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CONSTRUCTION OF A CLASS OF INTEGRAL MODELS 
FOR HEAT FLOW IN MATERIALS WITH MEMORY 

DEBORAH BRANDON AND WILLIAM J. HRUSA 

1. Introduction. In this paper we construct a simple class of 
models for heat conduction in materials with memory; initial-boundary 
value problems associated with these models will be discussed in a 
forthcoming paper. We concentrate on situations in which the heat 
flux depends on the temporal history of the temperature gradient (and 
possibly on the present value and the history of the temperature), but 
is independent of the present value of the temperature gradient. Our 
models are based on Gurtin and Pipkin's theory of heat conduction 
[12]. An important feature of this theory - one that is relevant to 
experimental studies of heat flow in certain materials at very low 
temperatures - is that it predicts finite speed of propagation for thermal 
disturbances. There are other theories of heat conduction in materials 
with memory x (cf., e.g. [6, 15]). However, the framework of Gurtin 
and Pipkin seems best suited to our purposes. 

We limit our attention to the one-dimensional case in which the only 
nonzero component of the heat flux is its ^-component, q; moreover, q 
and the absolute temperature 6 > 0 are functions of x and the time t. 
In addition, we assume that the material is homogeneous and has unit 
density. In the absence of deformation the law of balance of energy 
reduces to 

(1.1) è + qx = r, 

where e = e(x,t) is the (specific) internal energy and r = r(x,t) is the 
external heat supply. A superposed dot indicates differentiation with 
respect to time, while a subscript x indicates spatial differentiation. 
Equation (1.1) must be supplemented with constitutive assumptions 
that characterize the particular type of material. Since we consider 

1 The results of [6, 15] permit (but do not require) the heat flux to depend 
on the present value of the temperature gradient. If the heat flux is sensitive to 
small changes in the present value of the temperature gradient then the speed of 
propagation is not finite. 
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only materials whose thermodynamical properties at a point x are 
determined by the state at that same point x, we suppress the spatial 
variable in our constitutive relations. We also omit the time argument 
when there is no likelihood of confusion. 

In Fourier's classical theory of heat conduction the heat flux and the 
internal energy are assumed to be functions of the present values of 
the temperature and the temperature gradient. More precisely, the 
constitutive relations are 

(1.2) q = - K ( % ' 
e = eo(0), 

where g := 0X is the temperature gradient and K and eo are smooth 
functions with K, ef

Q > 0. The relations (1.2), together with (1.1), yield 
a parabolic equation for 0 that predicts infinite speed of propagation for 
thermal disturbances. Despite this prediction, Fourier's theory provides 
a description of heat conduction that is useful under an extremely wide 
range of conditions. However, there are situations in which departures 
from Fourier's law are observed experimentally; in particular, "wave
like" pulses of heat that propagate with finite speed have been observed 
in certain dielectrics at very low temperatures (cf. the references cited 
in [2, 5, 7]). 

There have been numerous attempts to develop theories of heat 
conduction that yield finite speed of propagation (cf. the review article 
[2]). The first such theory was apparently given by Cattaneo [1] who 
suggested that (1.2)i be replaced by 

(1.3) r (0)g+ (* = - * ( % 

with r, K > 0. Coleman, Fabrizio, and Owen [5] discuss compatibility of 
(1.3) with thermodynamics. They use the second law to show that the 
classical equation (1.2)2 for e is not appropriate for materials obeying 
(1.3); they also give a modified equation for e that is compatible with 
the second law. An existence theorem for the resulting (hyperbolic) 
system of partial differential equations for q and 0 was established by 
Coleman, Hrusa, and Owen [7]. 

In Gurtin and Pipkin's theory a state is described by (0(t), ö*(-), </*(*))> 
where 0* and g* are the summed histories up to time t of the tempera
ture and the temperature gradient. For h : R —• R the summed history 
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up to time t of h is the function hl : [0, oc) —• R defined by 

(1.4) h\s) := J h(z)dz Vs > 0. 
Jt-s 

Following a procedure introduced by Coleman and Noll [8], Gurtin 
and Pipkin use the second law of thermodynamics to obtain restrictions 
on their constitutive relations. The procedure of Coleman and Noll is 
based on the following postulate: For every part of the body under 
consideration the rate of production of entropy must be nonnegative for 
all smooth fields consistent with the constitutive equations and the law 
of balance of energy. This postulate is equivalent to the requirement 
that the Clausius-Duhem inequality 2 

(1.5) ^ + ö T 7 + ^ < o , 

holds for all smooth fields consistent with the constitutive equations; 
here rj is the (specific) entropy and 

(1.6) ^:=e-0r] 

is the (specific) free energy. It follows from (1.5) that the inequality 

is satisfied for every smooth and cyclic process, i.e., for every smooth 
process whose state at some time T > 0 coincides with its initial state. 
The requirement that (1.7) hold for cyclic processes is sometimes taken 
as a statement of the second law (cf. [9, 16] for more information). 

Gurtin and Pipkin consider a very general class of constitutive re
lations in which -0,77, and q are functional of (#(£), #*(•), #*(•)), and 
without specifying the form of these functionals they derive conditions 
that are both necessary and sufficient for compatibility with thermo
dynamics. These conditions can be summarized roughly as follows: 

For deformable bodies this inequality contains an additional term involving the 
stress and the rate of strain. A general theory of thermodynamics for deformable 
media with memory, which is based on the Clausius-Duhem inequality, was devel
oped by Coleman [4]. 
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(i) The entropy is minus the derivative of the free energy with respect 
to the present value of the temperature. 

