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ABSTRACT. In a recent paper using a variation of the 
Kumar and Sloan new collocation-type method, we studied 
the numerical solvability of Hammerstein integral equation of 
mixed type 

m „5 

(I) x(s) + ^T ki(sìt)fi(tìx(t))dt = y(s)ì se[a,b\. 

In this paper a discretized version of the above method is 
considered. The discrete version is obtained when the inte­
grals are evaluated using quadrature formula. Using inter-
polatory quadrature rules and piecewise-polynomial function 
spaces, the convergence of the discrete approximate solutions 
to the actual solution of (I) is proved. The order of conver­
gence is obtained when the quadrature rule is of certain degree 
of precision. 

1. Introduction. In [3], we studied the numerical solvability of 
Hammerstein integral equation of mixed type 

in «5 

(1.1) x(s) + Yl ki(sìt)fi(tìx(t))dt = y(s)ì se[a,b} 
i=i Ja 

where — oo < a < b < oc, y,kj and fi are known functions and x is a 
solution to be determined. 

A discretized version of the numerical solvability discussed in [3] is 
considered in this paper. The discretized version is obtained when 
all the definite integrals required to be evaluated for computing the 
numerical solution of (1.1) using the method of [3], are approximated 
by numerical quadrature. 

The convergence of the discrete approximate solutions to the actual 
solution of (1.1) is discussed and its rate of convergence is obtained 
in certain piecewise-polynomial function spaces. When the quadrature 
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rule is of certain degree of precision, the superconvergence rates ob­
tained in [3] are maintained in the discrete case. The results obtained 
are extensions of the results of [5]. 

2. Pre l iminar ies . Let C — C[a,b] be the Banach space of 
continuous real valued functions on [a, b] equipped with uniform norm 
and let R = R[a, b] be the Banach space of bounded Riemann-integrable 
real-valued functions on [a, 6]. The following assumptions will be used 
to carry out the analysis in the spaces C and R. Let x* G C be a 
solution of (1.1) and 

B(x*,6) = {xeC : | |x - ^*||oo <<$}• 

A S S U M P T I O N S [A]. 

A l . y G C; for each z, 1 < i < ra, 

A2. the kernel ki(s.t) is continuous on a < s, t < ò, 

A3, the function fi(t,x) is defined and continuous on [a,b] x R , 

A4, the partial derivative / ? i X ( t ,x ) = (6/6x)fi(t,x) exists and is 
continuous on [a, b] x R , 

A5. the function / ^ satisfies the Lipschitz condition; there exists a 
constant ai such that 

|/i,*(*,*i(*)) - /i,*(*,*2(*))l < <*i\xi(t) - x2(t)\ 

for all t G [a, b] and all x\, x2 G £?(#*, S) for some S > 0. 

For 1 < i < ra, Assumption A2 implies that each linear integral 
operator K\ defined by 

(2.1) [Kix]{s)= ki(s,t)x(t)dt, se[a,b], xeR 
Ja 

is a compact operator from R to C and assumption A3 implies tha t 
each Nemytskii operator Ni defined as 

(2.2) [Nix](t) = fi(t,x(t)), te[a,b], xeC 

is a continuous, bounded operator from C to C. 
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So (1.1) can be written as an operator equation 

m 

(2.3) x + YÌ,KiNiX = y. 
i=l 

Existence and uniqueness of the solution of (2.3) are studied in [3]. As 
in [3], we sought the approximation in piecewise-polynomial function 
spaces which are defined below: 

For any natural number n, let 

J J : a = si < s2 • • • < sn < sn+1 = b 
n 

be a partition of [a, b] and let 

h — h(n) = max (s^+i — Si). 
l<i<n 

Assume that h —• 0 as n —> oo and the partition Y\n
 ls quasi-uniform, 

that is there exists a constant ß such that 

h < ß min (si+i — st). 
1 < ?" < n 

With r a positive integer and 7 an integer satisfying 0 < 7 < r, 
let S^n denote the space of piecewise-polynomial functions of order r 
and continuity 7. That is (/> € S^n, ^ an<^ on^y ^' ^ ^s a polynomial 
of degree < r — 1 on each subinterval (s^,s î +i), 1 < i < n and has 
7 — 1 continuous derivatives on (a, ò). If 7 = 0 there is no continuity 
requirement at break points s?;, 1 < i < n + 1. In this case we arbitrarily 
take each (p £ S®n to be right continuous at s\ = a and left continuous 
at every S j , 2 < z < n + 1. 

