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RESIDUALLY SMALL COMMUTATIVE RINGS

GREG OMAN AND ADAM SALMINEN

ABSTRACT. Let R be a ring. Following the literature, R
is called residually finite if, for every r ∈ R\{0}, there exists
an ideal Ir of R such that r /∈ Ir and R/Ir is finite. In this
note, we define a strictly infinite commutative ring R with
identity to be residually small if, for every r ∈ R\{0}, there
exists an ideal Ir of R such that r /∈ Ir and |R/Ir| < |R|.
The purpose of this article is to study such rings, extending
results on (infinite) residually finite rings.

1. Introduction. We begin by recalling that a group G is residually
finite if, for every g ∈ G\{e}, there exists a normal subgroup Hg of G
such that g /∈ Hg, and G/Hg is finite. Residually finite groups are
objects of great interest; for good overviews, see Hartley [7], Magnus
[14] and Segal [21]. In Lewin [13] and Orzech and Ribes [20], the
concept of residual finiteness is stated for rings in the natural way.
Specifically, a ring R is called residually finite if, for every r ∈ R\{0},
there exists an ideal Ir of R such that r /∈ Ir, and R/Ir is finite. In
these papers, the authors translate many of the previous results on
residually finite groups to rings.

Years later, Varadarajan [23, 24] extended the notion of residual
finiteness to modules. He calls a left (right) module M over a ring
R a residually finite module if, for every nonzero m ∈ M , there is
a submodule Nm of M not containing m such that M/Nm is finite.
Moreover, he makes some connections between residual finiteness in
groups and the more recent modification for rings above. For instance,
in Baumslag [3], the author shows that, if G is a finitely generated,
residually finite group, then the group Aut(G) of automorphisms of G
is residually finite. Varadarajan later establishes the following ([23],
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Theorem 1.2): let R be a finitely generated residually finite ring. Then
the group Aut(R) of ring automorphisms of R is a residually finite
group. He also defines a ring R to be an RRF ring (LRF ring) if
every right R-module (left R-module) is residually finite. Somewhat
confusingly (given the terminology introduced earlier by Lewin, Orzech
and Ribes), Varadarajan calls a ring an RF ring if it is simultaneously
an RRF ring and an LRF ring. Faith simplified and generalized some
of Varadarajan’s results in [5], retaining Varadarajan’s definitions of
RRF and LRF rings.

The works cited above on residual finiteness of rings consider general
associative rings. In this paper, we restrict our focus to commutative
rings with identity 1 ̸= 0. Unless otherwise specified, all rings are
assumed commutative with nonzero identity. Our purpose is to extend
the notion of residual finiteness to other cardinalities. Of central
importance in this note is the following definition:

Definition 1.1. Let R be an infinite ring, that is, R has infinite
cardinality. Then, we say that R is residually small if, for every
nonzero r ∈ R, there exists an ideal Ir of R not containing r such
that |R/Ir| < |R|.

We pause to justify the reason we consider only infinite rings in the
previous definition. Observe that every finite ring is residually finite:
if R is a finite ring and r ∈ R\{0}, then r /∈ {0} and R/{0} is finite.
However, not every finite ring is residually small (use Definition 1.1,
but omit the infinitude assumption). Let R be a finite ring. Then, R
is not residually small if and only if there is a nonzero r ∈ R such that,
for all ideals Ir of R, not containing r, |R/Ir| = |R|. Since R is finite,
this reduces to the assertion that there is a nonzero r ∈ R such that
the only ideal of R not containing r is the zero ideal. However, then
the nonzero ideal Rr is contained in every nonzero ideal of R. Since R
is finite, R has but finitely many ideals. In any ring with but finitely
many ideals, it is easy to show that R has a minimum ideal (that is,
a nonzero ideal contained in every nonzero ideal) if and only if R is
uniform. Thus, a finite ring R is residually small if and only if R is not
uniform.