(ii) The heat flux is determined from the free energy through a certain 
differential equation called the heat flux relation. 

(iii) A functional differential inequality, called the dissipation inequal
ity, holds for all smooth processes. 

It is easy to construct constitutive functionals that satisfy (i) and (ii). 
However, it is not clear how to construct the functionals so that (iii) 
will be satisfied, and no examples are given in [12]. An example in 
which q is a linear functional of gl is discussed in a subsequent paper of 
Chen and Gurtin [3]. To our knowledge there are no previous examples 
(consistent with the theory of [12]) in which q is a nonlinear functional. 
It is important to note that condition (ii) implies a relation between q 
and e; in particular, e will generally depend on gl. 

In Gurtin and Pipkin's theory the linearized constitutive equations 
for q and e are 3 

/»CO /»CO 

q(t) = / af(s)gt(s)ds = - a(s)g(t - s)ds, 
Jo Jo 

/»co 

(1.8) e{t) = b + cO{t) - / ßf(s)Öt(s)ds 
Jo 

/»CO 

= b + c0(t)+ / ß(s)9(t - s)ds, 

where b and c are constants, and a and ß are smooth kernels that 
decay sufficiently rapidly at infinity. We note that if r and K, are 
constant then Cattaneo's relation (1.3) is equivalent to (1.8)i with 
a(s) = (Ac/r)exp(—s/r). 

MacCamy [13] considered a model that was motivated by the lin
earized equations (1.8). He replaced (1.8)i with the nonlinear equation 

/»CO 

(1.9) q(t) = - / a(s)f(g(t - s))ds, 

but retained the linear equation (1.8)2 for e. He proved global ex
istence and asymptotic stability for a corresponding initial-boundary 

3 As one would expect, the linear equations (1.8) are not compatible with thermo
dynamics. They are, however, compatible to within terms that can be neglected in 
the linearized theory. 
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value problem. Similar existence theorems for MacCamy's model were 
established by Dafermos and Nohel [10] and Staffans [17]. 

Gurtin and Pipkin's theory does not apply to (1.8)2, (1.9) since q 
cannot be expressed as a suitable functional of gl when / is nonlinear. 
The issue of compatibility with the second law is not addressed in 
[13]. However, by adapting an argument of Coleman, Fabrizio, and 
Owen [5], one can show that, for the constitutive equations (1.8)2, 
(1.9) (under very mild assumptions on a and / ) there are smooth T-
periodic functions 6 and g for which (1.7) is violated. 4 Within the 
context of [10, 13, 17] this probably is not a serious difficulty because 
the solutions obtained there remain close to an equilibrium state, and 
under reasonable assumptions on a,f, and ß the inequality (1.7) is 
satisfied for a suitable class of smooth cyclic processes that are close to 
equilibrium. 

In this paper we consider the constitutive relations 

/•CO 

tß(t) = j>(0(t)) + / ^(s,e(t),Öt(s),gt(s))ds, 
Jo 
poo 

(1.10) v(t) = V(0(t)) + / H(s, Oit), 0*(a), S'(s))<fa, 
Jo 

/»OO 

q(t) = q(0(t)) + / Q(s, 6{t), Ô\s), g\s))ds, 
Jo 

where &,H, and Q are normalized so that 

(1.11) * ( s , u, us, 0) = H{s, v, us, 0) = Q(s, u, us, 0) = 0 Vs, u > 0 

and satisfy hypotheses which ensure that the integrals in (1.10) will be 
well behaved for a reasonable class of functions 0, g. (A similar con
stitutive equation for e is implied by (1.6).) The normalization (1.11) 
means that the integrands in (1.10) vanish identically at equilibrium, 
i.e., for processes in which 0 is constant and g = 0. For equations 
of the form (1.10) this normalization can always be achieved by an 
appropriate modification of ^ , \£, 77, H, q, and Q. 

The existence of such functions is a consequence of the structure of (1.8)2, (1-9) 
rather than the particular assumptions made on c, ß, a, and / . The sign of the 
product q(t)g(t) plays a crucial role both in the Clausius-Duhem inequality (1.5) and 
in (1.7). If the constitutive relation (1.9) is adopted, then q(t).g(t) is generally not of 
fixed sign. Note that for Fourier's law (1.2)i we have q(t)g(t) = —K,(6(t))g{t)2 < 0. 
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Functionals of similar nature are used for models in viscoelasticity.5 

We note that for smooth rectilinear shearing motions the relative 
deformation gradient can be expressed in terms of the summed history 
of the velocity gradient; for shearing motions of K — BKZ fluids the 
constitutive relation can be written in the form 

/»OO 

(1.12) <7(t)= / (7(M£(*))<fa 

where a is the relevant stress component and vx is the velocity gradient. 

Our choice of the equations (1.10) is not made with the intention 
of describing a particular physical substance. Our objective here is to 
obtain constitutive equations that incorporate the effects of memory 
in a qualitatively reasonable manner, that are compatible with ther
modynamics, and that lead to initial value problems whose analysis is 
relatively clean. We show that if 6 

(1.13) fj{v) = - < / > » , H(s, v, a, 7) = - * , 2 («, i/, a, 7), 

(1.14) q{v) = 0, Q(s, v, a, 7) = - i / * , 4 (s,1/, a, 7), 

fX 1 5 N * , i («, v, a , 7 ) + 1/^,3 (5,1/ , a , 7 ) < 0 

V«,i/ > 0 , a > 0,7 G R, 

then Gurtin and Pipkin's conditions for compatibility with thermody
namics are satisfied. The important feature of this result is that a 
pointwise inequality for ^ , namely (1.15), ensures that the dissipation 
inequality holds for all smooth processes. If ^ satisfies (1.15) (and the 
normalization ^ ( s , 1/, 1/5,0) = 0 for all 5, v > 0) then 

(1.16) *5 i(s,i/ , i /5,0) = 0, j = 1,2,3,4 V$, i />0. 