For N = (n — l)(r — 7) + r (the dimension of S?n), let {uj}7j=l be 
a basis for S?n and let { r ? } ^ 1 be a set of distinct points in [a, 6] such 
that UJ(TÌ) = öij. 

3. Numerical Solvability. In [3], the numerical solution of (1.1), 
using a variation of new collocation-type method of [6], is computed as 
follows. 
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First find collocation approximation to the functions z^ 1 < i < ra, 
defined by 

(3.1) Zi(s) = /t(s,a:(s)), s € [a,b]. 

Substituting (3.1) in (1.1), we have 

m „5 

(3.2) x(s) = y(s) -J2 kj{s,t)zj(t)dt, s e [a,b] 
j=i Ja 

and (3.1) can be written as 

m rb 

1 < i < m. (3.3) Zi(s) = fi(s,y(s)-^2 kj(s,t)Zj(t)dty 
3=1 Ja 

The collocation approximation to Z{ is of the form 

N 

(3.4) zi,n(t) = '^2aiij
uj(t)i ! < ^ < m 

where {UJ}J
N

=1 is a basis for S^n and the coefficients a^,..., a^jv, 
1 < z < m are determined by collocating (3.3) at the (collocation) 
points r i , . . . ,Tjv: 

m ^6 

^ t . n (Tz ) = fi\ Ti, y (n) -

(3.5) 
Zi,n(Ti) = fi(Thy(ri) -^2 / kj(Ti,i)z3,n(t)dtV 

3 = 1 Ja 3 = 

1 < i < m, KKN. 

™ N pb 

ZiAn) = fi[Tl,y(Ti) -^Y^a3'q / kj{Tl,t)uq{t)dtY 
3 = 1 q=l Ja 

That is 

2,- r, (Y/Ì = f,- I TI.V(TI) — > 

(3.6) 

1 < i < m, 1<1<N. 

The approximation xn to the solution x* of (1.1) is given by 
m „fr 

Xn(s) = y(s)-yS^ ki(s,t)zi(t)dt n(s) = y(s)-^2 k3{s,t)zj{t)( 
3 = 1 Ja 

m N / „ b \ 

= y(s)-J2Y2[ / MS»^W* ÛM-
i = l g = l \ J « / 

(3.7) 



DISCRETE NUMERICAL SOLVABILITY OF MIXED TYPE 111 

Note that for 1 < i < ra, the calculation of 2^n requires the evaluation 
of the definite integrals KjUq(ri),l < j < ra, 1 < q < TV, 1 < I < N. 
Also the calculation for xn requires the evaluation of the definite 
integrals KjUq(s), 1 < j < ra, 1 < q < N, for s G [a, 6]. When 
these integrals are approximated by numerical quadrature, we get the 
discretized version of the above method, which is discussed in the next 
section. 

Let Pn : C + S7,n ~> ^r,n b e the interpolatory operator defined by 

N 

[PnX](t)=YlX(Tj}Uj(t)> telaib]i XtC + Sr,n. 
3 = 1 

Assume that the collocation points {ri}^L1 are chosen in such a way 
that Pn is uniformly bounded as an operator from C + SJn to S?ni 

that is 

(3.8) \\Pn\\<M 

where M > 0 is independent of n and 

(3.9) lim ||Pnx - x||oo = 0 for all xeC. 
n—>oo 

Using operator theoretic representations, (3.3) and (3.4), together 
with (3.5), and (3.7) can be written as 

m 

(3.10) zt = Nl(y-Y,KjZjy 1 < i < ra, 
3 = 1 

(3.11) zljU = PnN'i [y-^2 KJz3^n) > 1 - i - m ' 

and 

(3.12) xn = y - ] P ÄjZj,n 

3 = 1 

respectively. 
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THEOREM 3.1. [3]. Let Assumptions Al through A4 hold. Let x* G C 
be a solution of (1.1) and the interpolatory operator Pn satisfy (3.8) and 
(3.9). Let *52™-i(Ki,Ni)'(x*) not have —1 as an eigenvalue. Then, for 
sufficiently large n, (3.12) has a unique solution Jb fi Lib C such that 
xn —> x* in supremum norm and satisfies the error estimate 