Definition 1.1 generalizes the notion of residual finiteness for infinite
rings in that all infinite residually finite rings are residually small. Def-
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inition 1.1 is also closely related to the concept of a homomorphically
smaller module. In [17], the authors, borrowing terminology intro-
duced in [22], define a (unitary) module M over a commutative ring R
to be homomorphically smaller (HS for short) if and only if M is infi-
nite and |M/N | < |M | for every nonzero submodule N of M . We also
define a ring R to be an HS ring if R is an HS module over itself, that
is, if R is infinite and |R/I| < |R| for every nonzero ideal I of R. The
definition of an HS ring extends the notion of (infinite, commutative)
residually finite rings appearing in [4].1 In [12], the authors extend the
results of [4] to rings without identity and say such rings have the finite
norm property. This concept was also considered by Ion, Militaru and
Niţǎ in [8]2 and [9]. In order to mitigate confusion, throughout the
remainder of the article, if we state that a ring R is residually finite,
we always mean that, for any nonzero r ∈ R, there exists an ideal Ir
not containing r such that R/Ir is finite.

The outline of this article is as follows. In Section 2, we prove
fundamental results on residually small rings. Section 3 is devoted to
presenting the main results of this paper. Finally, Section 4 concludes
the article with some open questions.

2. Preliminaries. To initiate the reader, we present some natural
examples of HS rings.

Example 2.1 ([17, Example 2.1, Lemma 2.2]). The following domains
are HS rings:

(i) infinite fields;
(ii) the ring Z of integers;
(iii) the polynomial ring k[X], where k is a finite field; and
(iv) the power series ring Q[[T ]].

Sketch of Proof. Each item above is remarked on in succession.

(i) Obvious.

(ii) Obvious.

(iii) Let k be a finite field. As is well known, k[X] is a PID. Let
f(X) ∈ k[X] be a nonzero nonunit of degree n. Then, k[X]/⟨f(x)⟩
forms a vector space over k of dimension n. Since k is finite,
k[X]/⟨f(X)⟩ is, too.
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(iv) If I is a proper nonzero ideal of Q[[T ]], then I = ⟨Tn⟩ for some
positive integer n. Thus, modulo I, we obtain polynomials in T over Q
of degree at most n−1. This shows that Q[[T ]]/I is countable, whereas
|Q[[T ]]| = 2ℵ0 . Therefore, Q[[T ]] is HS. �

Next, we recall two definitions that will facilitate our investigations.
In Oman [16], the author defines an ideal I of a (not necessarily
commutative) ring R to be small if |I| < |R| and large if |R/I| < |R|.
With this terminology, an infinite ring R is HS if and only if all nonzero
ideals of R are large. We can now categorize the residually small rings
in terms of large ideals, as follows.

Proposition 2.2. An infinite ring R is residually small if and only if
the intersection of the large ideals of R is trivial.

Proof. Let R be an infinite ring. Then, R is not residually small if
and only if there exists an r ∈ R\{0} such that every large ideal of
R contains r if and only if the intersection of the large ideals of R is
nontrivial. �

Remark 2.3. LetD be a domain, and let L(D) denote the collection of
large ideals of D. If D is residually small, then the previous proposition
implies that M :=

⊕
I∈L(D) D/I is a faithful torsion D-module. Using

the terminology introduced in [18, 19], every residually small domain
is an FT ring. Additionally, the reader is referred to [1]–[2] for more
on torsion modules over commutative rings.

We now establish that neither the class of HS rings nor the class
of residually small rings contains the other. Moreover, we show that
the class of residually small rings properly contains the class of infinite
residually finite rings.

Proposition 2.4. The following hold :

(i) there exist HS rings which are not residually small ;
(ii) there exist residually small rings which are not HS; and
(iii) there exist residually small rings which are not residually finite.
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Proof. In order to establish (i), simply observe that an infinite field
is HS but is not residually small.

As for (ii), consider the ring Z × Z, and let (m,n) ∈ Z × Z be
nonzero. We can assume without loss of generality that m ̸= 0.
Now, pick a prime p such that p - m. Then, (m,n) /∈ pZ × Z and
(Z × Z)/(pZ × Z) ∼= Z/pZ, which is finite. Thus, Z × Z is residually
small. On the other hand, note that

|(Z× Z)/(Z× {0})| = |Z| = |Z× Z|.

Thus, Z× Z is not HS.

Finally, we come to (iii). Again consider the ring Q[[T ]]. Suppose
that f(T ) :=

∑∞
i=0 aiT

i is a nonzero element of Q[[T ]]. Now, let n
be least such that an ̸= 0. Then, f(T ) /∈ ⟨Tn+1⟩ and, (by Example
2.1 (iv))Q[[T ]]/⟨Tn+1⟩ is countable. We deduce thatQ[[T ]] is residually
small. Lastly, if I is any proper ideal of Q[[T ]], then Q naturally embeds
into Q[[T ]]/I. Thus, Q[[T ]] is not residually finite. �

In our first theorem, we prove that, with the exception of fields, the
class of residually small rings properly contains the class of HS rings.