5 Gurtin and Hrusa [11] discuss compatibility with the Clausius-Planck inequality 
for a class of integral models in viscoelasticity. There are many similarities between 
the results of [11] and those obtained here. 

We use F,j to denote the partial derivative of a function F with respect to its 
j - t h argument. 



INTEGRAL MODELS FOR HEAT FLOW 181 

Thus it is straightforward to produce constitutive equations of the form 
(1.10) that are compatible with thermodynamics: choose a function iß, 
construct a function \I> satisfying (1.15), and then use (1.13), (1.14) 
to determine the entropy and the heat flux. (The functions H and 
Q constructed through (1.13) and (1.14) will automatically have the 
desired normalization by virtue of (1.16).) It is clear that there is a 
large class of functions ^ obeying (1.15); in particular, (1.15) holds if 
£,i < 0 and £,3 < 0. 

Conditions (1.13), (1.14), and (1.16) are necessary for compatibility. 
However, (1.15) is not necessary unless ^ satisfies some additional 
assumptions. We show that if 

(1.17) £(s , i/, a, 0) = 0 Vs, v > 0, a > 0 

then (1.15) is necessary for compatibility with thermodynamics. The 
physical interpretation of (1.17) is that for processes with g = 0 the 
free energy depends only on the present value of 0. 

It follows from (1.6) and (1.10) that the internal energy is given by 

/»OO 

(1.18) e(t) = e(0(t)) + / Ê{3,0(t)j\s),g\a))ds, 
Jo 

where 
e{v) := ̂ {v) + vf]{y) 

(1.19) Ê(s, v, a, 7) := *(*, i/, a, 7) + i/H(s, v, a, 7) 

V 5 , i / > 0 , a > 0 , 7 G R . 

Observe that 

(1.20) Ê(s, v, vs, 0) = 0 Vs,z/>0 

by virtue of (1.11). The quantity e{y) is called the equilibrium internal 
energy at the temperature v\ its derivative 

(1.21) cE(u) := e » 
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is called the equilibrium specific heat or equilibrium heat capacity at 
the temperature v. The instantaneous specific heat or instantaneous 
heat capacity cj(0(t)i0

t
1g

t) at the state (0(t), 0*,*/*) is given by 

/»OO 

(1.22) cMW^g*) :=ê'(6(t))+ / Ê,2 (s,0(t)Jt(s),gt(s))ds. 
Jo 

We note that the second law of thermodynamics places no restrictions 
on the sign of CE or of cj. Of course, it is generally assumed in practice 
that the heat capacities are positive. 

The paper is organized as follows. §2 contains some preliminary ma
terial concerning integral functional of the type appearing in (1.10). 
In §3 we establish conditions for compatibility of (1.10) with thermo
dynamics. §4 is devoted to examples. Finally, in §5, we discuss various 
modifications including dependence of q on the present value of g. 

2. Preliminaries. For a function h : R —• R and t G R, the 
summed history up to time t of h is the function h1 : [0, oo) —• R 
defined by 

(2.1) h\s) := J h(z)dz Vs > 0. 
Jt-8 

If h is continuous on R then 

h*(0) = 0, 

(2.2) ±hi(s) = h(t-s), 

4 ^ ( s ) = h(t) - h{t -s) Vs > 0, t e R. 
at 

A pair (0, g) of real-valued functions on R will be called an admissible 
pair if 7 6 e Cl (R), g e Cfe(R), and 6 > 0. We note that if (0,g) is an 
admissible pair, then, for each t G R, the function s \-> 0t(s) is strictly 
increasing. 

Here C& is the set of bounded continuous functions and C£ is the set of all 
functions in C& whose derivatives belong to C&. 
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The following definition is designed to ensure that 

/•OO 

(2.3) / F(*,0(t), *'(*), ff'(*))<fa 
Jo 

is well behaved for admissible pairs (9,g): A function F will be called 
an admissible kernel if F G C((0, oo) x (0, oo) x [0, oo) x R) and, 
for each compact set K C (0, oo) x [0, oo) x R, there is a function 
v G X1(0, oo) such that 

(2.4) \F(a, i/, ys, zs)\ < v(s) V s > 0, (i/, y, z) G K. 

In several of our proofs we construct sequences of admissible pairs and 
pass to the limit in integrals of the form (2.3). For this purpose we say 
that a sequence {un}^=1 of functions on [0, oo) is linearly dominated 
if there is a constant L such that 

(2.5) \un(s)\<Ls V * > 0 , n = l , 2 , . . . . 

The remarks below follow easily from (2.1), (2.2), the definitions of an 
admissible pair and an admissible kernel, the dominated convergence 
theorem, and the fact that if w G C1(0, oo) with w,w G L1(0, oo) then 
w(s) —> 0 as s —» oo. 

REMARK 2.1. If / G C(0, OO) ,F is an admissible kernel and (6,g) is 
an admissible pair, then the mapping 

/»OO 

(2.6) t » f(6(t)) + / F(s, 0(*), 0*(s), g\S))d8 
Jo 

is continuous on R. 

