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COLLOCATION METHODS FOR SECOND KIND 
INTEGRAL EQUATIONS WITH 
NON-COMPACT OPERATORS 

S. AMINI AND LH. SLOAN 

ABSTRACT. We study the uniform convergence of colloca
tion methods for integral equations on the half line, where the 
integral operator is a compact perturbation of a Wiener-Hopf 
operator. We prove that the collocation and the iterated col
location solutions converge to the exact solution with optimal 
orders of convergence, provided the meshes are appropriately 
graded to take account of the asymptotic behavior of the so
lution. As a consequence of the analysis similar optimal con
vergence results are proved for the case of boundary integral 
equations on polygonal domains. 

1. Introduct ion. Initially, consider second-kind integral equations 
of the form 

(1.1) ( / - K ) x = 2/, 

where K is a bounded linear operator on X + , the Banach space of 
bounded continuous functions on R + = [0, oc) with the supremum 
norm, and is given by 

/»OC 

(1.2) (Kx)(s) = / K(s,t)x(t)dt, s G R + , x G X + . 
Jo 

Consider the case where the kernel of the half-line operator is of the 
form 

(1.3) K(s,t) = K,(s-t) + K1(sìt)ì 

where K G Zq(R) and K\(s,t) is a "short ranged" kernel satisfying 

/»OC 

(1.4a) sup / \Ki(s,t)\dt < oc, 
s£R+ JO 

/»OO 

(1.46) lim / | K 1 ( s / , t ) - K i ( 5 , t ) | ^ = 0 uniformly for s e R + , 
s'-*sJo 
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lim f 
^ ° ° Jo 

(1.4c) lim / | X 1 ( s , t ) | d t = 0. 

The function spaces we will be generally working with are subspaces of 
X + , namely 

(1.5a) Xf = {xG X+ : x(oo) exists}, 

(1.56) X ( | = { x e l + : x(oo) = 0}, 

(1.5c) 
C^41 = {x e Xf : | |x|| r,^ < oo with x(s) — x(s) — x(oo), s G R + } 7 

where r is a non-negative integer, // G R + and 

(1.5d) \\x\\r4l = sup {\e»sDlx(s)\ : 0 < I < r } , 
sGR+ 

where Dx is the derivative of x. The conditions (1.4) ensure that the 
operator K i with kernel K\(s11) is a compact operator from X + to X$ 
and hence also from X^ to XQ~, (see [2]). The condition ft G I a ( R ) 
together with (1.3) and (1.4a) imply that 

/»OO 

(1.6) ||K|| = sup / \K(s,t)\dt< oo 
,sGR+ JO 

and so K is a bounded operator from X+ to X + , and also from Xf 
to X ^ or from X^ to X ^ ; (see [2,16]). In general, however, the 
operator K is non-compact, as its spectrum cr(K) in X + can be shown 
to contain a non-discrete set. For example, the spectrum of K with 
K(s,t) = K(S -t) = e-l*-*l with respect to X + is [0,2], (see [1, 2, 13 , 
18] for more information). Assume throughout tha t the problem (1.1) 
is well-posed in the sense that (I — K ) _ 1 is bounded o n I + and hence 
on X+. 

Initially in this paper assume x, the solution of (1.1), belongs to 
cr4l = cr4i n x+ for s o m e ^ > 0 L a t e r ^ 

in §4, we generalize the 
results to the case x G C\4L. In the case of the pure Wiener-Hopf 
equations, K{s,t) = K(S — £), there are many practical examples in 
which x G CQ41 or x G C\4L; for examples, see [9] and §6. 
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To solve (1.1) numerically for the case x G CQM we first approximate 
it by the finite section equation 

(1.7) {I-Kß)xß=y, ß>0, 

with 

rß 
(1.8) (Kßx){s)= K(s,t)x(t)dt, seR + . 

Jo 

The recent work of [1] on the finite section approximation was primarily 
concerned with the convergence of Xß to x on finite intervals. In 
this work, however, uniform convergence becomes possible, because 
x e CQM (or, later, x G C[^). Throughout this paper we shall be 
interested in uniform convergence results. 

The equation (1.7) is now discretised by a collocation method, which 
can be written as a projection method of the form 

(1.9) (/ - PnKß)xß.n = Pny. 

To specify the projection operator Pn let IIn denote the mesh parti
tioning of [0, oc] given by 

(1.10) 0 = s[n) < S<"> < • • . < S<"> =ß< 8^ = +0O, 

and let 5 r(IIn) denote the space of polynomial splines of order r (i.e. 
degree not greater than r— 1), on each subinterval l)n = [s\n , s}^) for 
i = 1, 2 , . . . , n. The splines are required to be bounded on R + but are 
allowed to be discontinuous at the knots; they are well defined even at 
the knots because of the assumed right continuity at s± , s% ,. • •, s7l . 
We now choose r points {£j : 1 < j < r} with 0 < ^i < 2̂ < • • * < £,r < 
1, which we refer to as the "basic quadrature nodes", and define our 
collocation points by 

(1.11) si ; ) = S | n ) + ^ n )
) i = l,2 ™ - l ; j = l , 2 , . . . , r , 

where h\n = s^\ — s\n . For ease of notation, we shall not explicitly 
show the dependence of certain quantities on n. Now define the 
interpolatory projection Pn : Sr(Un) + Xf —• 5 r(IIn) as follows: 

r 

(1.12a) {Pnv){s) = ̂ 2hj{s)v{slJ), îorseU; i = 1,2,... ,n - 1, 
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and 

(1.126) (Pnv){s) = 0, f o r s e Jn, 

where 

(1.12c) Uj{8) = fl^J^ 
, -. \öij öik) 

are the Lagrangian basis functions. (To avoid technical difficulties in 
defining KPn later, consider K : SV(Iln) + Xf -> Xf.) 

In this setting, we prove that if appropriate knowledge of the asymp
totic behavior of x is available, it is possible to "grade" the meshes 
(1.10) as n increases so as to obtain 

(1.13) lk-z/3,n | | <Cn~\ 

which is the (optimal) result one expects for second-kind integral 
equations with compact operators [3]. (Throughout this paper C is 
a generic constant, the value of which may be different at different 
instances.) Clearly, convergence requires ß — ß(n) —> oc as n —» oo. 

To study the convergence of the "global error" \\x — Xß,n\\ we shall 
study the "truncation error" \\x — Xß\\ and the "discretisation error" 
\\xß — Xß,n\\ separately in §2 and §3 respectively. We prove in §5 
that if the basic quadrature nodes {£j : 1 < j < r} are chosen 
appropriately, superconvergence may be observed at the collocation 
points. Some numerical results are provided in §6. Our results for the 
half-line equations extend those of [18], and complement similar results 
proved for the Nystrom method in [9]. In the final section we show 
how simple modifications of our analysis for the half-line problems can 
yield uniform convergence results for collocation methods for boundary 
integral equations on polygonal domains, thereby extending the results 
of [8]. 

Sometimes it will be convenient in practice to choose a basic quadra
ture node at each end point; that is to choose 0 = £i < £2 < * * • < 
£r = 1. All of our analysis remains valid for that case if 5 r(IIn) is 
reinterpreted as the space of continuous polynomial splines of order r. 



COLLOCATION METHODS FOR SECOND KIND EQUATIONS 5 

2. Study of the truncation error. It follows from (1.1) and (1.7) 
that 

(2.1) (I-Kß)(x-Xß) = (K-Kß)x. 

Here we wish to find conditions under which \\x — Xß\\ = 0(n~r). It 
has been proved in [1] that provided K satisfies the conditions in §1 
and (/ — K ) _ 1 exists as a bounded operator on X+ then (/ — K ^ ) - 1 

exists as a bounded operator o n I + , and furthermore 

(2.2) | | ( / - K ^ ) - 1 | | < 5 0 < o o , 

for all ß sufficiently large. It is then easy to deduce that (2.2) also holds 
in the space Xf; see [18]. 

It now follows from (2.1) and (2.2) that for ß sufficiently large 

(2.3) 1^-^11 <S0 | |(K-K^)x||. 

We now wish to obtain conditions under which ||(K — K ^ ) ^ = 0 (n~ r ) . 
We have 

/»OC 

(2.4) \(K-Kß)x(s)\< \K(8,t)x{t)\dt<\\K\\sup\x(t)\. 
Jß t>ß 

If x e Cr
0
ß then it follows from (1.5c), (1.5d) and (2.4) that 

(2.5) |!(K-K0)^||<||K|| HsU^e-"". 

Clearly, therefore, if ß — ß{n) is appropriately chosen, namely 

(2.6) /3(n) = (r//x)lnn + 0 ( l ) , 

then we obtain the required result, ||(K — K/5)x|| = 0(n~~r). To obtain 
(2.5) it would have been sufficient to require x G C 0 ^ , but in the next 
section, in the study of the discretisation error, we need the stronger 
condition x G CQ ^. 

Let us state precisely the result just proved. 

THEOREM 2.1. Let x, the solution of (1.1), belong to CQ,M for some 
non-negative integer r and real \i > 0 and let K(s,t) satisfy the 
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conditions in §1. Then if ß(n) satisfies (2.6), for n sufficiently large 
we have 

(2.7) \\x-xß{n)\\ = 0(n-r). 

3. Study of the Discretisation Error. It follows from (1.7) and 
(1.9) that 

(3.1) (/ - PnKß)(Xß - Xß,n) = (I- Pn)Xß. 

We wish to obtain conditions, consistent with (2.6), under which 
\\%ß — xß,n\\ — 0(n~r). This we will do by establishing the stability 
condition 

(3.2) \\(I - PnKß)-^ < B! < oo 

for n sufficiently large, together with the consistency of order r of the 
discretisation by proving that 

(3.3) \\(I - Pn)xß\\ = 0(n~r). 

Let us initially concentrate on (3.3). 

CONSISTENCY 3.1. We have 

(3.4) (I - Pn)Xß = (I - Pn)x - (J - Pn)(x - xß). 

It follows from (1.12) that 

r 

(3.5) | |Fn | | = max \\Pn\\i = maxsup Y] \hj{s)\ = Cr. 
l<i<n-l i seh , 

From (3.4) and (3.5) we have 

(3.6) ||(7 - Pn)xß\\ < ||(7 - Pn)x|| + (1 + Cr)\\x - Xß\\. 

If x G CQ41 and ß(n) satisfies (2.6), it follows from Theorem 2.1 and 
(3.6) that to establish (3.3) it suffices to show 

(3.7) \\(I-Pn)x\\=0(n-r). 
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Now (3.7) is relatively easy to establish, as it involves the error in 
interpolation by r - th order piecewise polynomials, which can be ap
propriately controlled provided the correct mesh grading is used. We 
have 

(3.8) ||(7 - Pn)x\\ = max \\(I - Pn)x\\i = maxsup \(I - Pn)x(s)\. 
Ki< seh 

Let us consider first ||(7 — P n ) x | | n , i.e. the error in the infinite interval 
In = [/?, oo). By the definition (1.12b), (Pnv)(s) = 0 for s G In and it 
follows from (1.5) and (2.6) that 

(3.9) ||(7 - Pn)x\\n = | H | n = sup \x{s)\ < e-^\\x\\r4l = 0{n-r). 
s>ß 

For i — 1, 2 , . . . , n — 1 we have 

| | ( J - Pn)x\\i = sup \x(s) -J2hj(s)x(sij] 
seh I ^ 

( 3 ' 1 0 ) <Chï sup \Drx{s)\ 

^Ch^e-^WxWr^ 

It follows from (3.9) and (3.10) that an appropriate choice of {s,} to 
ensure (3.7) is given by 

(3.11) Si = (r/p)in( ™ .), i = l,2,...,n, 
\m -f 1 — it 

where m > n. In fact we shall choose m — n-\-l where / is some small 
non-negative number independent of n, the significance of which will be 
made apparent shortly. Notice tha t with this choice sn = ß(n) satisfies 
(2.6) and furthermore 

(3.12) /i? = (r//x) In ( l + ^ ~ ) < ( - ) f ^ - r ) , z = 1,2, . . . , n - l . 
V m — it \fit \m — it 

There are many other choices of the knots {s^} which will be satisfac
tory in yielding the required results in (3.10); any such mesh is referred 
to as a (r,//)-graded mesh [9, 11]. 
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Let us now summarize our result on the order r consistency of the 
approximation scheme, the proof of which follows from (3.6) through 
(3.12). 

T H E O R E M 3.1. Let the conditions of Theorem 2.1 be satisfied. If the 
knots {SÌ} are given by (3.11) where m = n +1 > n, then 

\\(I-Pn)xß\\=0(n-r). 

S T A B I L I T Y 3.2. In order to establish (3.2), i.e. the property of uniform 
boundedness of ( / — PnKß)~l, we use the result of [1], quoted in (2.2). 
In fact it turns out to be easier to first prove the uniform boundedness 
of ( / — KßPn)~

l, (a result which will in any case be required in §5 for 
the study of superconvergence of the iterated collocation method) and 
then deduce (3.2) from the identity 

(3.13) (/ - PnKß)'1 = J + Pn(I - KßP^-'Kß. 

We can write, at least formally at this stage, 

(3.14) ( / - K ^ F J " 1 = L~ß]n{I -Kß + KßPn), 

where 

(3.15) Lß,n = (I- Kß) + {Kß - KßPn)KßPn. 

If we can prove that 

(3.16) an := \\(Kß - KßPn)KßPn\\ < (60/BQ) for some 0 < 60 < 1, 

then (from (2.2)) using Banach's Lemma, the existence and uniform 
boundedness of LZ n is established. The required stability result (3.2) 
then follows from (3.13), (3.14), (1.6) and (3.5). Ideally therefore we 
wish to be able to prove that for any e > 0, (3.16) is satisfied with e 
replacing 60/Bo, provided n is sufficiently large. We shall see tha t this 
is the case if we choose I — m — n sufficiently large. 

Now study the left hand side of (3.16) by considering (Kß — 
KßPn)KßPnx — Kß(I — Pn)v, where v = KßPnx, with x G X~f -h 
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Sr(Hn). The smoothness of v(s) depends on the smoothness properties 
of K(s,t). At this stage, not wishing to restrict the class of integral 
equations covered by our analysis, we assume only properties of v that 
follow from the definition above. We have, using Jackson's Theorem 
[6, p.33] and (3.5) 

\Kß(I - Pn)v(s) 

(3.17) 
z = l Jsi j = l 

dt 

<cY^u{?JiiSi) / \K(s,t)\dt 
1=1 J si 

<C0Wr(v;Un), 

where 6i = hi/(2r — 2), and 

(3.18) LO{V,I;6) = sup{\v{s') - v(s)\ : s', sei, \s' - s\ < 6} 

is the modulus of continuity of v at è over / . Further 

Wr(v;Un) — max{u;(v,/?;;<57)) : 1 < i < n - 1} 

V ' R ' / / ( r a + l - r a ) ( 2 r - 2 ) / ' 
(3.19) 

<uü[ 

where the last inequality follows from the monotonicity property of 
LÜ(V,I] 6) in 6 and the fact that {hi} given by (3.12) form an increasing 
sequence, with hj < /in_i < /.i(m+l — n) 

•ß 

, for i — 1,2,..., n — 1. Now 

(3.20) 
\v(sf)~v(s)\ = \ [ [Kis'^-K&tMPnxmdt 

1 Jo 

< r\h'(s',t)-K(s,t)\dt \\Pn\\ N | . 

Jo 

It follows from (1.3), (3.5) and (3.17) through (3.20) that 

\\Kß(I - P n )K^P n | | < Br sup { / \K{S' -s + t)- K,(t)\ dt 
\s'-s\<ö* l J-oc 
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with 

V " ; / z ( r a + l - n ) ( 2 r - 2 ) ' 

which can be made arbitrarily small by taking m — n = I appropriately 
large. Thus (3.16) is satisfied if / is sufficiently large. Observe tha t 
the restriction on the value of / = m — n is independent of n and 
depends, through (3.16) and (2.2), on the conditioning of the finite 
section equation as well as on r and /i. 

We now state a stability result, the proof of which follows from (3.13) 
through (3.21). 

T H E O R E M 3.2. If the kernel K(s,t) of (1.1) satisfies the conditions 
in § i , and if the knots {s?} are given by (3.11), then for n sufficiently 
large 

(3.22) ||(7 - PnKß)-l\\ < C < oc uniformly in n, 

provided I = m — n is appropriately large. 

R E M A R K S , (a) For practical implementation, the choice I = m—n = 0 
will often be satisfactory. Choosing larger values for I has the effect of 
significantly decreasing the maximum step-length / i n _ i , but at the same 
time (because ß is thereby reduced), it increases the truncation error, 
(though does not affect its 0(n~r) convergence to zero). In practice 
the best procedure may be to use initially / = 0 in (3.11), i.e. to use 
the formula Sj = (r//i)\n(n/(n -f 1 — z)). Then larger values of I can 
be tested without recalculating the matrix: all that is necessary is to 
define a new value of 'n ' by n' = n — /, and a new value of '/?' by 
ßf = snr, and to omit the last Ir rows and columns of the matrix. 

(b) In the case | |K|| < 6 < 1, the stability result could be proved 
easily. We have (see [8] for similar discussions) 

llPnK/jxll = max I ^ K ^ H , = max sup \(PnKß)x(s)\. 
l<i<n — l i sEl-
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Now similar to (3.17) we have 

\\PnKßX\\i 

(3.23) ^IIK^II + IKZ-P^K^Hi 

< ||K|| \\x\\+Br sup / \K(s\t)~K(s,t)\dt \\x\\, 
\s'-s\<6* JO 

with 6* as in (3.21). It follows from (3.23) and the arguments following 
(3.20) that , provided I = m — n is large enough, we can ensure that 
ll^nK^H < 6 < 1, obtaining the required stability result in the form 

(3.24) ||(7 - ^ K ^ ) - 1 ! ! < 1/(1 -6). 

Returning to the general case, we combine Theorems 3.1 and 3.2 to 
establish the required bound for the discretisation error \\xß - Xß,n\\, 
and, with the aid of Theorem 2.1, a bound for the total error ||x —x^,n | | , 
as follows: 

T H E O R E M 3.3. Let the conditions of Theorem 3.1 be satisfied. Then 
for n sufficiently large 

\\xß -xßji\\ = 0(n~r) 

and 

\\x-xp.n\\ = 0{n-r), 

provided I = m — n is chosen appropriately large. 

4. E x t e n s i o n t o x G C\41. The results so far have relied on the 
exponential decay to zero of the solution of (1.1) by requiring x G CQ*1. 
In the X* setting it is possible to obtain x(oo) explicitly, as shown in 
[18]. Assuming that K(s,t) satisfies the conditions of §1 and y G Xz

+ , 
then it can be shown that the unique solution of (1.1) satisfies 

(4.1) x(oo) = y(oo), 
1 -X 

where 
/>OG 

)du, 
/

OG 

K(U) 

-oo 
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and where \ r1 1? since otherwise 1 would be in the spectrum of K; see 
[13, 18]. 

If we know tha t x, the solution of (1.1), belongs to Cj"'^, then the 
new unknown x(s) — x(s) — #(oo) G C^ß and satisfies the equation 

(4.2) (I-K)x = y 

where 

K(s,t)dt-l)x(oo) = y(s) ~ J o
x _ ^ y(oo). 

Equation (4.2) is of the appropriate form for application of Theorem 
3.3. Thus provided y(s) can be evaluated analytically (or sufficiently 
accurately) it will follow, under suitable conditions, tha t XßM, = Xß,n -f 
x(oo) will satisfy \\x — xp,n\\ = \\x — Xß,n\\ = 0(n~r). See [9] for similar 
results for the Nystrom method. 

5. Superconvergence . It is well-known tha t for second kind 
equations with smooth kernels over finite intervals, the collocation 
approximation exhibits superconvergence at the collocation points, 
provided the collocation points are chosen appropriately; see [17] and 
references therein. We wish to prove similar results for (1.1), even 
though here K is non-compact. Recall tha t the collocation equation 
for (1.1) is given by 

(5.1) (I-PnKß)xß,n = Pny. 

Once Xß n is obtained we define the iterated collocation approximation 

by 

(5.2) x*jn = KßXß,7l + y. 

It follows from (5.1) and (5.2) that 

(5.3) Xßji = PnXßnl 

and therefore by definition of Pn 

(5.4) Xß^(sij) = x*ß^{sij), 1 < z < n - 1, 1 < j < r. 
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Substituting (5.3) into (5.2) the second kind equation is obtained 

(5-5) ( / - KßPn)xßjl = y. 

Subtracting (5.5) from (1.7), we obtain 

(5.6) xß - x%n = (I - KßPn)-\Kß{I - Pn)xß\. 

Recall tha t the uniform boundedness of ( / — K ß P n ) _ 1 has already been 
established in §3.2 under the conditions of Theorem 3.2. 

We will now prove that if the basic quadrature nodes {£j : 1 < 
j < r } with 0 < £i < £2 < '•• < £r < 1, are appropriately 
chosen, then | |K^(7 — Pn)xß\\ = 0(n~R), with R > r. From this 
it will follow tha t the iterated collocation approximation is globally 
superconvergent and, from (5.4), that the collocation approximation 
exhibits superconvergence at the collocation points. Our first step will 
be to establish the order of convergence for | |K^(7 — Pn)x\\, where x is 
the solution of (1.1). 

Let Qr be the interpolatory projection of C[0,1] into P r , the space 
of polynomials of order r (i.e. degree < r — 1), based on the nodes 
{& : 1 < i < r } . Tha t is, for x G C[0,1] 

(5.7) (Qrx)(s) = j^lrj(s)x(ti)i 

1=1 

where 

J=i ^ V) 

are the Lagrangian basis functions. Now in general (I — Qr)x = 0 
only if x G P r . However, it is possible that if {£, : 1 < i < r} are 
appropriately chosen then 

(5.8) / ( / - Qr)x{s) ds = 0 for x G P r + r / , 
Jo 

with r > r' > 0. In fact if {£;} are the Gauss-Legendre nodes on [0,1], 
then r = r ; , while if ^ = (i — l ) / ( r — 1), i = 1, 2 , . . . , r with r an odd 
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integer then r' = 1. For our present analysis it is more convenient to 
write (5.8) in the equivalent form 

(5.9) / f[(s - £i)<l>(s) ds = 0 for (j) e Pr'. 

Assuming that (5.9) is satisfied, in other words that the interpolatory 
quadrature rule on [0,1] based on the nodes {£?} has degree of precision 
r + r' — 1, we wish to find conditions under which 

(5.10) \Kß{I - P„> | | = 0(n-<'-+/>). 

Based on our analysis in §2 and §3, we seek to prove (5.10) under the 
following assumptions: 

(5.11a) 

(5.116) 

with 

x e c^r '^ » > 0 

(n) _ r + r' 
s) = In ( — ^ — ) , i = l , 2 , . . . , n , 

\m + 1 — iJ 

r + r' r -h r' 
(5.11c) ß(n) = # > = r-^- In ( — ^ ) = T-^- ln(n) + O(l) 

where / = m — n > 0 is suitably chosen. 

Now, similar to [14] we have 

[K„(I - Pn)x](s) 
rsi+i 

= Yl [ +1 ^(*.*)k*) - ^2hj(t)x(Sl:,)\ d£ 

(5.12) ^ p + i ' 

i = l J SÌ 

71-1 

= ^VA,n(s), 

d£ 
J = I 

?:=i 
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where H(t — Sij)x[sn, 5?2, • • •, Sir, t] is the polynomial interpolation error 
for x(t), written in terms of Newton's divided differences x[s?;i, s?;2,..., 
Sir,t], see [4]. We can write 

(5.13) £i,n(*)= [ ^Hit-s^F^dt, z = l , 2 , . . . , n - l , 
J S.; •_ - ! 

where 

(5.14) Fs(t) = K(s,t)x[siusi2,... ,sir,t]. 

To take advantage of (5.9) expand Fs(t) about si as a Taylor polynomial 
of order r', denoted by 0 s r / ( t ) together with an integral remainder, to 
obtain 

1 rf , 
(5.15) Fs(t) = <fi8,r,(t) + , , 1 , | / (t - u)r ~lDr Fs{u)du. 

(rf -1)1 J8i 

Now, it follows from (5.9), (5.14) and (5.15) that 
(5.16) 

eu*) = ^rèryi /Sî+1 r i ( t " ̂ '}{ / ( t " uY'~lDr'F*(u)du) dL 

Using the Leibnitz rule for differentiating a product, we obtain 
(5.17) 

a=0 x y x 7 

Then using the result 

( 5 - 1 8 ) ( | ) P ' " ° ^ l . * i 2 . - . « * r , * ] = ( r
( + r T ! ) ^ r + r ' - ° » ( 6 ) 

for some £t G (s ? ,s ? + i) , (proved in [14, p.182]), we obtain 

'"<"=Sd(,^-.)lr'jB"-*') 

{ / ft - iOr'~'((j^)V(«,.,.)W+'''-"z{{,.)<<u}<il-
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For u, t e [si,Si+i], we have \t — IA|, \t — s^-| < /ii, and for x e CQ r ^ 

\Dbx(t)\ < e~^Si | | x | U r > 6 = 0,1, • • - , r + r'. 

Therefore 

(5.19) 
\ei,n(s)\<{£ca J*'" \(^)aK(s,u)\du\ 

•e -" S i / i ! + r lid r-fr',^' 

where Ca = al{r^,_a)r It follows from (5.11b) that e'^h^' < 

C/nr+r , and hence 

(5.20) E l e u « ) ! < - ^ 7 l k l l r + r ' . M E C - / ( f t ) K ^ 

< (C/n r+ r ,) | |x| | r+ r , )A i 

ctt 

provided 

(5.21) sup / — ) K(s,t)\dt < oo, 0 = 0 , 1 , 2 . . . , / . 
SGR+ io I Vat/ I 

We are now in a position to state and prove the main result of this 
section: 

THEOREM 5.1. Let the kernel K(s,t) of (1.1) satisfy (5.21), in 
addition to the conditions m §1. If the interpolatory quadrature rule 
on [0,1] based on the nodes {£j : 1 < j < r} has a degree of precision 
r -h r' — 1 and if (5.11) is satisfied, then for n sufficiently large 

\\x-x;j\ = o(n-^\ 

provided I = m — n is appropriately large. 

PROOF. We have 

(5.22) \\x - x*ßJ\ < \\x - xß\\ + \\xß - x*ßJ\. 
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With ß(n) given by (5.11c), and x satisfying (5.11a), it follows from 
Theorem 2.1 that the truncation error satisfies 

(5.23) \\x-xß\\ = 0 ( n - ( r + r , ) ) . 

To show that the discretisation error is of the same order, we write, 
from (5.6), 

(5.24) 11*0 - x'ßJ\ < ll(/ - KßPni-'W \\KßV - Pn)xß\\. 

The uniform boundedness of the first factor on the right hand side 
follows from the argument used to prove Theorem 3.2. (It can easily 
be seen that the replacement of r by r -f rf in the formula for s\n does 
not affect the stability argument.) Similar to equation (3.6) we have 

(5.25) \\Kß(I-Pn)xß\\ < \\Kß(I-Pn)x\\ + \\Kß\\(l + \\PM\x-xß\\. 

From (5.12), (5.20), (5.23) and (5.25) it follows that \\Kß(I - Pn)xß\\ = 
0 ( n - ( r + r ' ) , and using (5.22), (5.23) and (5.24) the proof is complete. 
D 

It appears that, provided the conditions of Theorem 5.1 are satisfied, 
the highest order of convergence r + r' — 2r is obtained if we choose 
the basic quadrature nodes {^ : 1 < i < r} to be the Gauss-Legendre 
points shifted to [0,1]. 

6. Numerical Experiments. In this section we emphasize some of 
the important features of the results in Theorem 3.3 and Theorem 5.1 
by considering the test problem 

(6.1) x(s) - (1/2A) / e^s-^x(t) dt = (e"72A), s e R + , 
Jo 

the exact solution of which, for A (z [0,1], is (see [2]) 

x(s) = {/i-l)e~^s, 

where 
M = ( l - 1 / A ) 1 / 2 . 
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In particular we consider the example with À = 4/3, yielding /x = 0.5. 

In Tables 1 to 4 we present the results of the collocation methods 
based on piecewise-constant (r = 1), piecewise-linear (r = 2) and 
piecewise-quadratic (r = 3) approximations. In all cases the spline 
knots are given by 

Si = (R/fi)ln(—— : ) , i = l , 2 , . . . , n , 
\n + 1 — %/ 

(i.e. I — m — n. = 0), where R takes a range of values in each case. In 
all the tables the quantity presented is the maximum absolute value 
of the error over the collocation points {SJJ} with 1 < i < n — 1 
and 1 < j < r. The values of n have been chosen so that the 
results in a given row correspond to approximations with the same 
number of collocation points in every table, in order to allow easy 
comparison between methods with splines of differing order. Recall 
that for a method based on piecewise polynomials of order r, we choose 
r collocation points within each of the n — 1 subintervals li. The number 
of collocation points corresponding to rows 1 to 4 of the tables are 24, 
48, 96 and 192 respectively. 

Results in Table 1 show that if R = r — 1 is chosen, the expected 
order of convergence 0{n~l) is obtained, while by choosing R — r+rf — 
2 the predicted superconvergence is observed with errors of the form 
0(n~2). Increasing R to 3 results in reduced accuracy, though still 
yields the 0(n~2) convergence. 

Results in Table 2 are based on piecewise-linear approximations, 
using the Gauss-Legendre points as the basic quadrature nodes. For 
R — r — 2 the predicted 0(n~2) convergence is observed, while for 
R — 3 and 4 superconvergent result are obtained with errors of the 
form 0(n~3) and 0(n~4) respectively. Again, the choice of R = 5 
cannot improve the optimal convergence rate 0(n~ 4 ) . 

Results in Table 3 are again for piecewise-linear approximations, but 
here, unlike Table 2, we do not choose the Gauss-Legendre points as 
the basic quadrature nodes. For R = 2,3,4 and 5 the errors are of the 
form 0(n~2). 

Finally, in Table 4 we present the results for the piecewise-quadratic 
case (r = 3), where the Gauss-Legendre points are chosen as the basic 
quadrature nodes. As expected, for R — 3,4 and 5 we obtain 0(n~R) 
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convergence. For R = r -f r' = 6, however, we do not obtain the 
0(n~6) convergence that at first glance might have been expected 
from Theorem 5.1. A closer investigation reveals that the smoothness 
requirement (5.21) with a — r' = 3 is not satisfied by the kernel 
K(s,t) — exp( — \s — t|), whereas the case rf = 2 is covered by an 
appropriate extension of the theory. Thus, 0(n~5) is the best result 
obtainable from Theorem 5.1. In all cases, therefore, the numerical 
experiments support the theoretical conclusions. 

TABLE 1: Errors for the piecewise-constant case 

n\R 

25 

49 

97 

193 

1 

5.02E-3 

2.56E-3 

1.30E-3 

6.51E-3 

2 

3.98E-4 

1.04E-4 

2.66E-5 

6.78E-6 

3 
6.47E-4 

1.72E-4 

4.44E-5 

1.13E-5 

r = 1, with fi = 0.5 

TABLE 2: Errors for the piecewise-linear case 

n\R 

13 

25 

49 

97 

2 

7.11E-4 

1.92E-4 

5.01E-5 

1.28E-5 

3 

4.21E-5 

5.92E-6 

7.86E-7 

1.01E-7 

4 

1.41E-5 

1.10E-6 

7.60E-8 

5.00E-9 

5 

1.78E-5 

1.31E-6 

8.86E-8 

5.74E-9 

r = 2, with f! = 0.5(1 - 1/V3) 

& = 0.5(1 + l/>/3). 

TABLE 3: Errors for the piecewise-linear case 

n\R 

13 

25 

49 

97 

2 

9.49E-3 

2.57E-4 

6.70E-5 

1.71E-5 

3 
8.42E-4 

2.29E-4 

5.98E-5 

1.53E-5 

4 

1.21E-3 

3.31E-4 

8.65E-5 

2.21E-5 

5 

1.69E-3 

4.65E-4 

1.22E-4 

3.11E-5 

r - 2, with £i = 0.3, £2 = 0.7 