Theorem 2.5. Let R be an HS ring. Then, R is residually small if
and only if R is not a field.

Proof. Suppose that R is an HS ring. As we have noted, if R is a
field, then R is not residually small. Conversely, assume that R is not
a field. From [17, Proposition 3.2], Ann(R) := {r ∈ R : rR = {0}} is a
prime ideal of R. Since R has an identity, we see that Ann(R) = {0}.
Therefore, R is a domain. Now, let r ∈ R\{0} be arbitrary, and
suppose, by way of contradiction, that |R/I| = |R| for every ideal I
of R not containing r. Since R is HS, it follows that the only ideal of
R not containing r is {0}. Thus, the principal ideal Rr is contained in
every nonzero ideal of R. Since R is not a field, we deduce that r is not
a unit. However, due to the fact that R is a domain, Rr2 ( Rr, and
we have a contradiction to the minimality of Rr. �

Before presenting residually small-themed results for general rings,
we first focus on those which are Noetherian. For assistance, we shall
require the following lemmata.
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Lemma 2.6 ([15, Lemma 3]). Let R be a ring and I a finitely
generated ideal of R. Then:

(i) if R/I is finite, then R/In is finite for every positive integer n;
(ii) if R/I has infinite cardinality κ, then R/In has cardinality κ for

every positive integer n.

Lemma 2.7 ([20, Lemma 3]). Let R be a Noetherian ring, and let x
be a nonzero element of R. Then, there is a maximal ideal J of R and
a positive integer n such that x /∈ Jn.

It is easy to see that the ring Z of integers is residually finite. More
generally, we prove

Proposition 2.8. Let R be an infinite Noetherian ring such that
|R/J | < |R| for every maximal ideal J of R. Then, R is residually
small.

Proof. Let R be as stated. If x ∈ R is nonzero, then, by Lemma
2.7, there exist a maximal ideal J and positive integer n such that
x /∈ Jn. Since |R/J | < |R| and R is infinite, Lemma 2.6 implies that
|R/Jn| < |R|. We conclude that R is residually small. �

Corollary 2.9. Let R be an infinite Noetherian local ring with maximal
ideal J . Then, R is residually small if and only if |R/J | < |R|.

Proof. If R is residually small, then there exists a proper ideal I of
R such that |R/I| < |R|. Since I ⊆ J , also |R/J | < |R| (note that
there is a natural surjection of R/I onto R/J). The converse holds by
Proposition 2.8. �

Next, we show that we can weaken the hypothesis of Proposition 2.8
if the Noetherian ring R is a domain.

Theorem 2.10. Suppose that D is a Noetherian domain. If D has at
least one proper large ideal, then D is residually small. Moreover, if D
has a proper nonzero ideal I of finite index in D, then D is residually
finite.
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Proof. Let D be a Noetherian domain, and suppose that I ̸= D is
a large ideal of D (hence, D is not a field). By Krull’s intersection
theorem,

(2.1)
∞∩

n=1

In = {0}.

Since I is large and D is Noetherian (and infinite, since D is not
a field), we apply Lemma 2.6 to conclude that In is large for every
positive integer n. This fact, along with (2.1) above, implies that the
intersection of all large ideals of D is trivial. Therefore, D is residually
small by Proposition 2.2.

Now, suppose that I is a proper nonzero ideal of D such that D/I is
finite, and let d ∈ D be nonzero. From (2.1), there is a positive integer
n such that d /∈ In. Applying Lemma 2.6 (i) concludes the proof. �

Remark 2.11. We cannot dispense with the assumption that D is
a domain in the statement of the previous theorem. For example,
consider the ring R := F2 ×Q. Then, R is Noetherian and {0} ×Q is
the unique proper large ideal of R. Proposition 2.2 implies that R is
not residually small.

We now work toward classifying the infinite cardinals ρ for which
there exists a residually small Noetherian domain of cardinality ρ.
Again, we require a lemma.

Lemma 2.12 ([11], Lemmas 2.1, 2.2). Let ρ be an infinite cardinal,
and let κ < ρ be a cardinal which is either a prime power or is infinite.
Then, there exists a Noetherian domain D of size ρ with a residue field
of size κ if and only if κ+ ℵ0 ≤ ρ ≤ κℵ0 .

