
Hamiltonian:

h(x(z), u(z), z, λ(z)) = f(x(z), u(z), z) + λ(z)m(x(z), u(z), z);

thus H(.) =
∫

E
h(.)dz. The first part of KKT, with:

< Λ, Dx >=
∫

E

λ(z)(Dx)(z)dz =
∫

E

(D∗λ)(z)x(z)dz,
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gives the adjoint equation (ADE):

D∗λ(z) = (f + λm)x(x̄, ū),

subject to boundary conditions on λ, obtained by some analog of
integration by parts (see Section 3). If λ(·) exists then, given the
assumptions (a) - (e), the boundary conditions on λ(·) depend on the
construction of the adjoint D∗, and on the boundary conditions for
the state x(·), but not on other details of the control problem (see
Section 3). The existence of the density λ for a compact domain E
is shown by solving the adjoint equation. But a density is not always
available for a noncompact E. However, if the adjoint equation has
a solution λ(·) satisfying the boundary condition obtained from the
adjoint, and if

∫
E |λ(z)|dz is finite, tben this λ defines a continuous

linear functional on bounded continuous functions, and the following
deduction of Pontryagin’s principle will apply.

The second part of KKT gives necessary conditions for a minimum
of K(.) := H(x̄, .,Λ) over Γ, and these become also sufficient for this
minimum if also F (x̄, · is convex, M(x̄, ·) is linear, and Γ is convex.
Suppose (if possible) that h(x̄(z), ·, z, λ(z)) is not minimized at ū(z)
on a set of z of positive measure. Then a lemma of Pontryagin (see
Lemma 2, based on the presentation in Craven, 1995, Theorem 7.2.6),
shows that under the further assumption:

(f) u ∈ Γ ⇔ G(u) ≤ 0 ⇔ (∀z ∈ E)g(u)(z) ≤ 0,

the minimum of K(.) is contradicted. The following theorem has thus
been proved:

Theorem 1. For the control problem (ACP) with compact domain
E, , assume hypotheses (a) - (f), and also that F (x̄, ·) is convex and
M(x̄, ·) is linear. Then the adjoint differential equation (ADE) holds,
with boundary conditions determined by the adjoint mapping D∗, and
also Pontrygin’s principle:

h(x̄(z), ., z, λ(z)) → MIN on Γ(z) := {v : g(v, z) ≤ 0} for almost all z.

This result extends to a non-compact domain E if λ(· exists, satisfying
the boundary conditions. But a discount factor is required in the
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objective (see Lemma 1) when E is non-compact. Note that the
hypotheses (a) and (b) may seriously restrict the functions f and m;
some solutions x of the differential equation are excluded by the choice
of norms. The result also applies to dimension > 1, for example when
M(x, u) = A(x)+B(x)u, and D is a linear partial differential operator
such as the Laplacian, over a compact domain E. The differentiability
requirement (a) usually requires that f includes a discount factor
such as e−ρz when E = [0,∞), or ψ(z) ≥ 0 when E ⊂ R2, with∫

E
ψ(z)dz <∞.

The restriction to linear K and G may be weakened to invex, that is:

K(u) −K(ū) ≥ Ku(ū)η(u, ū); G(u) −G(ū) ≥ Gu(ū)η(u, ū)

for some scale function η(·, ·), or in particular to convex, since this im-
plies the minimum of K(·). No such restriction is needed in one dimen-
sion (see e,g, Craven, 1995, and the theorem cited in the Introduction);
but a required property, that Dx = M(x, u) defines a solution with
‖x − x̄‖∞ ≤ const ‖u − ū‖1, seems not to hold for partial differential
operators. An appropriate generalization for r > 1 is given in Section
6.

3. Boundary Conditions If E = [0, T ] ⊂ R, then integration
by parts gives the boundary condition λ(T )x̄(T ) = 0. If instead
E = [0,∞), then instead λ(t)x̄(t) → 0 as t → ∞, hence in particular
λ(t) → 0 as t→ ∞ if x̄(t) is bounded away from 0 as t→ ∞.

If E = [0.T ] and D = d2

dt2 , then integration by parts gives D∗ = d2

dt2

with an integrated part [λ̇x−λẋ]T0 , which must vanish. If x(0) and ẋ(0)
are specified by boundary conditions, then the boundary conditions
λ(T ) = 0 and λ̇(T ) = 0 are required.

If, for example, E ⊂ R3 is compact, and D = ∇2, the Laplacian, then
the adjoint and boundary conditions may be constructed from Green’s
theorem: ∫

E

(λ∇2x− x∇2λ)dv =
∫

∂E

(λ
∂x

∂n
− x

∂λ

∂n
)ds,

in which dv and ds denote elements of volume and surface. Then
D∗ = ∇2, with boundary conditions λ(z) = 0 on that part of ∂E
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where ∂x
∂n is not specified, and ∂λ

∂n = 0 on that part of ∂E where x is
not specified. If the domain E is unbounded, as for example:

E := {(z1, z2) : 0 ≤ z1, 0 ≤ z2 ≤ 1} ⊂ R2,

and if Theorem 1 applies, then limiting boundary conditions hold. For
the example::

λ(z1, z2)
∂x̄

∂n
(z1, z2) → 0 and x̄(z1, z2)

∂λ

∂n
(z1, z2) → 0 as z1 → ∞.

Suppose now that Γ(z) is an interval in R, or a polygonal (or poly-
hedral) region in higher dimension, the same for each z. Pontryagin’s
principle, optimizing a linear function of u, gives the optimal ū(z) on
the boundary of Γ. This leads to generalized bang-bang control, where
E is partitioned into subsets Ei, and ū(Ei) at a vertex of Γ(z), though
with faces or edges of Γ(z), also possible (corresponding to singular
arcs when E ⊂ R.)

For optimal control on [0,∞), there are various examples in the eco-
nomics literature of problems where the boundary condition λ(t)x̄(t) →
∞ does not hold. One such, from Aseev and Kryazhiminskiy (2006), is
the following:

MAX
∫ ∞

0

e−t[1 + γ(x(t))u(t)dt subject to u(t) ∈ [
1
2
, 1],

x(0) = 1, ẋ(t) = u(t).

The optimum is u(t) = 1, x(t) = t (x ≥ 0). This does not contradict
the present result, since this x(·) is unbounded. A change of variable
from x(t) to a new state variable θ(t) := (1 + t)−1x(t) gives a new
adjoint equation:

λ̇(t) = (1 + t)−1λ(t) + e−tγ′(t).

If λ(∞) = 0 is assumed, then:

λ(t) = −(1 + t)−1

∫ ∞

t

(1 + s)−1e−sγ′(s)ds.

This integral will be finite at t = 0 provided that γ(·) does not increase
too rapidly, and then the Pontryagin condition will hold. But this does
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not happen for all γ(·), in agreement with the cited reference. If γ(·)
increases too fast, then the differentiability condition (b) may not hold
(see Section 6.)

Various other examples have been given, e.g. Halkin 1974, where the
boundary condition for λ(·) does not hold. This and other examples do
not include a discount factor in the objective. In such cases, F would
not be differentiable, and Theorem 1 is not contradicted.

While the Pontryagin necessary conditions are not always sufficient
for a minimum, they may characterize a point as a quasimin (see
Craven, 1995.) This assumes that all the boundary conditions are
included.

4. Truncated domain Some unbounded (non-compact) domains
E are also of interest. When can a control problem on an unbounded
domain be approximated closely by a problem on a compact domain?
Consider in particular the approximation of [0,∞) by [0, T ] (for large
T ), and the approximation of

E = [0,∞) ⊂ R; Eq = [0, T ] with q = 1/T ;
f and m multiplied by the indicator χEq(.);

E = {(t1, t2) : 0 ≤ t1, 0 ≤ t2 ≤ 1} ⊂ R2;
Eq = {(t1, t2) : 0 ≤ t1 ≤ 1/q, 0 ≤ t2 ≤ 1}

with q = 1/T ; f and m multiplied by the indicator χEq(.).

In both unbounded cases, part of the boundary ∂E has receded ‘to
infinity’, and boundary conditions are required also for the ‘recession
directions’. For the two-dimensional example, boundary conditions are
required for limt1→∞λ(t1, t2).

Later theorems require the following lemmas. They are proved in
Section 6.

Lemma 1: Differentiability For E = [0,∞), (or [0, T ], ) assume
that :

|m(x̄(t) + v(t), ū(t), t) −m(x̄(t), ū(t), t)
−mx(x̄(t), ū(t), t)v(t)| < ε|v(t)|

when |v(t)| < δ(ε), independent of t,
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(thus m is differentiable with respect to x, uniformly in t ∈ [0,∞)),
and also f(x(t), u(t), t) = e−ρtf̃(x(t), u(t), t), with f̃ differentiable with
respect to x, uniformly in t ∈ [0,∞). Then:

|M(x̄+ v, ū) −M(x̄, ū) −Mx(x̄, ū)v| < ε‖v‖∞
when ‖v‖∞ < δ(ε),

with a similar statement for F.

Lemma 2: Minimum of Hamiltonian Define k(w, z) :=
h(x̄(z), w, z, λ(z)). Assume that u ∈ Γ ⇔ (∀z)g(u(z), z) ≤ 0. Suppose
that k(., z) is not minimized over Γ(z) := {w : g(w, z) ≤ 0} at ū(z) on
some set A# ⊂ E of positive measure. Then H(x̄, ·,Λ) cannot reach a
quasimin at ū.

Lemma 3: Quasimin of abstract Hamiltonian Define Q(x, u,Λ) :=
H(x, u,Λ) − ΛDx, Let x = Φ(u) and x̄ = Φ(ū) with u ∈ Γ. Assume
that:

(k) ‖x− x̄‖∞ ≤] const‖u− ū‖δ

Assume the Lipschitz condition, for some δ ∈ (1, 2) :

(1) ‖Hx(x̃, u,Λ) −Hx(x̄, ū,Λ)‖ ≤ A‖x− x̄‖∞ +B‖u− ū‖δ.

Then H(x̄, .,Λ) reaches a quasimin at ū, subject to u ∈ Γ(z) := {z ∈
E : g(u(z) ≤ 0} and u− ū ∈ V := ‖u− ū‖∞ < b, for some b > 0.

Lemma 4: Stability of adjoint equation For the adjoint equation
when the domain E = [0,∞) and x(t) ∈ Rr :

ẋ(t) = a(t)+λ(t)b(t); a(t) := fx(x̄(t), ū(t), t), b(t) := mx(x̄(t), ū(t), t),

assume that

(g) a(t) = e−ρtã(t) with ρ > 0 and ã(·) bounded;
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(h)
∫ t+τ

t
b(s)ds = b̄τ + k(t, τ)τ where b̄ is a constant matrix and

‖k(t, τ)‖ < ζ for sufficiently large t and τ ;

(i) −ρ+ μ+ ζ < 0. where μ is the largest real part of any eigenvalue
of b̄.

Then the adjoint equation on [0, T ] with terminal condition λ(T ) = 0
has a solution λ[T ](·), with ‖λ[T ](t)‖ ≤ ψ(t) for all T and t, where∫ ∞
0
ψ(t)dt is finite.

Perturbations. There is a general result for constrained minimization
subject to a small perturbation. It assumes that the unperturbed
problem reaches a strict local minimum. Consider the minimization
of φ(x, q) with respect to x, subject to ζ(x, q) ∈ K, where q is a small
perturbation parameter, and K is a convex cone. Assume that the
feasible set Γq of this perturbed problem Pq is nonempty.

A function φ(.) reaches a strict minimum over a set S at x̄ if:

φ(x) − φ(x̄) ≥ ρ(r) > 0 whenever x ∈ X and ‖x− x̄‖ = r > 0

for some function ρ(·) of positive r. sufficiently small.

Craven (1995, Section 7.4) showed that if φ(x, q) and ζ(x, q) are
uniformly continuous in (x, q), when x is in a bounded neighbourhood of
Γq and |q| < δ; if the unperturbed problem P0 reaches a strict minimum
at x̄; and φ(., q) reaches a minimum on x ∈ Γq : ‖x − x̄‖ < r for r
sufficiently small when 0 �= |q| < δ, then the perturbed problem Pq

reaches a minimum at a point x̄(q), where x̄(q) → x̄ as q → 0.

This may be applied to a control problem CP on a noncompact
domain E, with a truncated problem CPq to a compact domain Eq

as the perturbed problem. Two examples of truncated domains Eq are
given above.

If F and M satisfy Lipschitz conditions, which hold if f and g
are differentiable uniformly in t and f includes a discount factor (see
Lemma 1), then they satisfy the uniform continuity conditions for the
perturbation result. Then the perturbation result of Craven (1995) has
the following consequence for the control problem:
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Theorem 2 Assume that CP reaches a strict minimum at (x̄, ū);
F (., .) and M(., .) satisfy Lipschitz conditions; and CPq (with q �= 0
and u in bounded neighbourhoods) reaches a minimum. Then CPq is
minimized at (x̄q, ūq), where (x̄q, ūq) → (x̄, q̄) as q → 0.

The boundary conditions make λq(.) = 0 on the (hyper)plane trun-
cating E to Eq. If Pontryagin theory applies to the truncated problem
CPq, and if limq→0 λq(.) produces an integrable function (which does
not always happen), then Pontgryagin necessary conditions have been
constructed for CP, including the boundary condition “at infinity”.

For the case of E = [0,∞), sufficient conditions for an integrable
λ(·) are obtained in Lemma 4. Consider x(t) ∈ R, and u(·) bounded.
In the equation for ẋ(t), unless mx(x̄(t), ū(t), t) is negative in some
average sense (to be made precise) for large t, then the state x(t) will
typically (except for special initial conditions) grow exponentially, so
is not bounded. If x(t) ∈ Rr with r > 1, then mx(x̄(t), ū(t), t) is a
matrix, and the negative requirement becomes an eigenvalue restriction.
In either case, the requirement on mx to ensure stability, when the
differential equation is solved with t increasing from 0 is similar to
that required for stability of the adjoint equation, when solved with t
decreasing from ∞, and a boundary condition on λ(∞).

Theorem 3 For E = [0,∞) and D = d
dt , assume the hypotheses (a)

-(f) of Theorem 1, the hypotheses of Theorem 2, and also the hypotheses
(g), (h), (i) of Lemma 4. Then there exists a costate λ(·) satisfying
λ(t) → 0 as t→ ∞

Proof. Since (xq, uq) → (x̄, ū) from Theorem 2, and ‖λq(t)‖ ≤ ψ(t)
with

∫ ∞
0 ψ(t)dt < ∞ from Lemma 4 (with q = 1/T ), the integral

expression (see Lemma 4) for λq(t) shows that λq(t) tends to a limit
λ(t) with

∫ ∞
0 bλ(t)dt < ∞. As remarked in Section 2, this λ is then a

density for Λ. Then Theorem 1 gives Pontryagin’s principle.

5. Compact domain in higher dimension The proof of Pon-
tryagin’s principle in Craven (1995) assumed that the mapping Φ from
a control u to the corresponding state x is Lipschitz from ‖ · ‖∞ to
‖ ·‖1. While this holds when E = [0, T ], as a consequence of Gronwall’s
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inequality, this proof does not extend to higher dimensions. Consider,
in particular, the equation Dx = u in R2 or R3, where D is the Lapla-
cian. The Green’s function for D is then unbounded, so the Lipschitz
result does not follow for the ‖ · ‖1 norm, Assume now that:

(j) : x(z) = Φ[u](z) =
∫

E

k(z, u(s))dz,

where |k(z, u(s)) − k(z, ū(s)| ≤ ψ(s) with ψ ∈ Lδ/(δ−1) and δ > 2.

Then |x(z)| ≤ const ‖u− ū‖δ, for some δ ∈ (1, 2).

Theorem 4 Assume that E ⊂ Rr is compact, hypotheses (a) - (f)
of Theorem 1 hold, and also (j), and (l) of Lemma 3. with (x̄, ū) a
global minimum. Then the Pontryagin principle holds for (ACP).

Proof. Lemma 3 on the abstract Hamiltonian H shows, using
hypotheses (j) (which implies (k)), that H(x̄, ·,Λ) has a quasimin at
ū (in the ‖ · ‖1 norm), when restricted to the domain Γ ∩ V, where V
is a neighbourhood of ū in the ‖ · ‖∞ norm. From this, Lemma 2 (in
Section 6) proves Pontryagin’s principle.

Thus, in particular Pontryagin’s principle holds for some elliptic
PDEs. (See Section 3 for some discussion of boundary conditions,)

Remark The proof of Pontryagin’s principle in Craven (1995) as-
sumed that Φ was Lipschitz from ‖.‖1 to ‖.‖∞. This holds for compact
E ⊂ R, using Gronwall’s inequality (see Martin, 1976) when mx and
mu are bounded. But it does not hold in higher dimensions; hypothesis
(j) replaces it.

6. Proofs of Lemmas.

Proof of Lemma 1.

|(M(x̄+ v, ū) −M(x̄, ū) −Mx(x̄, ū)v)(t)|
≤ |m(x̄(t) + v(t), ū)(t), t) −m(x̄(t), ū)(t), t) −mx(x̄(t), ū(t), t)v(t)|

≤ ε|v(t)| ≤ ε‖v‖∞ if ‖v‖∞ < δ(ε),
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Similarly

|F (x, ū) − F (x̄, ū) − Fx(x̄, ū)(x − x̄)

≤
∫

E

|f(x(t), ū(t), t) − f(x̄(t), ū(t), t) − fx(x̄(t), ū(t), t)

≤
∫

E

eρtεdt = ε/ρ when (∀t)|x(t) − x̄(t)| < δ(ε).

Proof of Lemma 2. The set A# can be assumed to lie in some
compact subset of E. Thus

(∀z ∈ A#)(∃v(z) ∈ Γ(z)) k(v(z), z) < k(ū(z), z).

Here ‖ū(·)‖∞ < ∞, and ‖v(·) − ū(·)‖ < ∞ may be assumed. Define
φ : E → R+ as zero when k(v(z), z) = k(ū(z), z), and elsewhere by
k(ū(z), z) − k(v(z), z) = φ(z)|v(z) − ū(z)|. Obtain A#

0 from A# be
excluding the set of zero measure of those z not points of density, or
where φ is not approximately continuous. Fix z0 ∈ A#

0 . Then there is
a set A ⊂ A#

0 of positive measure, such that limz→z0,z∈Aφ(z) = φ(z0).
Then φ(z) ≥ σ := 1

2φ(z0) for all z ∈ A and |z − z0| sufficiently small.

Define a curve {uβ : β ≥ 0} ⊂ Γ by:

uβ(z) = v(z)
when z ∈ Aβ := {z ∈ A : |z − z0| ≤ ψ(β)}, and ū(z) otherwise,

with ψ(·) := ω−1(β), where ω(θ) :=
∫
{z∈A:|z−z0|≤θ} |v(·) − ū(·); the

integral is finite since A lies in a compact subset. Now uβ ∈ Γ by the
hypothesis on Γ(z). Then K(·) := H(x̄, ·,Λ) satisfies:

−K(ūβ) +K(ū) ≥
∫

Aβ

φ(z)|uβ(z) − ū(z)|dz

≥ σ

∫
Aβ

|uβ(z) − ū(z)|dz = σ‖uβ − ū‖1 = σβ.
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Thus

K(uβ) −K(ū) ≤ −σ‖uβ − ū‖1

This contradicts a quasimin, which requires :

K(uβ) −K(ū) ≥ ε‖uβ − ū‖1 for ‖uβ − ū‖1 sufficiently small.

Proof of Lemma 3.

H(x̄, u,Λ)−H(x̄, ū,Λ) = F (x, u) − F (x̄, ū) +Q(x̄, u,Λ) −Q(x, u,Λ),
= F (x, u) − F (x̄, ū) +Qx(x̃, u,Λ)(x̄− x)

for some x̃ ∈ [x, x̄]
≥ 0 + [Qx(x̃, u,Λ) −Qx(x̄, ū,Λ)](x̄ − x)

since Qx(x̄, ū,Λ) = 0.
= [Hx(x̃, u,Λ)−Hx(x̄, ū,Λ)](x̄− x).

For u− ū ∈ V ,

‖u− ū‖δ ≤ (
∫

E

bδ|u(z) − ū(z)|dz)1/δ = (b|E|)1/δ‖u− ū‖1/δ
1 .

From (k) and (l),

‖[Qx(x̃, u,Λ) −Qx(x̄, ū,Λ)](x̄− x)‖ ≤ const ‖u− ū‖2/δ
1 < ε‖u− ū‖|1

when ‖u− ū‖1 is small enough. Hence:

Δ := H(x̄, u,Λ)−H(x̄, ū,Λ) ≥ o(‖u− ū‖1

as ‖u− ū‖1 → 0 with u ∈ Γ. Thus H(x̄, .,Λ) reaches a quasimin at ū,
subject to u ∈ Γ.

Proof of Lemma 4. The equation has solution:
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λ[T ](t) = e−ρt

∫ T−t

0

e−ρτ ã(t+ τ) exp[
∫ t+τ

t

b(s)ds]dτ.

Since ‖ exp[
∫ t+τ

t
b(s)ds]‖ ≤ const e−μτ and ‖ exp(k(t, τ)‖ ≤ e−ζτ for

sufficiently large t and τ, there holds for some constant c :

‖λ[T ](t)‖ ≤ e−ρt

∫ ∞

0

e−ρτ‖ã(·)‖∞eμτ ceζτdτ = O(e−ρτ )

since the integral converges, given −ρ + μ + ζ < 0. The result follows
with ψ(t) = const×e−ρt.
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