REMARK 2.2. Assume that / G C1(0,oo),F G C ^ ^ o o ) x (0, oo) x 
[0, oo) x R), F and F,j ,j = 1,2,3,4 are admissible kernels, and (6, g) is 
an admissible pair. Then mapping (2.6) is continuously differentiable 
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on R and 
poo 

(2.7) 

+ 

/»OO 

Ò(t) / F,2(s,6(t)Jt(s),gt(s))ds 
Jo 
/»OO 

/ F,3 (a, 0{t), Ot(s)ig
t(s))[0(t) - 0(t - s)]ds 

Jo 
/»oo 

/ F,4 (*, 0(*), 0*(*), ̂ ( ^ ) )bW - g(t - s)]ds 
Jo 

+ 
Moreover, for each t G R, the mapping 

(2.8) * ~ ^ F M ( « ) , *'(«),»*(«)) 

is (absolutely) integrable on (0,00), and consequently 

(2.9) F(s,9{t)1ê
t(s)yg

t{s)) ^ 0 as 5 -+ 00. 

The following two lemmas will be used to infer pointwise relations 
from relations involving integrals. 

LEMMA 2.1. Assume that f G C(0,oo),F is an admissible kernel, 
and that 

(2.10) F(s, 1/, i/s, 0) = 0 \/s,v>0. 

If 
/»OO 

(2.11) f(0(t)) + / F(s,9{t),êt(s),gt(s))ds = 0 V* G R 
Jo 

for every admissible pair (0, g) then 

(2.12) /(*>) = 0, F(s , i / ,a ,7) = 0 V s , i / , > 0 , a > 0 , 7 G R . 

PROOF. Let r, i/,a > 0 and £,7 G R be given. That f(v) = 0 follows 
from (2.11) with 0 = u and g = 0. We want to show that 

(2.13) F( r , i / , a ,7) = 0. 



INTEGRAL MODELS FOR HEAT FLOW 185 

Suppose first that 

(2.14) a < TV, 

put 

(2.15) A := - , 
T 

fix A > 0, and construct a sequence {(6n,gn)}'^L1 of admissible pairs 
such that 6n(t) = v for all n, {Öt

n}^L1 and {ön)^=i a r e linearly 
dominated and 

-t , x /A* if « e [o, A) 

(2.16) ^ 

^ n W \ 0 i fsG(A,oo) , 

as n —> oo. (The limits of #^(A) and g^A) are unimportant. We note 
that the construction of {^n}^Li requires v > A, which is implied by 
(2.14), (2.15).) If we apply (2.11) to this sequence, let n —> oc and 
recall that f(v) = 0, we obtain 

(2.17) / F ( S , * / , A * , — ) d s = 0. 

Since (2.17) holds for every A > 0 we have 

(2.18) F (A, I/, \A, — ) = 0 VA > 0. 

If we put A = T then (2.18) yields (2.13). 

Suppose now that 

(2.19) a > TV, 

define A through (2.15), and fix B > 0. Applying (2.11) to an 
appropriate sequence of admissible pairs and passing to the limit we 
find that 

/•OO 

(2.20) / F(s, i / ,As,— )ds = 0 V£ > 0 , 
JB T 
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which yields 

(2.21) F ( B , i / , A B , — ) = 0 V £ > 0 
r 

and consequently (2.13). We have therefore shown that (2.13) holds 
for all r, v, a > 0,7 G R; the continuity of F implies that (2.13) also 
holds for a = 0. DO 

If F is an admissible kernel satisfying (2.10) and 

/»OO 

(2.22) / F(s,6(t),ët(s),gt(s))ds<0 W G R 
Jo 

for every admissible pair (#,#), it does not follow that the pointwise 
inequality 

(2.23) F(s, v, a, 7) < 0 Vs, v > 0, a > 0,7 6 R 

holds. This is so since, if (0, #) is an admissible pair then the mapping 
s H-> 6t(s) is strictly increasing, and consequently the class of admissible 
pairs is not large enough to ensure that (2.22) implies (2.23). However, 
we do have the following result. 

LEMMA 2.2. Assume that F is an admissible kernel and 

(2.24) F(s, v, a, 0) = 0 Vs, v > 0, a > 0. 

If (2.22) holds for every admissible pair (0,g) then (2.23) is satisfied. 

PROOF. Let A, B > 0 with A < B, t, 7 G R and 0 G C£(R) with 0 > 0 
be given. We construct a sequence {gn}^Li of functions in Cfc(R) such 
that {<?n}n̂ =i *s linearly dominated and 

(2 25Ì 5 ' M - J 0 i f«6[0 ,A)U(f l ,oo) 

If we apply (2.22) to the admissible pairs (6,gn) and let n —> oo we 
obtain 

fB 

(2.26) / F(«,0(t),0*(s),7)da<O. 
./A 
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Since (2.26) holds for every^l, B with 0 < A < B, it follows that 

(2.27) F(s,0(t),Ot(s),i)<0 V s > 0 . 

For given 5 , i / , a > 0 w e can choose 6 such that 

(2.28) ö(t) = i/, 6\s) = a, 

and the proof is complete. Q 

3. Compatibility with thermodynamics. We consider constitu
tive relations of the form 

/»OO 

m = j,(0(t)) + / tf (a, 0(*), 0*00, S*(a))cfo, 
./o 

/ • O O 

(3.1) ry(*) = T/(9(t)) + / H(s, 0{t), Ôt(s),gt(s))ds, 
Jo 

/ • O O 

q(t) = q(0(t)) + / Q(s,e(t),Öt(s),gt(s))ds 
Jo 

for the free energy tp, the entropy rj, and the heat flux q, where 0 is 
the absolute temperature and g is the temperature gradient. A similar 
constitutive equation for the internal energy e is implied by the relation 

(3.2) e = <i/j + 0rj. 

Throughout this section we assume that (Al) through (A4) below hold: 

(Al) \j) e C ^ o c ) , * e (7^(0,00) x (0,oo) x [0,oo) x R), f),q G 
C(0,oo),; 

(A2) Ü,H,Q, and ^,j,j = 1,2,3,4 are admissible kernels (in the 
sense o/§2); 

(A3) *(s , v, us, 0) = H(s, v, us, 0) = Q(s, v, vs, 0) = 0 Ms, v > 0; 

(A4) For each v > 0 we have 

^ ( s , ^, Î /5 , zs) —• 0 as s —> 0 + , 

uniformly for (y, z) in compact subsets of [0, oo) x R. 
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We note that the normalization (A3) is used in an essential way. 
For functionals of the type appearing in (3.1) this normalization can 
always be achieved by an appropriate modification of tf), ^ , 77, H, q, and 
Q. (Indeed, on can replace ^ ( s , v, a, 7) with #(s , is, a, 7) — \£(s, v, vs, 0) 
and add a correction term to tp.) It follows from (Al) and (A2) that ip 
is continuously differentiate and 77 and q are continuous on R if (0, g) 
is an admissible pair, i.e., if 0 G Cl(R),g G C&(R), and 6 > 0. The 
purpose of (A4) is to ensure that 

(3.3) ^(sìe(t)ìé
t{s)ìg

t(s)) -> 0 as s - • 0+ 

whenever (0, g) is an admissible pair. We note that (A4) is implied by 
(A3) if * G C ( [ 0 , 0 0 ) x ( 0 , 0 0 ) x [0 ,00) x R ) . 

Our assumptions are certainly not the weakest possible. However, we 
feel that they are reasonable from the viewpoint of applications. 

By an admissible thermodynamical process we mean an ordered 
quintuplet (0, g, ip, 77, q) of functions on R where (0, g) is an admissible 
pair and ip^^q are computed through (3.1). We say that the consti
tutive equations (3.1) are compatible with thermodynamics if the 
Clausius-Duhem inequality 

(3.4) tj> + r)è -h ^ < 0 
u 

holds for every admissible thermodynamical process (0,g,ip,r),q). 

The following result is an immediate consequence 8 of the work of 
Gurtin and Pipkin [12]. 

PROPOSITION 3.1. The constitutive equations (3.1) are compatible 
with thermodynamics if and only if 

f)(0(t))+ / H(sì6(t)ìé
t(s)ìg

t(s))ds 
(3.5) Jo 

= -^'(6{t))- / ^,2(s16(t)ìe
t(s)ìg

t(s))dsì 
Jo 

Gurtin and Pipkin use a slightly different definition of admissible pair and their 
technical assumptions are formulated accordingly. However, it is clear that the 
arguments used in [12] can be applied in the present setting. 
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(3.6) 

and 

(3.7) 

/»OO 

m*))+ / Q(sie(t)iê
t(s),gt(s))ds 

Jo 
/»OO 

= -6(t) / Ü^OW^WrfWds, 
Jo 

/»OO 

/ *,3 (8,6(t), e*(8), g*(a))[9(t) - 6{t - s)\ds 
Jo 

/•oo 

- / ^A(s,6(t)Jt(s)ig
t(s))g(t-s)ds<0 

Jo to 

for every admissible pair (6,g). 

It is obvious that if 

(3.8) rj(v) = - ^ ' ( i / ) , H(s, v, a, 7) = - * , 2 (s, v, a, 7), 

/ 3 gx ^ M = 0, Q(s,ï/ ,a,7) = - i / * , 4 (5 , ^ , a , 7 ) 
V 5 , o O , a > 0 , 7 G R 

then (3.5) and (3.6) hold for all admissible pairs (#,#). The next propo
sition gives a pointwise condition on ^ which is sufficient to ensure that 
(3.7) holds for every admissible pair (#,#). 

PROPOSITION 3.2. / / 

(3.10) * 5 l (s,1/, a, 7) + i/*,3 (5, z/, a, 7) < 0 Vs, 1/ > 0, a > 0,7 € R 

then (3.7) holds for every admissible pair (ß,g). Consequently, z/(3.8), 
(3.9), (3.10) hold then the constitutive relations (3.1) are compatible 

with thermodynamics. 

PROOF. Let (0,g) be an admissible pair. To see that (3.10) implies 
(3.7) we first observe that 

if,3(s,e(t),ët(s),gt(s))[e(t)-e(t-s)} 

-^(».»W.J'W^WW-«) 
(3.11) = fc}1 ( s , 0 ( / ) , ë\s), g\s)) + (9(t)*,3 (*, W) , * ' (*) , $'(*)) 

-jU(*,0(t),0*(«), §«(*)). 
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It follows from (A4) and Remark 2.2 that 

(3.12) J - * ( * , 0, (t), 0*(«), $'(*))(** = 0 

and consequently integration of (3.11) shows that (3.7) is equivalent to 

/•OO 

/ ^a(s,e(t),êt(s),9t(s))ds 
(3.13) Jo 

+ 0(t) / ^ì3(sìe(t),et(s)ìg
t(s))ds<0. 

Jo 

Clearly, (3.10) implies (3.13) which completes the proof. DO 

We now discuss the necessity of various pointwise conditions, includ
ing (3.8), (3.9), and (3.10), for compatibility with thermodynamics. 9 

PROPOSITION 3.3. If the inequality (3.7) holds for every admissible 
pair (0, g) then 

(3.14) *,,- (s, i/, us, 0) = 0, j = 1,2,3,4 Vs, i/ > 0. 

If the constitutive equations (3.1) are compatible with thermodynamics 
then (3.8), (3.9), and (3.14) hold. 

PROOF. Let t j e R and v,\,A,B > 0 with A < B be given. We 
first construct a sequence {(0n»0n)}£Li of admissible pairs such that 
#n = 0 for all n, {#n}^ i is uniformly bounded, and 

a f*_«ï_> J " i f*e[0, j4)U(f l ,oo) 

(3.15) r ^ if Ä G [0, A) 
élis) -+ { vA + A(s - A) if s G [A, 5] 

i/A + X(B - A) + i/(5 -B) if 5 G (S , oo) 

The necessity of (3.8) i and (3.9)i can be obtained directly from the results in 
§3 of [12]. A necessary condition that is closely related to (3.14) is also established 
in §3 of [12]. 
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as n —• oo. Applying (3.7) to this sequence and letting n —> oo, we 
obtain 

./A 
(3.16) / *,3 (s, i/, i/A + A(s - A), 0)(i/ - A)ds < 0. 

We then construct a new sequence {(0n?0n)}£Li of admissible pairs 
with 6n = v for all n, {0n}£Li. uniformly bounded, and 

a f / _ « ï - J ° i f«€[0 ,A)U(B,oo) 

(3.17) r o if s e [o, A) 
S n ( « ) - M l{s-A) X s e [A, B) 

[j{B -A) if 5G(J5,oo) 

as n —» oo. We apply (3.7) to the new sequence and let n —> oo to 
obtain 

(3.18) / tf,4($,i/, 1 /5 ,7 (5 - A))7d5 > 0 . 

Since (3.16) and (3.18) hold for every A, B with 0 < A < B, we 
conclude that 

/ 3 1 9 x * , 3 ( « , ^ , ^ , 0 ) ( i / - A ) < 0 

#,4(5,z/,z/5,0)7>0 V s > 0 . 

It follows from (3.19) that 

(3.20) * ,3 (5,1/, 1/5, 0) = #,4 (5,1/, 1/5,0) = 0 Vs, z/ > 0 

since 7 and z/, A > 0 are arbitrary. 

If we differentiate the relation 

(3.21) *(*,!/, 1/5,0) = 0 

with respect to s, with respect to z/, and appeal to (3.20) we obtain 

(3.22) * a (5,1/, 1/5,0) = *,2 (s,1/, 1/5,0) = 0 V5,1/ > 0. 
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If the constitutive equations (3.1) are compatible with thermodynamics 
then (3.7) is satisfied for every admissible pair (#,#), a n d consequently 
(3.14) holds. The necessity of (3.8)and (3.9) follows from (3.20), (3.22) 
and Lemma 2.1. D 

Without additional assumptions on ^ the pointwise inequality (3.10) 
is not necessary for compatibility. 10 However, we do have the following 
result. 

PROPOSITION 3.4. / / the constitutive relations (3.1) are compatible 
with thermodynamics and 

(3.23) #(s , v, a, 0) = 0 Ms, v > 0, a > 0, 

then (3.10) holds. 

PROOF. We note that (3.23) implies 

(3.24) £ , ! (s, v, a, 0) = ^,3 (5, v, a, 0) = 0 Vs, v > 0, a > 0. 

The desired conclusion therefore follows from (3.24), Lemma 2.2, 
Proposition 3.1, and the fact that (3.7) is equivalent to (3.13). n0 

4. Examples. We now discuss several examples of constitutive 
equations satisfying the conditions of §3. The following result, which 
is implied by Propositions 3.1, 3.2, and 3.3, will be used: / / ^ G 
C^O, 00), £ G (^((O, 00) x (0, oc) x [0, 00) x R), 

(4.1) *(s,i/,i/s,0) = 0 Vs , i />0 , 

^ and ^ , j , j = 1,2,3,4 are admissible kernels, (A4) of §3 holds, and 

(4.2) ^,1 (s, v, a, 7) + i/*,3 (5, 1/, a, 7) < 0 Vs, v > 0, a > 0,7 G R, 

We have constructed an example of constitutive relations of the form (3.1) that 
are compatible with thermodynamics, but for which the pointwise inequality (3.10) 
fails. We omit the presentation of this example because it is rather involved. 
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then the constitutive equations 

/»OO 

m = WW + / *(5,ô(t),ê*(5),5*w) ,̂ 
Jo 

/»OO 

(4.3) rj(t) = -$(0(t)) - / *,2 (*,0(t), **(*), $'(*))<**, 
Jo 

POO 

q(t) = -6(t) / * , 4 (« , 0(0 ,^(8) , 5 * ^ ) ) ^ 

are compatible with thermodynamics. 

In order to avoid repeated hypotheses we assume that V e C ^ o o ) 
and that all functions appearing in the examples below are such that 
* e Cl((0, oo) x (0,oo) x [0,oo) x R ) , # and * , j , j = 1,2,3,4 are ad
missible kernels, and (A4) holds. 

EXAMPLE 4.1. (CATTANEO'S RELATION). Let r and K be strictly 
positive constants. If we define ^ by 

(4.4) *(s , i/, a, 7) := ^ - ^ e _ s / r 7 2 Vs, i/ > 0, a > 0,7 G R, 

so that the free energy is given by 

(4.5) ^(t) = ^(0(t)) + _ _ _ / e-l*ms)?ds, 

then it is easy to check that (4.1) and (4.2) are satisfied. The cor
responding equations for the entropy, internal energy, and heat flux 
are 

K f°° 

V(t) = -#W)) + ^ - ^ J e-slT{gt{s)fds, 

(4.6) e(t) = mm - m#w)) + ̂  / e-^w*))2*». 
poo 

q(t) = ^ / e-"Tg*{8)ds. 
T Jo 

Equation (4.6)3 is equivalent to Cattaneo's relation 

(4.7) rq + q = -Kg. 
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It is interesting to note that Chen and Gurtin [3] give a different free en
ergy which yields equation (4.6)3 for the heat flux. Chen and Gurtin's 
free energy cannot be expressed in the form (4.3) 1. D 

EXAMPLE 4.2. An interesting generalization of (4.6)3 is provided by 

/»OO 

(4.8) q(t) = / a,(s)f(gt(s))dsi 
Jo 

where a : {0, 00) —* R and / : R —• R are smooth functions with 
/(0) = 0. If we integrate the relation (3.9)2 we find the simplest 
candidate for ^ is 

(4.9) * ( s , 1/, a, 7) := ~a ^ F(>y) Vs, v > 0, a > 0,7 € R, 

where 

(4.10) F ( 7 ) : = r f(X)d\. 
Jo 

The inequality (4.2) is equivalent to 

(4.11) a"(s)F(7) > 0 Vs > 0,7 e R. 

Consequently, if 

(4.12) a is convex, ^(7) > 0 V7 G R 

then the constitutive equations 

(4.13) 

1 f°° 
m = mt)) -ßföj a'^F^^ds 

1 r°° 
V(t) = -M«)) - J ^ j o a'(s)F(gt(s))ds 

together with (4.8) are compatible with thermodynamics. The corre
sponding equation for e is 

2 f°° 
(4.14) e(t) = tl,(9(t))-0(tW(9(t))-^J a'(s)F(gt(s))ds. a 
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EXAMPLE 4.3. In the special case when the free energy is independent 
of the summed history of the temperature, i.e., when 

(4.15) *(s , i / ,a ,7) = F(s,i/,7) Vs, v > 0,a > 0,7 G R 

with 

(4.16) F{s,v,0) = 0 Vs,z/>0 

the inequality (4.2) becomes 

(4.17) Fa (s, i/, 7) < 0 V«, v > 0,7 G R. 

If (4.16), (4.17) hold then the constitutive equations 

/•OO 

tl>(t) = 4(W))+ / F(Ä,e(t),5*(5))d«, 
/•OO 

(4.18) r/(t) = -^ ' (0( t ) ) - / F,2 (a, 0 « , S ' ^ d s , 
./0 

/•OO 

g(t) = -e ( t ) / F,3(s,0(t), $*(*))<** 

are compatible with thermodynamics. 

One can also start with an expression for q of the form 

/•OO 

(4.19) q(t)= / G(a,0(t),S*(*))d*, 
Jo 

with G(s,v, 0) = 0 for all s, 1/ > 0, and then construct the remaining 
constitutive equations. It is easy to show that there is a function F 
satisfying (4.16), (4.17) and 

(4.20) G{s, v, 7) = -i/F,3 (*, 1/, 7) V«, v > 0,7 G R 

if and only if 

(4.21) / G,i(s,*/,À)dÀ>0 V S , Z / > 0 , 7 G R . 
Jo 

It is important to note that there may be free energies which cannot be 
expressed in the form (4.3) 1 but satisfy the conditions of Gurtin and 
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Pipkin's theory and lead to equations of the form (4.19) for the heat 
flux. (See the example in §6 of Chen and Gurtin [3].) D 

EXAMPLE 4.4. Suppose that 

(4.22) £(s , v, a, 7) = F(s, v,a- vs, 7) Vs, v > 0, a > 0,7 G R 

with 

(4.23) F(s,z/,0,0) = 0 Vs,z/>0. 

In this case the inequality (4.2) reduces to 

(4.24) F , i ( s , i / , a - z / s , 7 ) < 0 Vs,i/ > 0,a > 0,7 G R. 

If (4.23) and (4.24) are satisfied then the constitutive equations 

/»OO 

t/>(t) = fP(0(t)) + / F(8, Oit), Ô*(s) - 0(t)s, g\s))ds, 
Jo 

/»OO 

IJ(<) = -${6(t)) - / F,2 (s,0(t),0*(s) - 6(t)s,g*(3))ds 
(4-25) ^ 

+ / sF,3 (s, 6(t), 0\s) - 6(t)s, g*(s))d8, 
Jo 

q(t) = -0(t) / F,4 (s, 0{t), Ö\s) - 0(t)s, g^s^ds. 
Jo 

are compatible with thermodynamics. D 

5. Modifications. 

A. Dependence on the present value of g. Gurtin and Pipkin's theory 
is not applicable if the constitutive relations allow dependence on the 
present value of g. One can show that the free energy and the entropy 
must be independent of the present value of g and that the entropy 
is minus the derivative of the free energy with respect to the present 
value of 9. However, it is no longer true that the heat flux is determined 
by the free energy. A complete discussion of this situation is beyond 
the scope of the present paper. However, the following result can be 
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obtained from the arguments of §3 and a straightforward calculation: 
/ / (Al ) through (A4), (3.8), (3.9), (3.10), and 

(5.1) y(v,yF<0 Vz />0 ,2 /ER 

hold then the constitutive equations 

/»00 

m = j,(0(t)) + / *(*, 0(t), Ot(s),gt(s))ds, 
Jo 

/»OO 

(5.2) n(t) = fj(9(t)) + / H(s,0(t)1O
t(s)Jg

t(s))ds, 
Jo 

/»GO 

q(t) = F(0(t), g(t)) + / Q(a, 0(t), 0*(s), g\s))ds 
Jo 

are compatible with thermodynamics in the sense that the Clausius-
Duhem inequality (3.4) holds whenever (6, g) is an admissible pair and 
-0,7/, q are computed through (5.2). 

We note that models of the form 

(5.3) 

/»OO 

q(t) = -h(g(t)) - / a(s)f(g(t - s))ds 
Jo 

/»OO 

e(t) = b + c0(t) + / ß(s)0(t - s)ds 
Jo 

with 

(5.4) yh(y) > 0 Vy G R 

have been studied by several authors (cf. the review article [14]). Mod
els of this structure are generally incompatible with thermodynamics 
in the sense that (under very mild assumptions on a and / ) one can 
construct smooth T-periodic functions Q,g such that (1.7) is violated 
when e and q are given by (5.3). 

B. Coldness. In applications involving very low temperatures it is 
often convenient to use the coldness </> := 1/6 and the coldness gradient 
P •= (ßx = —9/(Q2) m place of the temperature 6 and the temperature 
gradient g. If we define x through 

(5.5) X'=V-<f>e 
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then the Clausius-Duhem inequality becomes 

(5.6) x + e0 + QP > 0. 

We now consider the constitutive equations 

/»OO 

X(t) = xW)) + / X(s, M), ï>\s),p\s))ds, 
Jo 

/»oo 

(5.7) e(t) = ë(c/>(t)) + / É(s, <P(t), 4>t(s),pt(s))dsì 
Jo 

/»OO 

q(t) = q{4>{t)) + / Q(a, </>(*), ^ ( 5 ) ^ ( 5 ) ) ^ 
Jo 

under the following assumptions: 

(Ä1) x e C^O, oo), X € ^ ( ( 0 , oo) x (0, oo) x [0, oo) x R), ê, q € 
C(0,oo),; 

(A2) X,j£,<2, and X,j,j = 1,2,3,4 are admissible kernels (in the 
sense o/§2); 

(A3) X(s, i/, I/Ä,0) = 25(«, */, 1/5,0) = Q(s, i/, 1/5,0) = 0 V«, i/ > 0; 

(A4) For each v > 0 we have 

X(s, v, ys, zs) —• 0 as s —• 0 + , 

uniformly for (y, z) in compact subsets of [0, oo) x R. 
The same definition of an admissible pair is still appropriate, i.e., a pair 
of functions (</>,£>) on R is called admissible if 0 € C£(R),p G C&(R), 
and </> > 0. By compatibility with thermodynamics we now mean that 
the inequality (5.6) holds whenever (0,p) is an admissible pair and 
X, e, g are computed through (5.7). 

Using arguments of the type employed by Gurtin and Pipkin [12] one 
can establish the following analog of Proposition 3.1: The constitutive 
equations (5.7) are compatible with thermodynamics if and only if 

(5.8) 

/»OO 

IW))+ / Ë(sicf>(t),4>t(s)1p
t(s))ds 

Jo 
/»OO 

= -x'm)) - / X,2 (s, 4(t), ^(s),^(s))da, 
Jo 
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(5.9) 

and 

(5.10) 

/»OO 

<?(</>(')) + / Q(s,ct>{t),4>\s),pt{s))ds 
Jo 

/»OO 

= - / XA(s^(t)^t(s)ip
t(s))ds, 

Jo 

y»oo 

/ 1,3 (*, 0(t), ^( 5 ) ,^(5))[0( t ) - </>(t - S)]ds 
Jo 

/»oo 

- / XA(s^(t)^t(s)1p
t(s))p(t-s)ds>0 

Jo 

for every admissible pair (0,p). 

If ((/>,p) is an admissible pair one can argue as in the proof of 
Proposition 3.2 to show that: The inequality (5.10) holds if and only if 

(5.11) 

/»OO 

/ X,i(a,^(*),^(a),p*W)d» 
Jo 

/»OO 

0(f) / X,3(s^(t)^t(s),pt(s))ds>0. 
Jo /o 

Moreover, one can show that: 7/(5.10) holds for every admissible pair 
(0,p) then 

(5.12) X, i(5,i/,i/5,0) = 0, i = 1,2,3,4 V A , I / > 0 . 

Using Lemmas 2.1, 2.2, and the remarks above, it is straightforward to 
establish analogs of all the results of §3. 

We close with a very simple example in which the internal energy e 
depends only on the present value of 0. 

EXAMPLE 5.1. Suppose that chi G C^O, oo) and 

/»OO 

(5.13) x(t) := x(Ht)) + / a'(s)F(pt(s))ds 
Jo 

where a : (0, oo) —> R and F : R —• R are smooth functions with 

(5.14) F(0) = 0. 
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We assume that a and F are such that X, X,j ,j = 1,4 are admissible 
kernels, where 

(5.15) X(s, v, a, 7) := a'(s)F(j) Vs, v > 0, a > 0,7 € R. 

If 

(5.16) a is convex, F (7) > 0 V7 G R 

then the constitutive equations 

e(t) = -x'm)), 

( 5 ' 1 7 ) «(*) = - r a'(s)F'tf(s))d8 
Jo 

together with (5.13) are compatible with thermodynamics. D 
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