Proposition 2.13. Let ρ be an infinite cardinal. There exists a
Noetherian residually small domain of size ρ if and only if there exists
a cardinal κ satisfying κ < ρ ≤ κℵ0 .

Proof. Let ρ be an infinite cardinal. Suppose first that D is a
Noetherian residually small domain of size ρ. Then, there exists a
proper ideal I of D such that |D/I| < |D|. Further, I ⊆ J for
some maximal ideal J of D. Thus, |D/J | ≤ |D/I| < |D|. Now set
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κ := |D/J |. Then, Lemma 2.12 implies that κ < ρ ≤ κℵ0 . Conversely,
suppose that κ < ρ ≤ κℵ0 . If κ is infinite, then Lemma 2.12 furnishes us
with a Noetherian domain D with a residue field of size κ. By Theorem
2.10, D is residually small. Otherwise, κ is finite. Choose a prime q
with κ ≤ q. Then, we see that

q < q + ℵ0 ≤ ρ ≤ qℵ0 ,

and, invoking Lemma 2.12 again, we obtain a Noetherian domain D of
size ρ with a residue field of size q. A final application of Theorem 2.10
concludes the proof. �

We can actually strengthen the previous proposition somewhat by
showing that, for any infinite cardinal ρ satisfying κ < ρ ≤ κℵ0 for
some cardinal κ, there exists a Noetherian residually small domain of
size ρ which is not HS. In order to do this, we require another lemma.

Lemma 2.14. Suppose that D is a Noetherian residually small do-
main. Then, the polynomial ring D[X] is residually small but not HS.
Furthermore, D[X] is residually finite if and only if D is residually
finite.

Proof. Suppose that D is residually small and Noetherian, and let
I be a proper large ideal of D. Then, we have a sequence D[X] →
D → D/I of surjective ring maps. Letting K be the kernel of the
composition, we see that |D[X]/K| = |D/I| < |D| = |D[X]|. Hence,
K is a proper large ideal of D[X]. Since D[X] is a Noetherian domain,
we may apply Theorem 2.10 to conclude that D[X] is residually small.
Lastly, observe that |D[X]/⟨X⟩| = |D| = |D[X]|; thus D[X] is not HS.

Suppose now that D[X] is residually finite. Then, there is a proper
ideal I of D[X] such that D[X]/I is finite. Moreover, there is a natural
embedding of D/(D∩I) into D[X]/I. Observe that D∩I is nontrivial,
lest D be a finite field (and therefore not residually small). Moreover,
D ∩ I is a proper ideal of D, lest I = D[X]. Conversely, assume that
D is residually finite, and let J be a proper ideal of D of finite index.
As above, the canonical surjections D[X] → D → D/J yield an ideal
I of D[X] for which D[X]/I ∼= D/J . Thus, I is proper and nonzero.
Applying Theorem 2.10 completes the argument. �
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Corollary 2.15. Let ρ be an infinite cardinal. There exists a Noether-
ian residually small domain D of size ρ if and only if there exists a
cardinal κ satisfying κ < ρ ≤ κℵ0 . In this case, we can find such a D
which is not HS.

A natural question arises. Is it the case that, for any infinite cardinal
ρ, there exists a residually small domain D of cardinality ρ which is
not HS? We conclude this section with the answer.

Proposition 2.16. Let ρ be an infinite cardinal. There exists a resid-
ually small domain D of size ρ which is not HS.

Proof. If ρ = ℵ0, then (applying Lemma 2.14) we may take D :=
Z[X]; noting that D/⟨X⟩ is infinite, D is not HS. Suppose now that
ρ > ℵ0, and let R be any domain of size less than ρ. Now, set
D := R[Xi : i < ρ], the polynomial ring over R in ρ many variables,
and let f ∈ D be nonzero. Without loss of generality, we may
assume that f ∈ R[X0, . . . , Xn] for some n < ω < ρ. Observe that
D = (R[X0, . . . , Xn])[Xi : n < i < ρ]. Thus, there is a natural ring
surjection φ : D → R[X0, . . . , Xn]. Setting K := ker(φ), we have
D/K ∼= R[X0, . . . , Xn]. It follows that K is large. Now, φ is the
identity map on R[X0, . . . , Xn]; since f ∈ R[X0, . . . , Xn] is nonzero,
φ(f) = f /∈ K. This proves that D is residually small. Since
|D/⟨X0⟩| = |D|, we see that D is not HS. �

Corollary 2.17. Every ring is a subring of a residually small ring ;
every domain is a subring of a residually small Noetherian domain.

Proof. Let R be a ring, and let ρ be an uncountable cardinal larger
than |R|. Then, as the proof of Proposition 2.16 shows, R[Xi : i < ρ]
is residually small (one need not assume that R is a domain). Suppose
now that D is a domain. Choose an ordinal a such that |D| ≤ ℵa+ω.
Then, of course, S := D[Xi : i < ℵa+ω] is a domain which contains D
and has cardinality ℵa+ω. Let F be the quotient field of S. Then, also,
|F | = ℵa+ω. Moreover, the power series ring F [[T ]] is a DVR (hence,
Noetherian) and has cardinality (ℵa+ω)

ℵ0 > ℵa+ω (this inequality is
immediate from König’s theorem, since ℵa+ω has countable cofinality).
Now,

ℵa+ω = |F | = |F [[T ]]/⟨T ⟩| < |F [[T ]]| = (ℵa+ω)
ℵ0 .

We invoke Theorem 2.10 to conclude the proof. �
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3. Main results. The goal of this section is to investigate how the
residually small property behaves relative to polynomial ring exten-
sions, direct products, quotient rings, factor rings and integral exten-
sions. We commence our investigations with polynomial rings, showing
that residual smallness passes nicely to polynomial extensions. The
following theorem significantly extends Lemma 2.14 as well as [23,
Theorem 2.2], where the author proves (among other things) that a
ring R is residually finite if and only if R[X] is residually finite.

Theorem 3.1. Let R be an infinite ring, and let ρ be a nonzero
cardinal. Then the following hold.

(i) If R is residually small, then R[Xi : i < ρ] is residually small.
(ii) If R[Xi : i < ρ] is residually small and ρ ≤ |R|, then R is resid-

ually small.
(iii) If ρ > |R|, then R[Xi : i < ρ] is residually small.

Proof. Assume that R is an infinite ring and that ρ ̸= 0 is a cardinal.
Now, let S be the multiplicative semigroup generated by {Xi : i < ρ}.
Observe that every nonzero member f of R[Xi : i < ρ] can be uniquely
expressed in the form

r0 + r1X1 + · · ·+ rnXn

for some X1, . . . ,Xn ∈ S with Xi ̸= Xj for i ̸= j, and r0, . . . , rn ∈ R,
where ri ̸= 0 for i > 0. We call this the canonical form of f .

(i) Suppose that R is residually small, and let

f := r0 + r1X1 + · · ·+ rnXn ∈ R[Xi : i < ρ]

be nonzero and in canonical form. If n > 0, then Xn has degree k for
some integer k > 0. Now, let S(Xn) ⊆ S be the set of divisors of Xn

(if f has degree 0, then we put S(Xn) := ∅). Since R is residually
small and rn ̸= 0, there exists some ideal I of R such that rn /∈ I and
|R/I| < |R|. Now, set

M := {s0 + s1Y1 + · · ·+ smYm : m ≥ 0, s0 ∈ I, sj ∈ R, Yj ∈ S,

and if Yj ∈ S(Xn), then sj ∈ I}.

It is straightforward to verify that M is an ideal of R[Xi : i < ρ].
Moreover, since rn /∈ I, it follows that f /∈ M (the condition “s0 ∈ I”
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in the definition of M above is necessary for establishing that f /∈ M in
case n = 0). Now, S(Xn) is finite; say, S(Xn) = {Y1, . . . ,Ya}. Define
φ : (R/I)a+1 → R[Xi : i < ρ]/M by

φ(r0, . . . , ra) := r0 + r1Y1 + · · ·+ raYa (mod M).3

It is not difficult to verify that φ is both well defined and surjective.
Thus,

|R[Xi : i < ρ]/M | ≤ |(R/I)a+1| < |R| ≤ |R[Xi : i < ρ]|;

the strict inequality above follows from the fact that R is infinite,
|R/I| < |R| and a+ 1 < ℵ0. This concludes the proof of (1).

(ii) Suppose now that R[Xi : i < ρ] is residually small and that
ρ ≤ |R|. Let r ∈ R\{0} be arbitrary. Since r ∈ R[Xi : i < ρ}, there is
an ideal M of R[Xi : i < ρ] such that r /∈ M and |R[Xi : i < ρ]/M | <
|R[Xi : i < ρ]|. Set I := M ∩ R. Then, it is easy to see (and is well
known) that I is an ideal of R. Furthermore, r /∈ I. Lastly, there
is a canonical injection φ : R/I → R[Xi : i < ρ]/M . We deduce that
|R/I| ≤ |R[Xi : i < ρ]/M | < |R[Xi : i < ρ]| = |R|.

(iii) Assume that ρ > |R|, and let f(X) ∈ R[Xi : i < ρ] be arbitrary.
Then, f(X) ∈ R[Xi1 , . . . , Xin ] for some i1, . . . , in < ρ. Now, let I
be the ideal of R[Xi : i < ρ] generated by {Xj : j /∈ {i1, . . . , in}}.
Then, it is clear that f(X) /∈ I. Moreover, we have R[Xi : i < ρ]/I ∼=
R[Xi1 , . . . , Xin ]. Therefore,

|R[Xi : i < ρ]/I| = |R[Xi1 , . . . , Xin ]| = |R| < |R[Xi : i < ρ]|.

The proof is now complete. �

Remark 3.2. In the statement of (ii), we cannot dispense with the
assumption that ρ ≤ |R|. Indeed, the proof of Proposition 2.16 shows
that, if R is any infinite ring and ρ > |R|, then R[Xi : i < ρ] is residually
small. Thus, if R is an infinite field and ρ > |R|, then R[Xi : i < ρ] is
residually small, but R is not.

Corollary 3.3. Let R be a finite ring, and let ρ be a nonzero cardinal.
Then, R[Xi : i < ρ] is residually small.

Proof. It suffices by Theorem 3.1 to prove that R[X] is residually
small. In order to see this, let f(X) ∈ R[X] be nonzero, and let n
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be an integer larger than the degree of f . Then, f(X) /∈ ⟨Xn⟩. Now,
R[X]/⟨X⟩ ∼= R; hence, R[X]/⟨X⟩ is finite. We apply Lemma 2.6 to
conclude thatR[X]/⟨Xn⟩ is finite as well, and the proof is complete. �

Next, we study direct products. As with polynomial extensions, the
residually small property transfers nicely in this context.

Theorem 3.4. Let {Ri : i ∈ I} be a collection of rings. Then,
R :=

∏
i∈I Ri is residually small if and only if R is infinite and Rj

is residually small for every j ∈ I such that |Rj | = |R|.

Proof. Suppose first that R =
∏

i∈I Ri is residually small. Then, by
definition, R is infinite. Now, suppose that j ∈ I and |Rj | = |R|. Let
rj ∈ Rj\{0} be arbitrary. Define (ri) ∈ R by

ri :=

{
0 if i ̸= j,

rj if i = j.

Since R is residually small, there exists an ideal I of R such that
(ri) /∈ I and |R/I| < |R|. Let πj : R → Rj be a projection onto the jth
coordinate, and set Ij := πj(I). Then, Ij is an ideal of Rj which does
not contain rj , lest (ri) ∈ I. It remains to show that |Rj/Ij | < |Rj |.
The map φ : R/I → Rj/Ij defined by φ(I+r) := Ij+πj(r) is easily seen
to be a well-defined surjection. Thus, |Rj/Ij | ≤ |R/I| < |R| = |Rj |.

Conversely, assume that R is infinite and that Rj is residually small
for all j such that |Rj | = |R|. Now, let (ri) ∈ R\{0} be arbitrary.
Choose any j such that rj ̸= 0. If |Rj | < |R|, then define ideals Ii of
the rings Ri by

Ii :=

{
Ri if i ̸= j,

{0} if i = j.

Then, clearly, (ri) /∈ I :=
∏

i∈I Ii, and R/I ∼= Rj . We deduce that
|R/I| = |Rj | < |R|. Finally, suppose that |Rj | = |R|. Then, by
assumption, there exists an ideal I ′j of Rj such that |Rj/I

′
j | < |Rj | and

rj /∈ I ′j . Set

Ii :=

{
Ri if i ̸= j,

I ′j if i = j.
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It follows that (ri) /∈ I :=
∏

i∈I Ii, and R/I ∼= Rj/I
′
j . Thus,

|R/I| = |Rj/I
′
j | < |Rj | = |R|, and the proof is complete. �

The next corollary is immediate.

Corollary 3.5. Let I be an infinite index set, and let {Ri : i ∈ I} be a
collection of finite rings. Then,

∏
i∈I Ri is residually small.

Having presented several examples of residually small Noetherian
rings, it is natural to inquire about the existence of residually small
Artinian rings. The previous theorem settles this query.

Corollary 3.6. There are no residually small Artinian rings.

Proof. Suppose, by way of contradiction, that R is a residually small
Artinian ring. As is well known, R = R1 × · · · ×Rn for some Artinian
local rings R1, . . . , Rn. By the definition of a residually small ring, R is
infinite. Hence, |R| = |Ri| for some i, 1 ≤ i ≤ n. Theorem 3.4 implies
that Ri is residually small, and hence, Ri possesses a proper large ideal.
However, [16, Proposition 8] states that an infinite Artinian local ring
does not possess a proper large ideal. This contradiction completes the
proof. �

Having studied ring constructions which respect residual smallness
quite nicely, we now study other constructions for which the property
is not as well-behaved. First on our list is quotient rings. Recall that
a subset S of a ring R is a multiplicative set if S is closed under
multiplication, 1 ∈ S and 0 /∈ S. We then define the quotient ring
of R relative to the multiplicative set S by

RS :=

{
r

s
: r ∈ R, s ∈ S

}
,

with canonical addition, and multiplication and equality defined as
r1/s1 = r2/s2 if and only if there is an s ∈ S with s(s2r1 − s1r2) = 0.

Assume now that R is a domain. Then, observe that r1/s1 = r2/s2
if and only if s2r1 = s1r2. It follows that the map x 7→ x/1 is an
embedding of R into RS . Note further that, if S = {1}, then RS

∼= R.
At the other extreme, if S = R\{0}, then RS is the quotient field of R.
We shall make use of the following standard results on quotient rings.
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Lemma 3.7 ([6, Theorem 4.4, Proposition 5.8, Corollary 5.9]). Let R
be a ring, and let S ⊆ R be multiplicative. Then:

(i) every proper ideal of RS is of the form

Ie :=

{
i

s
: i ∈ I, s ∈ S

}
for some ideal I of R which is disjoint from S.

(ii) If I is an ideal of R disjoint from S, then RS/I
e ∼= (R/I)(S+I)/I .

(iii) Suppose that P is a prime ideal of R and S = R\P . Setting
RP := RR\P , we have RP /P

e ∼= F , where F is the quotient field
of R/P .

The residual smallness property can easily be shown to “travel
downward” from a quotient ring RS to the base ring R if R is a domain.
More generally,

Proposition 3.8. Suppose that R ⊆ S is an extension of rings such
that S is residually small and |R| = |S|. Then, R is residually small.

Proof. The proof is analogous to the proof of Theorem 3.1 (ii) and
is left to the reader. �

Conversely, residual smallness does not, in general, “pass upward”
to quotient rings. Indeed, if D is a residually small domain, then the
quotient field K of D is a field, hence not residually small. In fact,
there exist residually small domains D and multiplicative sets S ⊆ D
such that DS is not a field, yet DS is also not residually small, as the
following, simple example verifies.

Example 3.9. The ring Z[X] is residually small, but the localization
Z[X]⟨X⟩ is not.

Proof. It follows immediately from Theorem 3.1 that Z[X] is resid-
ually small. Further, Lemma 3.7 implies that the residue field of the
local ring Z[X]⟨X⟩ is (isomorphic to) Q. Finally, we conclude from
Corollary 2.9 that Z[X]⟨X⟩ is not residually small. �

We now present a sufficient condition for a quotient ring of a domain
to be residually small.
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Theorem 3.10. Let D be an infinite domain, and let S ⊆ D be
multiplicative. Then, the following conditions are sufficient for DS to
be residually small :

(i) S is a proper subset of D\{0}, and
(ii) for every nonzero d ∈ D\S, there exists an ideal I of D disjoint

from S such that Sd ∩ I = ∅ and |D/I| < |D|.

Proof. Let D be an infinite ring and S ⊆ D multiplicative. Suppose
that (i) and (ii) above hold, and let x/s ∈ DS be nonzero. In order to
prove that DS is residually small, it suffices to find a large ideal of DS

which does not contain x. We consider two cases.

Case 1. x ∈ S. By (i), there exists some nonzero d ∈ R\S. Then, (ii)
furnishes us with an ideal I of D disjoint from S such that |D/I| < |D|.
We claim that x /∈ Ie. If so, then xs ∈ I for some s ∈ S. However,
x ∈ S and S is multiplicative. Hence, xs ∈ I ∩ S, contradicting that I
is disjoint from S. It remains to show that |DS/I

e| < |DS |. By Lemma
3.7 (ii), we have |DS/I

e| = |(D/I)(S+I)/I | ≤ |D/I|2 < |D| = |DS |.
Case 2. x /∈ S. From (ii), there is an ideal I of D disjoint from S

such that Sx ∩ I = ∅ and |D/I| < |D|. The remainder of the proof
proceeds as in Case 1. �

We now study how well factor rings respect residual smallness. To
begin, note trivially that there does not exist a ring R with the property
that R/I is residually small for all proper ideals I of R. Indeed, if J is
any maximal ideal of R, then R/J is a field, hence not residually small.
Less generally, we may hope to prove that, if R is residually small and
I is an ideal of R such that R/I is not a field and |R/I| = |R|, then
R/I is residually small. This can fail too, even in the case where R is a
semilocal Noetherian integral domain. In order to prove this, we shall
require the following lemma.

Lemma 3.11 ([11, Theorem 2.6]). Let (ρ, κ1, . . . , κn) be a sequence
of cardinals where each κi is a prime power or is infinite such that

κi + ℵ0 ≤ ρ ≤ κℵ0
i

for each i, 1 ≤ i ≤ n. Then, there is a principal ideal domain D
of cardinality ρ with exactly n maximal ideals J1, . . . , Jn such that
|D/Ji| = κi for 1 ≤ i ≤ n.
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Example 3.12. Suppose that ρ is an infinite cardinal such that there
is some cardinal κ with κ < ρ ≤ κℵ0 . Then, there exists a residually
small principal ideal domain D with exactly two maximal ideals J1
and J2 such that, for every proper ideal I of D not contained in
J1 : |D/I| = |D|, D/I is not residually small.

Proof. Let ρ and κ be as stated. Of course, we may assume that, if κ
is finite, then κ is prime. By Lemma 3.11, there exists a principal ideal
domain D of cardinality ρ with exactly two maximal ideals J1 and J2
such that |D/J1| = κ and |D/J2| = |D|. We apply Theorem 2.10
to conclude that D is residually small. Now, suppose that I is a
proper ideal of D not contained in J1. Then, I ⊆ J2, and we see
that |D| = |D/J2| ≤ |D/I| ≤ |D|; hence, equality holds throughout. It
remains to show that D/I is not residually small. If D/I is residually
small, then (since D/I is local with maximal ideal J2/I) J2/I is a
large ideal of D/I. However, (D/I)/(J2/I) ∼= D/J2. We deduce that
|(D/I)/(J2/I)| = |D/J2| = |D| = |D/I|, showing that J2/I is not
large. This contradiction concludes the proof. �

Despite the previous example, we do have the following, general
result.

Proposition 3.13. Suppose that R is a Noetherian local ring and that
I is an ideal of R such that |R/I| = |R|. Then R is residually small if
and only if R/I is residually small.

Proof. Let R be a Noetherian local ring with maximal ideal J ,
and suppose that I is an ideal of R such that |R/I| = |R|. Then,
R/I is also a Noetherian local ring with maximal ideal J/I. Fur-
ther, |(R/I)/(J/I)| = |R/J |. Thus, |R/J | < |R| if and only if
|(R/I)/(J/I)| < |R/I|. We now invoke Corollary 2.9 to complete the
proof. �
Remark 3.14. If R is a residually small Noetherian local ring and I
is an ideal of R such that |R/I| < |R|, it does not follow that R/I is
residually small, even if R/I is infinite. This can be seen by taking
R := Q[[T ]] and I := ⟨T ⟩. Further, it is not difficult to construct an
example of a residually small Noetherian local ring R with a nonzero
ideal I such that |R/I| = |R|. Indeed, let k be a countable field,
and let R := k[[T1, . . . , Tn]] be the power series ring over k in the
n > 1 variables T1, . . . , Tn. