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ABSTRACT. Given parameters a, b > 0 such that the
product a b is rational, we consider subspace Gabor frames
G(b, a, g) and G(b, a, k) and ask for conditions under which
the subspace generated by the second frame contains a func-
tion which acts as a Gabor dual for the first one (“oblique
dual”). A necessary and sufficient condition for the exis-
tence of such a function is given in terms of an inequality
between certain matrix-valued functions constructed using the
Zak transform of the generators g and k. The uniqueness of
the oblique dual is also characterized.

1. Introduction. The theory of frames, generalizing the notion
an orthonormal basis in a Hilbert space to systems that might be over-
complete, was first introduced by R. J. Duffin and A. C. Schaeffer in [8]
(see also [18]). We briefly recall some terminology, notation and basic
facts about this tool which plays an important role in modern theories
such as that of wavelet and Gabor expansions. If N is a countable
index set and H is an infinite-dimensional separable Hilbert space with
inner product 〈., .〉, we say that a collection X = {xn}n∈N in H is a
subspace frame (for its closed linear span M) if there exist constants
C1, C2 > 0, called the frame bounds, such that

(1.1) C1 ‖x‖2 ≤
∑
n∈N

|〈x, xn〉|2 ≤ C2 ‖x‖2, x ∈ M.
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We say that X is a Bessel collection, or has the Bessel property,
with Bessel constant C2, if the second inequality in (1.1) holds for all
x ∈ M (or, equivalently, for all x ∈ H). If X is a Bessel collection, we
can define the analysis operator or frame transform associated with X ,
TX : M → �2(N ), by

(1.2) TX(x) = {〈x, xn〉}n∈N , x ∈ M.

Its adjoint, the synthesis operator, T ∗
X : �2(N ) → M, is defined by

(1.3) T ∗
X({cn}n∈N ) =

∑
n∈N

cn xn, {cn}n∈N ∈ �2(N ).

The operator S = T ∗
XTX : M → M is called the frame operator and is

given explicitly as

(1.4) Sx =
∑
n∈N

〈x, xn〉xn, x ∈ M.

If X is a frame for M, then S is a positive, bounded and invertible
operator from M onto M. The collection {S−1xn}n∈N is called the
standard dual frame of the frame X . It provides a reconstruction
formula for the elements of M in terms of their inner products with
the frame elements:

x =
∑
n∈N

〈x, xn〉S−1xn =
∑
n∈N

〈x, S−1xn〉xn, x ∈ M.

More generally, a dual for the the frame X is a Bessel collection
Y = {yn}n∈N in H (with the yn not necessarily in M) satisfying∑

n∈N

〈x, yn〉xn = x, x ∈ M.

A collection {yn} as above is sometimes called an oblique dual. Of
particular interest are frames which are generated by a family (usually
a group) of unitary operators acting on a particular function, called
the generator. For example, a (one-dimensional) shift-invariant frame
sequence is a subspace frame of the form {φ(· − k)}k∈Z, where φ ∈
L2(R), which is generated by applying integer translations to the
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function φ. Other examples are wavelet (or affine) systems which are
defined using appropriate translations and scaling operators. In this
paper, we will mainly investigate one-dimensional Gabor (also called
Weyl-Heisenberg) systems which are generated using modulation and
translation operators. Given two real numbers ω and t, we define the
unitary operators Eω (modulation) and Tt (translation) by

(Eω f)(x) = e2πiωx f(x) and (Tt f)(x) = f(x − t), f ∈ L2(R).

For convenience, given two positive parameters a and b, we also write

gmb,na = Emb Tna g, m, n ∈ Z,

when g ∈ L2(R) and let G(b, a, g) denote the collection {gmb,na}m,n∈Z.
In the case of Gabor systems, the generator g is often called a window
function. For such a function g, we define the space M(b, a, g) to
be the closed linear span in L2(R) of the collection G(b, a, g). If
G(b, a, g) is a frame for M(b, a, g), then we say that G(b, a, g) is a
subspace Gabor frame. (We refer the reader to the papers [1, 2, 11,
12, 13, 14] for results related to subspace Gabor frames.) Let S be
the frame operator associated with a subspace Gabor frame G(b, a, g).
Then S−1g ∈ M(b, a, g), and S−1(gmb,na) = (S−1g)mb,na. Therefore,
G(b, a, S−1g) is the standard dual of G(b, a, g). In general, unless the
collection G(b, a, g) is a so-called Riesz sequence, there will exist many
dual sequences associated with our subspace frame. We will, however,
only consider here dual systems which are of the form G(b, a, h), for
some function h ∈ L2(R). Such duals will be called Gabor duals. Thus,
the function h ∈ L2(R) generates a Gabor dual for the subspace Gabor
frame G(b, a, g) if and only if G(b, a, h) is a Bessel collection and we
have

f =
∑

m,n∈Z

〈f, Emb Tna h〉Emb Tna g, f ∈ M(b, a, g).

In the case of one-dimensional shift-invariant systems, it is natural, of
course, to seek duals which are generated by the integer shifts of a
single function. For f ∈ L2(R), let

f̂(γ) =
∫

R

e−2πiγx f(x) dx, γ ∈ R,
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denote the Fourier transform of f . The following result was proved by
O. Christensen and Y. C. Eldar.

Theorem 1.1. ([5]) Let φ, φ1 ∈ L2(R) and assume that the sequences
{Tkφ}k∈Z and {Tkφ1}k∈Z are subspace frames associated with the sub-
space V and V1, respectively. Let

Φ(γ) =
∑
k∈Z

|φ̂(γ + k)|2, γ ∈ R, and N (Φ) = {γ ∈ R, φ(γ) = 0}.

If there exists a constant A > 0 such that

∣∣∣∣∣∑
k∈Z

φ̂(γ + k) φ̂1(γ + k)

∣∣∣∣∣ ≥ A(1.5)

a. e. on the set {γ ∈ R, Φ(γ) 	= 0},

then the following holds:

(i) There exists a function φ̃ ∈ V1 generating a Bessel collection
{Tkφ̃}k∈Z such that

(1.6) f =
∑
k∈Z

〈f, Tkφ̃〉Tkφ, f ∈ V .

(ii) One choice of φ̃ ∈ V1 satisfying (1.6) is given in the Fourier
domain by

(1.7) ̂̃φ(γ) =

⎧⎨⎩
φ̂1(γ)∑

k∈Z
φ̂(γ+k) φ̂1(γ+k)

, on {γ ∈ R, Φ(γ) 	= 0},
0, on {γ ∈ R, Φ(γ) = 0}.

(iii) There exists a unique function φ̃ ∈ V1 such that (1.6) is satisfied
if and only if N (Φ) = N (Φ1). If this last condition holds, then
{Tkφ1}k∈Z is a frame for V and an oblique dual of {Tkφ}k∈Z on V.

Our main goal in this paper is to study the analogous problem for
one-dimensional subspace Gabor frames. Thus the question we would
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like to answer is the following. Suppose that G(b, a, g) and G(b, a, k)
are two subspace Gabor frames. Under what conditions can we find
a function h in M(b, a, k) such that G(b, a, h) is a Gabor dual for
G(b, a, g)? Moreover, if such a Gabor dual exists, when is it unique?
Our analysis of the problem will make an extensive use of the Zak
transform and, for this reason, we will only consider rational Gabor
systems in this paper, i. e. those for which the parameters a, b are such
that a b is a rational number.

The paper is organized as follows. In section 2, we introduce the
Zak transform and prove some preliminary results. In particular,
we give a characterization in terms of certain vector-valued functions
defined using the Zak transform for the functions belonging to the space
M(b, a, g) spanned by a Gabor system G(b, a, g) satisfying the Bessel
condition (Proposition 2.5) or generating a subspace Gabor frame
(Corollary 2.6). In this last situation, we give a similar characterization
for the functions h in M(b, a, g) with the property that the Gabor
system G(b, a, h) itself satisfies the Bessel condition (Corollary 2.7).
In section 3, we prove the existence part of the problem mentioned
above using certain matrix-valued functions (in particular the so-called
Zibulski-Zeevi matrix) constructed again using the Zak transform.
First we show that the existence of a Gabor dual belonging to a
subspace generated by a possibly different Gabor window is equivalent
to the existence of a specific factorization of these matrices (Theorem
3.2) or to a certain matrix inequality (Theorem 3.5). Finally, the
uniqueness of the oblique dual is characterized in the last section
(Theorem 4.2).

We refer the reader to the books [7, 9, 10, 15, 16, 18] as well as the
papers [6, 17] for information on frames and, more particularly, wavelet
and Gabor frames.

2. Some characterizations using the Zak transform Let g be
a window in L2(R) and consider the Gabor system G(b, a, g) where
a b is rational, i. e. a b = p

q where p, q are positive integers satisfying
gcd(p, q) = 1. If n ∈ Z, we can write n uniquely as n = i + �q with
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� ∈ Z and i ∈ {0, 1, . . . , q − 1}. Therefore, we have that

EmbTnag(x) = gmb, np
bq

(x) = gmb, ip
qb + �p

b
(x)

= e2πimbxg

(
x − ip

qb
− �p

b

)
= gi

mb, �p
b

(x),

where gi(x) := g
(
x− ip

qb

)
. The Zak transform Zb : L2(R) → L2([0, 1]×

[0, 1]) is defined by the formula

Zbg(x, w) = b−
1
2

∑
k∈Z

g

(
x − k

b

)
e2πikw, (x, w) ∈ [0, 1] × [0, 1],

and it is an isometric isomorphism between the two Hilbert spaces. It
is easily checked that

Zb(gmb, n
b
)(x, w) = e2πimxe−2πinwZbg(x, w), m, n ∈ Z.

Therefore, defining the function Em,n of two variables by

Em,n(x, w) = e2πimx e2πinw, (x, w) ∈ [0, 1]× [0, 1],

we have

(2.1) Zb(gi
mb, �p

b

)(x, w) = Em,−�p(x, w)Zbg
i(x, w).

Note that a mapping with values in C
n (resp. Mm,n, the space of

complex matrices of size m×n) is called measurable if all its components
(resp. entries) are measurable. Clearly, all the mappings defined in the
next definition are measurable.

Definition 2.1. Given a window function g in L2(R), we will
associate with g a collection of q vector-valued functions Gi, i =
0, . . . , q − 1 with values in Cp whose component functions are defined
by

Gi
k(x, w) =

(Zbg
i
)
(x, w + k/p) , k = 0, . . . , p − 1.

for (x, w) in [0, 1]× [0, 1/p]. We also define the Zibulski-Zeevi matrix on
the set [0, 1/q] × [0, 1/p], as the matrix-valued function G, with values
in the space Mq,p of complex matrices of size q × p, with entries

(2.2) Gik(x, w) =
(Zbg

i
)
(x, w + k/p) , i = 0, . . . q−1, k = 0, . . . , p−1.
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The mapping L that maps g to the q × p matrix-valued function G is
an isometric isomorphism (as a mapping from L2(R) = L2(R, C) to
the space of matrix-valued functions L2([0, 1/q]× [0, 1/p],Mq,p) if the
matrix norm of a q × p matrix C = (cjk) is the Hilbert-Schmidt norm
defined as

‖C‖2
Mq,p

=
q−1∑
j=0

p−1∑
k=0

|cjk|2

and the norm of matrix-valued function G is defined by the formula

‖G‖2 =
∫ 1/q

0

∫ 1/p

0

‖G(x, w)‖2
Mq,p

dw dx.

Note that the rows of G are the row vectors Gi, i = 0, . . . q−1. We will
also denote by K the operator which maps a function f ∈ L2(R) to the
vector-valued function F = Kf = (F0, . . . , Fp−1) whose p components
are in L2([0, 1] × [0, 1/p]) and are defined by

Fk(x, w) = (Kf)k (x, w) = (Zbf) (x, w + k/p) , k = 0, . . . , p − 1.

It is easily checked that the mapping K : L2(R, C) → L2([0, 1] ×
[0, 1/p], Cp) is also an isometric isomorphism if Cp is equipped with
its standard Euclidean norm.

The following result characterizing the Bessel condition is due to
Zibulski and Zeevi (see also [2]).

Theorem 2.2 ([19]). Let a, b > 0 with ab = p/q and gcd(p, q) = 1.
Consider g ∈ L2(R) and let G be defined by formula (2.2). Then, the
following are equivalent.

(a) There exists a positive constant B such that the inequality∑
m,n∈Z

|〈f, EmbTnag〉|2 ≤ B‖f‖2, f ∈ M(b, a, g),

holds.

(b) G∗ G ≤ Bp I a. e. where I denotes the p × p identity matrix.

(c) G G∗ ≤ Bp I a. e. where I denotes the q × q identity matrix.
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It follows immediately from the previous proposition that a necessary
and sufficient condition for a collection G(b, a, g) to satisfy the Bessel
condition (in the case that ab = p/q with gcd(p, q) = 1) is that the Zak
transform of g, Zbg, belongs to L∞([0, 1] × [0, 1]).

We will need the following result from [12] (see also [2]) which
characterizes subspace Gabor frames in the rational case.

Theorem 2.3 ([12]). Let a, b > 0, with ab = p/q, gcd(p, q) = 1.
The collection G(b, a, g) is a subspace Gabor frame with frame bounds
A and B for the subspace M(b, a, g) if and only if

Ap ξ ≤ ξ2 ≤ Bp ξ, a. e. on [0, 1]× [0, 1/p],

where ξ = G G∗.

Note that if ξ is a positive semi-definite matrix, the matrix inequalities
Ap ξ ≤ ξ2 ≤ Bp ξ are equivalent to

(2.3) Ap 〈x, x〉 ≤ 〈ξx, x〉 ≤ Bp 〈x, x〉, x ∈ ker ξ⊥,

as follows easily from the spectral theorem.

Lemma 2.4. Let a, b > 0 and ab = p/q with gcd(p, q) = 1.
Let g ∈ L2(R) and assume that G(b, a, g) is a Bessel collection.
Then h ∈ L2(R) is orthogonal to M(b, a, g) if and only if, for a. e.
(x, w) ∈ [0, 1] × [0, 1/p], we have

〈H(x, w), Gi(x, w)〉Cp = 0, i = 0, . . . , p − 1,

where the vector-valued functions Gi, i = 0, . . . , q − 1 and H = Kh are
as in Definition 2.1.

Proof. Let us prove the necessity part of the equivalence first. Let
h ∈ L2(R), and assume that h ⊥ M(b, a, g). This is equivalent to

〈h, EmbTlp/b gi〉 = 0, m, l ∈ Z, i = 0, . . . , q − 1,
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or, using the fact that the Zak transform is an isometric isomorphism
together with (2.1), to∫ 1

0

∫ 1

0

Zbh(x, w)Zbgi(x, w) Em,−�p(x, w) dw dx = 0, m, l ∈ Z,

or, to

∫ 1

0

∫ 1/p

0

p−1∑
k=0

Zbh

(
x, w+

k

p

)
Zbgi

(
x, w+

k

p

)
e−2πimx e2πi�pw dw dx=0

for all m, l ∈ Z. Using our definitions of H and Gi, i = 0, . . . , q − 1, we
can rewrite this last set of equations as

(2.4)
∫ 1

0

∫ 1/p

0

〈H(x, w), Gi(x, w)〉Cp e−2πimx e2πilpw dw dx=0, m, l ∈ Z.

Using Theorem 2.2, it follows easily that the function 〈H, Gi〉Cp belongs
to L2([0, 1] × [0, 1/p]) and, since the collection {e2πimx e−2πilpw}m,l∈Z

forms an orthogonal basis for L2([0, 1]× [0, 1/p]), we deduce from (2.4)
that for a. e. (x, w) belonging to the set [0, 1] × [0, 1/p], we have

〈H(x, w), Gi(x, w)〉Cp = 0, i = 0, . . . , q − 1.

Since this argument can clearly be reversed, our proof is now completed.

We now characterize the functions in M(b, a, g) using the Zak trans-
form.

Proposition 2.5. Let a, b > 0 with ab = p/q and gcd(p, q) = 1.
Let g ∈ L2(R) such that G(b, a, g) forms a Bessel collection. Then,
f ∈ L2(R) belongs to M(b, a, g) if and only if F = Kf has the
representation

(2.5) F =
q−1∑
i=0

ai Gi a. e. on [0, 1] × [0, 1/p],
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where the functions ai : [0, 1] × [0, 1/p] → C, i = 0, . . . , q − 1, are
measurable and satisfy

(2.6)
∫

[0,1]

∫
[0,1/p]

∥∥∥∥ q−1∑
i=0

ai(x, w)Gi(x, w)
∥∥∥∥2

Cp

dw dx < ∞.

In particular, if ai ∈ L2([0, 1] × [0, 1/p]), i = 0, . . . , q − 1, then there
exists a function f which belongs to M(b, a, g) such that

Kf =
q−1∑
i=0

aiG
i.

Proof. Let us first assume that f ∈ L2(R) is such that Kf =∑q−1
i=0 ai Gi where the coefficients ai, i = 0, . . . , q − 1, are measurable

functions satisfying (2.6) and let h ∈ L2(R) with h⊥M(b, a, g). We
have, letting H = Kh,

〈h, f〉 =
∫ 1

0

∫ 1

0

Zbh(x, w)Zbf(x, w) dw dx

=
∫ 1

0

∫ 1/p

0

p−1∑
k=0

Zbh(x, w + k/p)Zbf(x, w + k/p)dw dx

=
∫ 1

0

∫ 1/p

0

〈H(x, w), F (x, w)〉Cp dw dx

=
q−1∑
i=0

∫ 1

0

∫ 1/p

0

ai(x, w) 〈H(x, w), Gi(x, w)〉Cp dw dx = 0

using Lemma 2.4. It follows that such a function f must belong to
M(b, a, g).

To obtain the converse result, let us consider indices i1, . . . , ir with
0 ≤ i1 ≤ i2 ≤ . . . ≤ ir ≤ q − 1 for 1 ≤ r ≤ q and let us define
Ei1,... ,ir to be the subset of [0, 1] × [0, 1/p] where Gi1 , . . . , Gir are
linearly independent and with the property that

span(Gi1 , . . . , Gir ) = span(G0, . . . , Gq−1).
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Note that each set Ei1,... ,ir is measurable since it can be expressed as
the intersection of the measurable sets

{det(〈Gk, Gl〉Cp)k,l∈{i1,... ,ir} 	= 0}
and {det(〈Gk, Gl〉Cp)k,l∈{j,i1,... ,ir} = 0},

where j varies over all the indices in {0, . . . , q − 1} different from
i1, . . . , ir. Defining K to be the subset of [0, 1]× [0, 1/p] where Gi = 0,
for all i = 0, . . . , q − 1, we have

(2.7) [0, 1] × [0, 1/p] = K
⋃⎡⎣q−1⋃

r=1

⋃
0≤i1≤i2≤...≤ir≤q−1

Ei1,... ,ir

⎤⎦ .

The sets Ei1,... ,ir are not necessarily disjoint, but we can replace them
with a pairwise disjoint collection of measurable sets Fi1,... ,ir with
Fi1,... ,ir ⊆ Ei1,... ,ir such that the equality (2.7), with Ei1,... ,ir replaced
by Fi1,... ,ir , holds as a disjoint union. Assume that the measure of the
set Fi1,... ,ir is not zero. Let f ∈ L2(R), and let F = Kf . Note that we
can write

(2.8) F =
q−1∑
i=0

ai Gi + H

uniquely on the set Fi1,... ,ir , where ai = 0 for i 	∈ {i1, . . . , ir}, and
〈H, Gi〉 = 0 for i = 0, . . . , q − 1. Furthermore, the coefficients ai,
i = 0, . . . , q − 1, are measurable. This is clear for i 	∈ {i1, . . . , ir}
and for i ∈ {i1, . . . , ir}, the coefficients ai are obtained by solving the
non-singular linear system of equations

〈F, Gik 〉Cp =
r∑

j=1

aij 〈Gij , Gik〉Cp , k = 1, . . . , r,

where all the coefficients involved are measurable, and thus the ai are
also measurable. Letting all the coefficients ai = 0 on K, we can thus
obtain the representation (2.8) for F on the whole set [0, 1] × [0, 1/p]
with the coefficients ai, i = 0, . . . , q − 1, being measurable and with
〈H, Gi〉 = 0 for each such i. Letting Q =

∑q−1
i=0 ai Gi and using the
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fact that Q is just the orthogonal projection of F onto the subspace
spanned by the vectors Gi, i = 0, . . . , q − 1, we deduce that

‖Q‖Cp ≤ ‖F‖Cp on [0, 1]× [0, 1/p].

In particular, the vector-valued function Q is square-integrable on
[0, 1] × [0, 1/p] and there exists thus a function q ∈ L2(R) such that
Kq = Q. The first part of the proof shows that q ∈ M(b, a, g). If we
now assume that f ∈ M(b, a, g), we have also f − q ∈ M(b, a, g) and,
since K(f − q) = H , it follows from Lemma 2.4 that f − q⊥M(b, a, g).
Hence, f − q = 0 or f = q, which yields the identity (2.5). To prove
the last statement of the result, we use (c) of Theorem 2.2, to obtain
the inequality

∥∥∥∥ q−1∑
i=0

ai Gi

∥∥∥∥2

Cp

=
q−1∑

i,j=0

ai aj 〈Gi, Gj〉Cp =
q−1∑

i,j=0

ai aj (G G∗)ij ≤Bp

q−1∑
i=0

|ai|2

which yields (2.6). This completes the proof.

Corollary 2.6. Let a, b > 0 with ab = p/q and gcd(p, q) = 1. Let
g ∈ L2(R) such that G(b, a, g) forms a subspace Gabor frame. Then,
f ∈ L2(R) belongs to M(b, a, g) if and only if

(2.9) F =
q−1∑
i=0

ai Gi a. e. on [0, 1] × [0, 1/p],

where F = Kf and the functions ai : [0, 1] × [0, 1/p] → C, i =
0, . . . , q − 1, belong to L2([0, 1] × [0, 1/p]).

Proof. The sufficiency part of the proof follows from the last part of
Proposition 2.5. To prove the necessity part of the statement consider
the frame operator S associated with the collection G(b, a, g):

Sf =
∑

m,n∈Z

〈f, gmb,na〉 gmb,na, f ∈ M(b, a, g).
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A computation similar to the one leading to formula (3.5) yields

K(Sf) =
1
p

q−1∑
i=0

〈F, Gi〉Cp Gi :=
1
p
SF on [0, 1] × [0, 1/p],

where S denotes the frame operator associated with the finite collection
{Gi}q−1

i=0 . Since, for f ∈ M(b, a, g), we have

F = K(SS−1f) =
1
p

q−1∑
i=0

〈K(S−1f), Gi〉Cp Gi =
1
p
S (K(S−1f)

)
,

it follows that S−1F = 1
p K(S−1f) and thus the functions 〈S−1F, Gi〉Cp ,

where i = 0, . . . , q − 1, are measurable on [0, 1] × [0, 1/p]. Note that,
since for i, j = 0, . . . q − 1, we have (G G∗)ij = 〈Gi, Gj〉Cp , a finite
sequence {bi}q−1

i=0 ∈ C
q belongs to the kernel of G G∗ if and only if

(2.10)
q−1∑
i=0

bi Gi = 0

as
q−1∑

i,j=0

(G G∗)ij bj bi = ‖
q−1∑
i=0

bi Gi‖2
Cp .

In particular, the sequence {〈Gi, S−1F 〉Cp}q−1
i=0 belongs to ker(G G∗)⊥

since
q−1∑
i=0

〈Gi, S−1F 〉Cp bi = 〈
q−1∑
i=0

bi Gi, S−1F 〉Cp = 0

if {bi}q−1
i=0 ∈ ker(G G∗). Letting ai = 〈S−1F, Gi〉Cp , for i = 0, . . . , q − 1,

and using Theorem 2.3, it follows that

q−1∑
i=0

|〈S−1F, Gi〉Cp |2 =
q−1∑
i=0

|ai|2 ≤ 1
Ap

q−1∑
i,j=0

(G G∗)ij aj ai

=
1

Ap
‖

q−1∑
i=0

ai Gi‖2
Cp =

1
Ap

‖S S−1F‖2
Cp =

1
Ap

‖F‖2
Cp .
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This shows that F =
∑q−1

i=0 ai Gi, where the coefficients ai, i =
0, . . . , q − 1, are square-integrable, which proves our claim.

Corollary 2.7. Let a, b > 0 and ab = p/q and gcd(p, q) = 1. Let
g ∈ L2(R) be such that G(b, a, g) forms a subspace Gabor frame. Then,
the following are equivalent:

(a) The function f ∈ L2(R) belongs to M(b, a, g) and G(b, a, f) has
the Bessel property.

(b) We have

(2.11) F =
q−1∑
i=0

ai Gi a. e. on [0, 1] × [0, 1/p],

where F = Kf and the functions ai : [0, 1] × [0, 1/p] → C, i =
0, . . . , q − 1, belong to L∞([0, 1] × [0, 1/p]).

Proof. If (b) holds, it follows from (2.11) that all the components
of F belong to L∞([0, 1] × [0, 1/p]) since ai and all the components
of Gi belong to that same space, for i = 0, . . . , q − 1. Hence,
Zbf ∈ L∞([0, 1]× [0, 1]) which is equivalent to G(b, a, f) being a Bessel
collection. The fact that f ∈ M(b, a, g) follows from Proposition 2.5.
Hence (a) holds. Conversely, if f ∈ M(b, a, g) is such that G(b, a, f) has
the Bessel property, note that the collection G(b, a, S−1f) also satisfies
that same property, where S denotes the frame operator associated
with the frame M(b, a, g). Indeed if, h ∈ L2(R), we have∑

m,n∈Z

|〈h, EmbTnaS−1f〉|2 =
∑

m,n∈Z

|〈h, S−1EmbTnaf〉|2

=
∑

m,n∈Z

|〈S−1h, EmbTnaf〉|2 ≤ C ‖S−1‖2 ‖h‖2,

where C denotes the Bessel constant associated with M(b, a, f). In
particular, this shows that Zb

(
S−1f

)
belongs to L∞([0, 1]× [0, 1]) and

thus all the components of K (S−1f
)

belong to L∞([0, 1] × [0, 1/p]).
Proceeding as in the proof of Corollary 2.6, we can write, using the
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fact that f ∈ M(b, a, g),

F =
q−1∑
i=0

ai Gi a. e. on [0, 1]× [0, 1/p],

where, for each i = 0, . . . , q − 1,

ai = 〈S−1F, Gi〉Cp =
1
p
〈K (S−1f

)
, Gi〉Cp ∈ L∞([0, 1] × [0, 1/p]),

which yields (b).

3. Existence of oblique Gabor duals Our main goal in this
section will be to answer the following question about Gabor dual
systems in the rational case ab = p

q where gcd(p, q) = 1. Suppose
that two subspace Gabor frames G(b, a, g) and G(b, a, k) are given.
When can we find a function h in the subspace generated by the second
Gabor frame such that the collection G(b, a, h) is a Gabor dual for the
first one? Before dealing with this problem, we first need to introduce
some notation that we will use throughout this section. We associate as
before with the function g generating the first Gabor system a collection
Gi, i = 0, . . . q−1 of vector-valued functions (with values in Cp)) defined
as in Definition 2.1. We also associate with our second generator k a
collection Ki, i = 0, . . . q − 1, of vector-valued functions defined in the
same way. We then define two matrix-valued function ξ and η on the
set [0, 1] × [0, 1/p] with values in Mq,q, the space of complex matrices
of size q × q, by the formula

(3.1) ξij = 〈Gi, Gj〉Cp , ηij = 〈Ki, Gj〉Cp , i, j = 0, . . . , q − 1.

We first begin by rephrasing the duality conditions for our Gabor sys-
tems in terms of the Zak transform. Note that a different characteri-
zation for Gabor duality in the case of frames for L2(R) can be found
in [4].

Proposition 3.1. Let a, b > 0 with ab = p/q and gcd(p, q) = 1.
Let g and h be functions in L2(R) generating subspace Gabor frames
M(b, a, g) and M(b, a, h), respectively. Then, M(b, a, h) is a dual
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frame for the subspace Gabor frame M(b, a, g) if and only if the equa-
tions

(3.2) Gk =
1
p

q−1∑
i=0

〈Gk, Hi〉Cp Gi, k = 0, . . . , q − 1,

hold a. e. on [0, 1]× [0, 1
p ], where Gi = K

(
g(· − ip

qb )
)

( as in Definition

2.1) and Hi = K
(
h(· − ip

qb )
)
, for i = 0, . . . , q − 1.

Proof. Under the assumptions given, let us assume that M(b, a, h)
is a dual frame for M(b, a, g). Let f ∈ M(b, a, g). Then,

(3.3) f =
∑

m,n∈Z

〈f, hmb, np
bq
〉 gmb, np

bq
=
∑

m,�∈Z

q−1∑
i=0

〈f, hi
mb, �p

b

〉 gi
mb, �p

b

,

where gi = g(· − ip
qb ) and hi = h(· − ip

qb ) for i = 0, . . . , q − 1. Hence,

Zbf =
∑

m,�∈Z

q−1∑
i=0

〈Zbf, Zbh
i
mb,�p/b〉Zbg

i
mb,�p/b

=
q−1∑
i=0

Zbg
i
∑

m,�∈Z

〈ZbfZbhi, Em,−lp〉Em,−lp(3.4)

Since

〈ZbfZbhi, Em,−lp〉 =
∫ 1

0

∫ 1

0

Zbf(x, w)Zbhi(x, w) e−2πimx e2πi�pw dw dx

=
∫ 1

0

∫ 1/p

0

p−1∑
k=0

Zbf

(
x, w +

k

p

)
Zbhi

(
x, w +

k

p

)
e−2πimx e2πi�pw dw dx

=
∫ 1

0

∫ 1/p

0

〈F (x, w), Hi(x, w)〉Cp e−2πimx e2πi�pw dw dx,

where F = Kf , we deduce from (3.4) and the fact that {√p Em,−lp}m,n∈Z

is an orthonormal basis for L2([0, 1] × [0, 1/p]), that

Zbf =
1
p

q−1∑
i=0

〈F, Hi〉Cp Zbg
i,
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or equivalently, that

(3.5) F =
1
p

q−1∑
i=0

〈F, Hi〉Cp Gi on [0, 1]× [0, 1/p].

The equations (3.2) follow from (3.5) by letting F = Gk, for k =
0, . . . , q − 1. Conversely, if the equations (3.2) hold, then so does (3.5)
for every F = Kf if f ∈ M(b, a, g), by Proposition 2.5. Reversing the
previous argument, we obtain (3.3), which completes the proof.

Our next result is a charaterization for the existence of an oblique
Gabor dual in a particular Gabor subspace in terms of a factorization
involving the matrix-valued functions introduced in (3.1).

Theorem 3.2. Let g, k ∈ L2(R) generate subspace Gabor frames
G(b, a, g) and G(b, a, k), respectively. Then, there exists a function
h ∈ M(b, a, k) such that the collection G(b, a, h) is a Gabor dual for
the Gabor frame G(b, a, g) if and only if there exists a matrix-valued
function γ : [0, 1/q] × [0, 1/p] → Mq,q whose entries all belong to
L∞([0, 1/q]× [0, 1/p]) such that the identity

(3.6) ξ = ξ γ η

holds a. e. on [0, 1/q]× [0, 1/p].

Proof. Let us first assume the existence of h ∈ M(b, a, k) with the
property G(b, a, h) is a Gabor dual for the Gabor frame G(b, a, g).
Define for each i = 0, . . . , q − 1 the vector-valued functions Hi :
[0, 1]× [0, 1/p] → Cp by

Hi
k(x, w) =

(Zbh
i
)
(x, w + k/p) ,

(x, w) ∈ [0, 1] × [0, 1/p], k = 0, . . . , p − 1.

By Proposition 3.1, we have

(3.7) Gk =
1
p

q−1∑
i=0

〈Gk, Hi〉Cp Gi, k = 0, . . . , q − 1,
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and, by Corollary 2.7, there exist, for each i = 0, . . . , q − 1, coefficients
γij ∈ L∞([0, 1] × [0, 1/p]), which define the matrix-valued function γ,
such that

(3.8) Hi = p

q−1∑
j=0

γij Kj, a. e. on [0, 1]× [0, 1/p].

In particular, it follows that

(3.9) 〈Gk, Hi〉Cp = 〈Gk, p

q−1∑
j=0

γij Kj〉Cp = p

q−1∑
j=0

γij 〈Gk, Kj〉Cp .

Using equation (3.7), we have thus

(3.10) Gk =
q−1∑
i=0

q−1∑
j=0

γij 〈Gk, Kj〉Cp Gi, k = 0, . . . , q − 1.

Hence, for each k, l = 0, . . . , q − 1,

ξlk = 〈Gl, Gk〉Cp =
q−1∑
i=0

q−1∑
j=0

γij 〈Kj , Gk〉Cp 〈Gl, Gi〉Cp = (ξ γ η)lk,

yielding (3.6) on the set [0, 1] × [0, 1/p], and thus also on the smaller
set [0, 1/q]× [0, 1/p]. Conversely, if (3.6) holds for some matrix-valued
function γ : [0, 1/q] × [0, 1/p] → Mq,q with entries in L∞([0, 1/q] ×
[0, 1/p]), we can easily obtain (3.7), where the vector-valued function
Hi, i = 0, . . . , q − 1, are defined as in (3.8) (but on the smaller set
[0, 1/q] × [0, 1/p]). Since the mapping L constructed in Definition 2.1
is an isomorphism, there exists a unique function h ∈ L2(R) such
that Hi = K

(
h(. − ip

qb )
)

on the set [0, 1/q] × [0, 1/p]. The almost-

everywhere boundedness of each vector-function Hi, i = 0, . . . q− 1, on
[0, 1/q] × [0, 1/p] is easily seen to be equivalent to the boundedness of
Kh on the set [0, 1] × [0, 1/p]. Furthermore, the representation of each
Hi given in (3.8) on the set [0, 1/q] × [0, 1/p] easily implies a similar
representation for the vector-functionKh on the set [0, 1]×[0, 1/p]. This
shows, using Corollary 2.7, that h ∈ M(b, a, k) and that G(b, a, h) is a
Bessel collection. Furthermore, using Proposition 3.1, we deduce that
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G(b, a, h) is a Gabor dual for the Gabor frame G(b, a, g) as claimed.

Of course, the characterization obtained in the previous theorem
can be seen as somewhat vacuous unless a condition for the existence
of the matrix-valued function γ is given. Our next goal is to give
such a condition which will be expressed in terms of a certain matrix
inequality. We first need some preliminary lemmas.

Lemma 3.3. Let g, k ∈ L2(R) generate subspace Gabor frames
G(b, a, g) and G(b, a, k), respectively, and let ξ, η : [0, 1/q]× [0, 1/p] →
Mq,q be defined as in (3.1). Then,

(a) There exists a constant D > 0 such that D ξ − η∗ η ≥ 0 a. e. on
[0, 1/q]× [0, 1/p].

(b) η = 0 on ker(ξ).

(c) η∗ maps Cq to ker(ξ)⊥.

(d) ξ maps ker(ξ)⊥ to itself and the mapping ξ : ker(ξ)⊥ → ker(ξ)⊥

is an isomorphism.

(e) The mapping P : [0, 1/q] × [0, 1/p] → Mq,q is measurable, where
P denotes the orthogonal projection onto ker(ξ).

Proof. If u ∈ Cq, we have

〈η∗ η u, u〉 =‖η u‖2
Cq=

q−1∑
i=0

∣∣∣∣∣∣
q−1∑
j=0

〈Ki, Gj〉Cp uj

∣∣∣∣∣∣
2

=
q−1∑
i=0

∣∣∣∣∣∣〈Ki,

q−1∑
j=0

uj Gj〉Cp

∣∣∣∣∣∣
2

≤
(

q−1∑
i=0

∥∥Ki
∥∥2

Cp

) ∥∥∥∥∥∥
q−1∑
j=0

uj Gj

∥∥∥∥∥∥
2

Cp

.

On the other hand,

〈ξu, u〉 =
q−1∑

i,j=0

〈Gi, Gj〉Cp uj ui =
∥∥ q−1∑

j=0

uj Gj
∥∥2

Cp .
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Hence, we have D ξ − η∗ η ≥ 0 with D =
∑q−1

i=0 ‖Ki‖2
Cp , which proves

(a). If u ∈ ker(ξ), we have, using (a), that

‖η u‖2
Cq = 〈η∗ η u, u〉Cq ≤ D 〈ξ u, u〉Cq = 0,

which proves (b). If v ∈ C
q and u ∈ ker(ξ), we have, using (b), that

〈η∗ v, u〉Cq = 〈 v, η u〉Cq = 0.

Hence, η∗ v ∈ ker(ξ)⊥ and (c) holds. Since ξ∗ = ξ, ξ maps ker(ξ)⊥ to
itself and since the restriction of ξ to ker(ξ)⊥ is clearly injective, (d)
follows. Finally, since P = limN→∞ exp(−N ξ), P is measurable which
proves (e). (This is an argument borrowed from [6].)

Lemma 3.4. Let (Ω, μ) be a measure space. Let A : Ω → Mm,m be
a measurable matrix-valued function such that, for a. e. ω ∈ Ω, there
exists a subspace N(ω) of Cm such that

(a) PN : Ω → Mm,m is measurable, where PN (ω) denotes the
orthogonal projection onto N(ω).

(b) A(ω) = 0 on N(ω).

(c) A(ω) maps N(ω)⊥ to itself and, if Ã(ω) denotes the restriction
of A(ω) to N(ω)⊥, the mapping Ã(ω) : N(ω)⊥ → N(ω)⊥ is an
isomorphism.

Then, the mapping B : Ω → Mm,m defined by

B(ω) =
{

0 on N(ω),
Ã−1(ω) on N(ω)⊥,

is measurable.

Proof. Let A1 = A + PN : Ω → Mm,m. Then, A1(ω) is measurable
and invertible (as a mapping from Cm to itself) for a. e. ω ∈ Ω. Hence,
A−1

1 is measurable since, clearly, the standard formulas to compute
the inverse of a square matrix only use measurable operations. Since
B = A−1

1 − PN , the result follows.

The main result of this section, which we prove next, can be seen as
the analogue for Gabor systems of the statement (i) and (ii) of Theorem
1.1 concerning shift-invariant systems.
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Theorem 3.5. Under the conditions of the previous theorem, there
exists a matrix-valued function γ : [0, 1/q] × [0, 1/p] → Mq,q whose
entries all belong to L∞([0, 1/q] × [0, 1/p]) satisfying (3.6) if and only
if there exists a constant C > 0 such that

(3.11) ξ ≤ C η∗η a. e. on [0, 1/q]× [0, 1/p].

Proof. Assume first the existence of a matrix-valued function γ
as above such that (3.6) holds. Since the entries of γ belong to
L∞([0, 1/q]×[0, 1/p]), it follows that the operator norm of γ is uniformly
bounded a. e. on [0, 1/q]× [0, 1/p], i. e. there exists a constant C1 > 0
such that, for almost every (x, w) ∈ [0, 1/q]× [0, 1/p], we have

‖γ(x, w)u‖Cq ≤ C1 ‖u‖Cq , u ∈ C
q.

Furthermore, it follows from (2.3) that the operator norm of ξ is
uniformly bounded a. e. by B p. Hence, if u ∈ Cq, we have, using
(3.6),

〈ξ2 u, u〉Cq = 〈ξ u, ξ u〉Cq = 〈ξ γ η u, ξ γ η u〉Cq = 〈η u, γ∗ξ2 γ η u〉Cq

≤ ‖η u‖Cq ‖γ∗ξ2 γ η u‖Cq

≤ C2
1 B2 p2 ‖η u‖2

Cq .

Therefore, letting D = C2
1 B2 p2, we have, using (2.3) again,

〈η∗ η u, u〉Cq = ‖η u‖2
Cq ≥ D−1 〈ξ2 u, u〉Cq ≥ D−1 Ap 〈ξ u, u〉Cq ,

which yields (3.11) with C = D (Ap)−1. Conversely, let us assume that
the inequality (3.11) holds. Then, the mapping η is injective on ker(ξ)⊥.
Indeed, if u ∈ ker(ξ)⊥ and η u = 0, (3.11) implies that 〈ξ u, u〉 = 0 and
thus that u = 0, using part (d) of Lemma 3.3. Using (c) in that same
lemma, it follows that η∗η maps ker(ξ)⊥ to itself, and thus the mapping
η∗η : ker(ξ)⊥ → ker(ξ)⊥, which we will denote by α, is an isomorphism.
Define the mapping β : [0, 1/q]× [0, 1/p] → Mq,q by

β =
{

0 on ker(ξ),
α−1 on ker(ξ)⊥.
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Using part (e) of Lemma 3.3 together with Lemma 3.4, it follows that
β is measurable. Furthermore, if u ∈ ker(ξ)⊥, we have using (3.11) and
Theorem 2.3, that

〈η∗η u, u〉Cq ≥ C−1 〈ξ u, u〉Cq ≥ C−1 Ap 〈u, u〉Cq

which shows that

〈α−1 u, u〉Cq ≤ C (Ap)−1 〈u, u〉Cq .

This implies that the operator norm of α−1 and thus that of β, is
uniformly bounded a. e. on [0, 1/q] × [0, 1/p]. In particular, all the
entries of β belong to L∞([0, 1/q] × [0, 1/p]). Define now γ = β η∗.
Since G(b, a, g) and G(b, a, k) are both Bessel collections, it easily
follows from Theorem 2.2 that η, and thus also η∗, are uniformly
bounded a. e. on [0, 1/q] × [0, 1/p]. Hence the entries of γ belong to
L∞([0, 1/q]× [0, 1/p]). Since we have η u = 0 for u ∈ ker(ξ) by part (b)
of Lemma 3.3, it follows that

ξ γ η u = 0 = ξ u.

On the other hand, if u ∈ ker(ξ)⊥, we have

ξ γ η u = ξ α−1 η∗ η u = ξ u.

Hence, we deduce that ξ = ξ γ η, which completes the proof.

Note that the condition (3.11) for the existence of the oblique Gabor
dual obtained in the previous theorem provides the analogue of the
condition (1.5) in Theorem 1.1.

4. Uniqueness of the oblique Gabor dual In this last section, we
consider the problem of the uniqueness of the Gabor duals discussed in
the previous section. Note that this uniqueness problem was discussed
extensively in [12, 13, 14] in the case where the dual window is assumed
either to belong to the space generated by the original window (“dual of
type I”) or having the property that the range of the frame transform
associated with the dual window is contained in that of the original
window (“dual of type II”). The results obtained in this section will
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generalize some the results obtained in these papers concerning Gabor
duals of type I (in the rational case). We first need the following lemma.

Lemma 4.1 Let a, b > 0 with ab = p/q and gcd(p, q) = 1. Let
g, k ∈ L2(R) generate subspace Gabor frames G(b, a, g) and G(b, a, k),
respectively and suppose that there exists a function h ∈ M(b, a, k)
such that the collection G(b, a, h) is a Gabor dual for the Gabor frame
G(b, a, g). Then, the function h satisfying these conditions is unique if
and only if the validity of the equations

(4.1) 0 =
q−1∑
i=0

〈Gk, Li〉Cp Gi, k = 0, . . . , q − 1,

a. e. on [0, 1/q]× [1, 1/p], for vector-valued functions
Li ∈ span{K1, . . . Kq−1} with coefficients in L∞([0, 1/q] × [0, 1/p])
implies that Li = 0, i = 0, . . . , q − 1, a. e. on [0, 1/q]× [0, 1/p].

Proof. The result follows from the fact that if h and h̃ are two
different Gabor duals satisfying the above conditions, then the function
l = h − h̃ can be used to define a non-trivial solution of the equations
4.1 by letting

(4.2) Li = K
(

l(. − ip

qb
)
)

, i = 0, . . . , q − 1.

Conversely, if a non-trivial solution Li, i = 0, . . . , q − 1, exists, we can
use (4.2) to define a function l 	= 0 in M(b, a, k) such that h̃ = h + l
is a Gabor dual different than h for G(b, a, g). We leave the details to
the reader.

Theorem 4.2 Let a, b > 0 with ab = p/q and gcd(p, q) = 1. Let
g, k ∈ L2(R) generate subspace Gabor frames G(b, a, g) and G(b, a, k),
respectively and suppose that there exists a function h ∈ M(b, a, k)
such that the collection G(b, a, h) is a Gabor dual for the Gabor frame
G(b, a, g). Define the sets

Ωg := {(x, w) ∈ [0, 1/q]× [0, 1/p], Gi(x, w) = 0, for i = 0, . . . , q − 1}
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and

Ωk := {(x, w) ∈ [0, 1/q]×[0, 1/p], Ki(x, w) = 0, for i = 0, . . . , q−1}.

Then, the function h satisfying the conditions above is unique if and
only if

(4.3) Ωg = Ωk (up to a set of zero measure).

and

(4.4) rank{G0, . . . , Gq−1} = q a. e. on the set [0, 1/q]× [0, 1/p] \ Ωg.

Proof. We first remark that the conditions for the existence
of a dual Gabor frame h given in Theorem 3.5 clearly imply that
Ωk ⊂ Ωg up to a set of zero measure. We will first prove the
necessity of the conditions (4.3) and (4.4). Suppose first that (4.3)
fails. Then the set Ωg \ Ωk has positive measure and there exist
i0 ∈ {0, . . . , q − 1} such that the set E := Ωg \ {Ki0 	= 0} has positive
measure. Defining Li = 0, for i 	= i0 and Li0 = Ki0 χE , where χE

denotes the characteristic function of E, we see that the equations
(4.1) in Lemma 4.1 have a solution L0, . . . , Lq−1, where the vector-
valued functions Li are not identically zero and can be expressed as
linear combinations of K0, . . . , Kq−1 with bounded coefficients. Hence,
the condition (4.3) is necessary. Suppose now that (4.3) holds but
(4.4) fails. Let e0, . . . , eq−1 denote the standard orthonormal basis
of Cq. Since the condition rank{G0, . . . , Gq−1} = q is equivalent to
ker(ξ) = 0, there exist i1 ∈ {0, . . . , q − 1} such that P (ei1) 	= 0 on a
measurable subset F1 of [0, 1/q] × [0, 1/p] \ Ωg, where P denotes the
orthogonal projection onto ker(ξ) (which is measurable by (e) of Lemma
3.3). Letting u = P (ei1), we have ‖u‖Cq ≤ 1 and

(4.5)
q−1∑
j=0

uj Gj = 0 on [0, 1/q]× [0, 1/p],

using equation (2.10). Taking into account the identity (4.3), we
deduce the existence of a measurable subset F of F1 and of an index
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j1 ∈ {0, . . . , q−1} such that Kj1 	= 0 on F . Letting Hj = uj Kj1 χF , for
j = 0, . . . , q − 1, we have Hj 	= 0 for at least one such j. Furthermore,
using (4.5), we have

q−1∑
j=0

〈Gi, Hj〉Cp Gj = 〈Gi, Kj1〉Cp

( q−1∑
j=0

uj Gj

)
= 0, i = 0, . . . , q − 1,

which implies the non-uniqueness of h, using Lemma 4.1 again. Hence,
both conditions (4.3) and (4.4) are necessary for the uniqueness of
the Gabor dual in M(b, a, k). To prove the converse, let us as-
sume that both (4.3) and (4.4) hold and let L0, . . . , Lq−1 be vector-
valued functions in span{K1, . . .Kq−1} with coefficients functions in
L∞([0, 1/q] × [0, 1/p]) such that the equations (4.1) hold. Using (4.3),
we deduce that L0 = · · · = Lq−1 = 0 on Ωg. On the other hand, using
(4.4), we deduce that

〈Li, Gj〉Cp = 0, i, j = 0, . . . , q − 1, on [0, 1/q]× [0, 1/p] \ Ωg

since G0, . . . , Gq−1 are linearly independent on that set. Writing

Li =
q−1∑
j=0

ρij Kj , i = 0, . . . , q − 1,

where ρij ∈ L∞([0, 1/q] × [0, 1/p]) and considering the corresponding
matrix-valued function ρ with values in Mq,q, we have

q−1∑
j=0

ρij〈Kj , Gl〉Cp = 0, i, l = 0, . . . , q − 1,

or, equivalently, ρ η = 0. Using the matrix inequality (3.11), we
obtain that η is invertible on [0, 1/q] × [0, 1/p] \ Ωg since ξ is, and
thus that ρ = 0 on that set. This shows that L0 = · · · = Lq−1 = 0 on
[0, 1/q]× [0, 1/p] \ Ωg also, which proves our claim.

Remark 4.3. The condition (4.4) is equivalent to Ap I ≤ ξ a. e. on
the set {ξ 	= 0}.

Note that, because of the condition (4.4) involving the rank of a q×p
matrix, uniqueness of the Gabor dual can never occur in the theorem
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above when p < q or a b < 1 (unless g = k = 0). On the other hand, if
a b is an integer we have the analogue of the first part of (iii) of Theorem
1.1 as the following corollary shows.

Corollary 4.4. Suppose that the assumptions of the previous
theorem are satisfied and assume, furthermore, that a b = p ∈ N. If
a Gabor dual h for G(b, a, g) exists in G(b, a, k), then it is unique if
and only if (4.3) holds.

Proof. Note that, when q = 1, the condition (4.4) is always satisfied.

Of course, when k = g, the condition (4.3) automatically holds and
thus uniqueness always occurs in the previous corollary. This result
was obtained in [14] (see also [12, 13]). We point out that, for subspace
Gabor frames, uniqueness of the dual in M(b, a, k) (when p ≥ q) can
occur even in the case that M(b, a, k) 	= M(b, a, g) since the condition
(3.11) can be satisfied together with (4.3) and (4.4) without the span of
the vectors Ki being contained in that of the Gi. The only exception is
when a b = 1 since in that case the condition (4.3) is easily seen to be
equivalent to M(b, a, k) = M(b, a, g). This is thus the only case where
the analogue for Gabor systems of the second part in statement (iii) of
Theorem 1.1 is true.
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