M2\\YjKl{PnNlx* - Ntx*) 2i -En, X 

< M^^K^PnNiX* - NiX*)\\c 

i=l 

4.1 where M\,MÏ > 0 are independent of n. 

4. Discrete solvability. In the discrete method, approximate the 
integrals KjUq(ri),l < j < ra, 1 < q, I < N in (3.6) and the integrals 
Kj<uq(s), 1 < j < m, 1 < q < Ar, s G [a, 6] in (3.7) by numerical 
quadrature process of [4]. 

For x G R[0,1], let the points P I , . . . , P L G [0,1] and the weights 
w\,..., WL generate the quadrature rule 

(4.1) / x(t)dt~Y.w3x^j) 
J° 3 = 1 

which is exact for polynomials of degree < p, but not exact for 
polynomials of degree p -f 1 (that is, the quadrature rule has degree 
of precision p). For 1 < i < m, let K{n : R —» C be the discrete 
integral operator defined by 

n L 

(4.2) [KiiTlx](t) = ^T ̂ 2 wgh3ki{t, tjq)x(tjq), 
j = l q=l 

where hj = s J + i — Sj and tjq = Sj -f hjpq. For x G i?, K{X is 
approximated by KiiUx by shifting the quadrature rule (4.1) to each 
subinterval ( S J , S J + I ) , 1 < j < n of the partition Y[n- Note that 
the integrals to be approximated in (3.6) and (3.7) are of the form 
Ki<j)n 1 < i < m where <j)n G SJn. The following theorem gives an 
estimate in the quadrature error, for this case. 
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For 1 < i < ra, let kf(t) = ki(s,t) for a < s,t < b. For 1 < p < oc, 
with I a non-negative integer, let Wf — Wf{a,b) be the usual Sobolev 
space with norm || • ||/,p ([1]). 

THEOREM 4.1. [4] For 1 < i < m, let kf e W*(ß > 1) and ||fcf | | M 

be bounded independently of s. Then for all <\>n G S^n 

r ^ i 

| | ( ^ - ^ , n ) 0 n | | < c , ^ max J } sup | ^ J ) W | ] 

where ß — min(//,p + 1) and each c% is a constant independent of n. 

The following lemma gives the properties of Kin, 1 < i < m. 

LEMMA 4.1 [2]. For 1 < i < m, let Assumption A2 hold. Then for 
each i 

(i) Ki^nx —> KjX for all x G R, 

(ii) {K^n : n > 1} zs collectively compact. 

The discrete analogs corresponding to z^n and XJI c a n be written as 
operator equations 

m 

(4.3) ztJl = PnNi (y-^2 KJ^hn) > 1 < * < ™ 
3 = 1 

and 
m 

(4.4) xn = y - ^2 Kj^Zj^n 
3 = 1 

respectively. 

Let 
Cm = Cm[o, 6] = C x • • • x C(m times), 

/ m \ l / 2 

for U = ( U i , . . . , î / m ) É C m , | | | l i | | | o o = ( Y1T=1 \\Ui\\lo) b e t h e n 0 r m 

in Cm , 
Rm — Rm[0"> b] = R x • • • x i?(ra times) 
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and norm in Rrn be ||| • IH^ defined in a similar way. 

Let K : Rm —> CmiKn : i?m —> Cm and N : Cm —• Cm be matrix 
operators defined as follows: 

(4.5) K 

Ki K2 

Ki K2 

Ki K2 

• K„ 

K„ 

K„ 

(4.6) Kn = 

Kl,n K2,n 
Ki.n K2,n 

LA'i,n K2,n **-m,n -I 

(4.7) N = 

Ni 
No 

N7r 

Since all AYs, 1 < i < m, are compact linear operators from R to 
C, we have that K is also a compact linear and completely continuous 
operator from Rm to Cm. The properties of üQ,n, 1 < z < ra, are also 
carried over to Kn and the following lemma gives this. 

LEMMA 4.2. For 1 < i < m, let Assumption A2 hold. Then 

(i) Knu —• Ku for all u G fim, 

(ii) {A~n : n > 1} 25 collectively compact 

Let T : AL, —» C„? be defined as 

Tz = v — if z , z e R71 
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where v = (?/,...,?/) G Cm and K is as defined in (4.5). Since K is 
completely continuous, T is also completely continuous. 

Let Tn : R7n —> Cm be defined as 

Tnz = v - ATnz, z G fim. 

From Lemma 4.2, it follows that Tnz —> Tz for all z G R m and 
{Tn : n > 1} is collectively compact. Since Â  is continuous, we have 
{NTn : n> 1} is collectively compact. For 1 < i < m Assumptions A3 
and A4 imply that A7?; is continuously Frechet difîerentiable on C; its 
Frechet derivative at XQ G C is a bounded linear operator given by 

[N!(x0)u](t) = / ^ ( t , a ;oWWi) , * G [a,ft], u G C. 

Let 6i = vnxl2b and u = (x*, . . . , #*) where x* is a solution of (1.1). 
Let 

S (u ,6 i ) = {w eCm : HlooU -wllloo < « i } . 

LEMMA 4.3. Le£ assumptions [A] hold. Then for all <t>,if) G ß m tó/& 
T 0 , 7 > G £ ( U , < 5 ) ? 

IIK^ryw-^T/wiiioo^aiii«-^iiioo 

/or some constant a > 0. 

PROOF. For each w = (u?i,... ,win) G Cm , the Frechet derivative 
Nf(w ) is given by 

(4.7) N'(w) = 
N[(Wl) 

KM 
Let 0 , -0 G #m. be given by </> = (<j>u ..., 4>m) and 0 = (0, • • • > V>m)-
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Also let T^Trj) G £ ( u , 5 i ) . Now 

\\\(NT)\4>)-{NT)\n\\lo 
= \\\lNf(T4>)-N'(T^)}T\\\l0 

m m m 

<\\\n\2Y,\\N'i{y-Y,K^)-N'{y-lLK^)\ 
i= i i= i 

m m 

<|||T|||2^ sup \fiJt,y(t)-YlKiMt)) 
m 

-hx(t,y(t)-J2^j(t))\2. 
J = I 

Since u = (x*,. . . ,x*) and Tw — [y — Yl'jLi Kjwj-> —->y ~ 
Y2T=\kjwj)i f°r a n y w £ ^m given by w = (w\,..., wm), we have 
(?/ _ Z)j l i ^ j0 j ) and (2/ _ S JL i ^ j ^ j ) £ B(x*,6) and using Assump­
tion A5, we get 

1 0 0 \\\(NT)'(<l>)-(NT)'(1,)\\\l 
m m 

<\\\T\\\2JJ2aì) SUP \Y.KM^-Ht))\2 

v , ' a<t<b , 

m m 

, ( £ > ? ) ( max llA-,112)^ sup I ^ W - V i W I 2 
< 111̂ 1112 

Assumption A2 implies | | |T|| | < 00, \\Kj\\ < 00 for 1 < j < m, let 

« ^ l i m i l ^ E r i i a f j ^ a x i ^ x m l l A ^ I I 2 ) . So we have 

rn 

Thisimplies|||(7VT) ,(</))-(Arr)/(^)|||oo < a|| |^--0|| |oo and the lemma 
is proved. D 

REMARK 4.1. Lemma 4.3 holds, even if we replace T by T7 
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L E M M A 4.4. [3]. Let Assumptions Al through AA hold. Let x* G C be 
a solution of (I.I). Let —1 be not an eigenvalue of Yl'iLii^i^iYi30*)-
Then (NT)f(Nu)(u = ( # * , . . . , # * ) ) exists and does not have 1 as an 
eigenvalue. 

The following theorem gives the convergence of xn to x*. 

T H E O R E M 4.2. Let Assumptions [A] hold. Let x* e C be a solution 
of (1.1) and the interpolatory operator Pn satisfy (3.8) and (3.9). Let 
^i-iiKiNj)'(x^) not have —1 as an eigenvalue. Then for sufficiently 
large n7 (4.4) has a unique solution xn in C such that 

\\xn — x*\\00 ^ 0 as n —> oo. 

PROOF. It is easy to see that u = ( # * , . . . , £ * ) is a solution of the 
equation 

(4.8) u = TNu 

The system of equations (3.10) can be writ ten as 

(4.9) z = NTz 

in the product space. Since u is a solution of (4.8), we have that 
z = TVu (Nix*,..., Nmx*) is the solution of (4.9). Let 

Xi = (C + Sln) x - - - x (C + S^n) (m times), 

X2 = S7,n x • • • x S7.n ( m t imes). 

Let P n : x i —• X2 be defined by 

\Pn 1 

L PrJ 
Since P n is a projection, we have tha t P n is also a projection. (3.8) 
implies that P n is uniformly bounded as an operator from xi to X25 

that is 

(4.10) | | | P „ | | | < M 3 . 
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(3.9) implies that 

(4.11) lim | | |P„w - w Hloo = 0 forali w e Cm. 
71—+CG 

Using matrix operators, the system of equations (4.3) can be written 
as 

(4.12) zn = PnNTnzn. 

For the solvability of (4.4), first investigate the solvability of (4.12). For 
this verify the conditions of Theorem 2 of [8], which is a modification 
of Theorem 1 of [10]. Lemma 4.4 gives that (NT)'(Nu) does not have 
1 as an eigenvalue. As (NT)f(Nu) is compact linear, we have that 
[I - (NTY(Nu)} is nonsingular. Since {NTn : n > 1} is collectively 
compact on R, using (4.11) it can be proved (on the lines of Lemma 4 
of [5]) that for all a > 0, a G R, 

sup \\\NTn(w)-PnNTn(w)\\\oo->0 a s n - ^ o o 
weBa 

where Ba = {w : w G i2m, | | |w| | | < er}. Hence from the Appendix 
of [5], it follows that {P n NT n : n > 1} is collectively compact on R. 
Moreover for w G iïm , 

(4 13) \WP"NTnW - ^ T w l l l o o 
< | | | P n i V r n w - P n i V T w | | | 0 0 + | | | P n ^ r w -TVTwIHoo. 

Since Tnw —> Tw, N is continuous, NTnw —> NTw. Using this, 
(4.10) and (4.11) in (4.13), P n N T n w -» NTw. 

Since for all </> G Rm, Tn(j) —» Tcj) and since u is a solution of (4.8), 
there exists 6* > 0 such that for all 0,xj) G B(zì6*)ì Tn(f),Tnjß G 
B(u,6i). Using Lemma 3.1 (with T replaced by Tn) and (4.10), for all 
0 , ^ € B ( z , « * ) , 

\\\(PnNTn)
f(ct>) - (Pn7Vrny(^)|||oo < a*l||0 - Bilico 

where a* = M3«. Hence all the conditions of Theorem 2 of [8] are 
satisfied and for sufficiently large n, (4.12) has a unique solution zn 

such that | | |zn — zllloo —> 0 as n —> oo. 
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Let zn = (5i,n,---,£m,n) and z = (zu..., zm). Now (4.4) is 
equivalent to the equation 

(4.14) ü n = T n Z n 

where z n is a solution of (4.12). For if u n = (x i , n , . . . , x m , n ) is 
a solution of (4.14) then we have x\^n = • • • = xm<n = xn and 
XJI i s a solution of (4.4). Similarly if XJI i s a solution of (4.4) then 
ü n = (^n>..., #n) is a solution of (4.14). Since z n is a unique solution 
of (4.12), ü n = T n z n is a unique solution of (4.14). So ü n will be of 
the form ü n = (xn,..., xn) and xn is a unique solution of (4.4). Now 
(4.15) 
111u n U 11 loo — 111 J- nzn ~~ J- z 111oo 

m 1 / 2 ' / _j 1 \-t*-n,iZj,n -**• i%i 11oc 
i = l 
ra 

< m 1 / 2 ] T [ | | K n , z 2 z , n - KnjZiWoc + \\KnAZi - KlZl\ 

?;=i 

m 

< m 1 / 2 ^ | | # n , i | | \\Zi.n - ^ | | o c + | | ^ n , i ^ - KiZi\\c 

Illzn ~ z|||oo -^ 0 as n —> oo implies that ||^,,n — ?̂;11oo —• 0 as 
n —• oo, 1 < i < m. From Lemma 4.1, \\KnjZi — KlZi\\00 —> 0 as 
n -+ oo, 1 < i < m. Using these and uniform boundedness principle in 
(4.15), | | | ü n — u 11|oo —> 0 as n —» oo. Since 

111U n U- 111 oo — ^2 11 *̂ r?. *£ 11 oo ? 

we have ||xn — x\\ —» 0 as n —> oo. D 

As in [3], for 7 = 0 and 7 = 1, we give the order of convergence 
(referred as superconvergence) of xn to x. Also, it can be shown that 
when the kernels are sufficiently smooth, 2?,,n,l < i < ra, will exhibit 
up to 0(hr) convergence. But for 7 = 0 and 7 = 1 and for particular 
sets of collocation points, xn will exhibit a better rate of convergence, 
known as superconvergence. The sets of collocation points chosen for 
this purpose are as follows. 

file:////Zi.n
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Case 7 = 0. The dimension of S^n is N — nr and we need nr 
collocation points. Let 771, . . . , r/r be the zeros of the r t h degree Legen-
dre polynomial (f>r(s),s G [—1,1], which are known as Gauss-Legendre 
points. The collocation points { r ? } ^ = 1 are the points 771, . . . , r\r linearly 
shifted to each subinterval (si ,Sj+i) , 1 < i < n: 

T(i-i)r+j = [SÌ + Si+i + (si+i - Si)rjj]/2, l<j<r, 1 < i < n. 

Case 7 = 1. In this case r is necessarily > 2 as the collocation 
approximation is sought in S> n , the space of continuous piecewise-
polynomial functions. As the dimension of S},n is N = nr — n + 1, 
we need nr — n + 1 collocation points. Let 771, . . . , f]r-2 be the zeros of 
<l>r-i)(s), r > 3 (the first derivative of 0 r _ i ( s ) ) , which are known as 
Lobatto points. Let 77r_i = 1. The collocation points {TJ}JL1 are the 
break points s?;, 1 < i < n + 1, plus 771, . . . , 77r_i shifted linearly to each 
subinterval (s^, s?;+i), 1 < z < n: 

T ( i _ i ) ( r _ i ) + j + i = [S?; + Si + i + (s? + i - Sl)i]J}/2 

1 < j < r - 1, 1 < z < n 

with r i = S\ = a. 

For the above sets of collocation points, Pn will satisfy (3.8) and (3.9) 
([9]). Using the above sets of collocation points, we have the following 
rate of convergence of xn to x. 

T H E O R E M 4.3. Let x* G C be a solution of (1.1), let Assumptions 
[A] hold and let —1 not be an eigenvalue of ^iLii^i^iY (x*) - F°r 

1 < i < m, let NiX*Wl, \i > 1 and let k* G W\ > 1 with ||fcf | | /u 
bounded independently of s. Let £7 = min(/x,/?, 2r — 27), 7 = 0 
or 1 and let p > £7 — 1. Then for sufficiently large n, the discrete 
approximation satisfies 

P n -X*| |oo = 0 ( / i f 7 ) . 
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P R O O F . 

||«£ *£n||oc _ ||*£ ^n | |oo ~r \\Xn «^n||oo 
m 

\ \\X — XnWoQ -\- y ^ | |A7 ;Z^n — A ^ n £ ? ; i n | 

i=l 

< \\x* - ^nlloo + ^2 \\Ki(Zi,n - ^ . n ) | | oo 
i = l 

m 

+ "}T\\(Kl - Ki^Zi.nWcc 

i=l 
m 

< \\x* - Xn||oo + YJ WKiW \\(K* - Kûn)Zi.n\\oc 
i = l 

in 

- h ^ | | ( A " ? , - A ' i . n J ^ n l l o c 

2 = 1 

< O(h^) 

where the penultimate step follows from [5] and the last step follows 
from [3] and [4]. 

REMARK 4.1. From the above theorem, if /JL > r and ß > r then xn 

will exhibit a better rate of convergence than zn. We do not have a 
bet ter rate of convergence for the case 7 = 1 and r = 2. If £7 = 2r — 27 
then xn exhibit up to 0 ( / i 2 r _ 2 7 ) (super) convergence while zn exhibit 
up to 0(hr) convergence. When ß > min(/x,2r — 27), the rate of 
convergence of xn to x is the same as tha t of xn to x given in [3]. 

REMARK 4.2. Results of [5] can be obtained as corollaries by taking 
771 = 1 . 

5. N u m e r i c a l E x a m p l e . Consider the mixed Hammerstein integral 
equation 

(5.1) x(s)+ [ e-{s+t)[x{t)]2dt+ f stsinx{t)dt = y{s) 
Jo Jo 
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where y is chosen in such as way that x*(t) — t is a solution of (5.1). 
In this case y is given by 

(5.2) y(s) = s + ae~s + c2s 

where 

ci = / e~lt2 dt, C2 = / ts'mtdt. 
Jo Jo 

Discrete approximate solutions for (5.1) with y given by (5.2) are 
computed using piecewise-quadratic functions with break points Si — 
(i — l ) /n , i — 1 , . . . ,n + 1. 

According to Theorem 4.3, we can obtain 0(h4) convergence rate by 
using an interpolatory quadrature rule with degree of precision p > 3. 
To see the importance of the degree of precision of quadrature required 
in Theorem 4.3, discrete approximate solutions are computed with 
p — 1, 2 and 3. Tables 1, 2 and 3 give the estimated order of convergence 
(EOC) obtained by using Gauss 1-point rule (p = 1 ) , Ralston 1-point 
rule (p = 2) and Gauss 2-point rule (p — 3) respectively. Tables 1 and 
2 clearly indicate that the order of convergence obtained in Theorem 
4.3 is not maintained once we use quadrature rules of less degree of 
precisions than required in Theorem 4.3. 

The nonlinear algebraic system of equations are solved by using the 
subroutine BRENTM [7]. All computations are carried out in double 
precision on CYBER 180/840 computer. \\x* — xn | | is estimated by 
taking the largest of the computed errors at U = (i — l)/250, i = 
1, . . . ,251. 

TABLE 1. 

( P = l ) 

n 

5 
10 
15 
20 
25 
30 
35 

Ik* -ân|| 
1.8650 E-03 
4.6551 E-04 
2.0683 E-04 
1.1633 E-04 
7.4450 E-05 
5.1700 E-05 
3.7983 E-05 

EOC 

2.0022747 
2.0007134 
2.0003512 
2.0002094 
2.0001392 
2.0000992 
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TABLE 2. 
(P = 2) 

n 

5 
10 
15 
20 
25 
30 
35 

Ik* - x n \ \ 
1.0196 E-04 
1.2875 E-05 
3.8257 E-06 
1.6161 E-06 
8.2807 E-07 
4.7944 E-07 
3.0202 E-07 

EOC 

2.9853579 
2.9929956 
2.9954295 
2.9966173 
2.9973184 
2.9977802 

TABLE 3. 
(P = 3) 

n 

5 
10 
15 
20 
25 
30 
35 

Ik* - x n \ \ 
1.6376 E-06 
1.0229 E-07 
2.0204 E-08 
6.3927 E-09 
2.6184 E-09 
1.2627 E-09 
6.8158 E-10 

EOC 

4.0008060 
4.0002534 
4.0001248 
4.0000745 
4.0000495 
4.0000354 
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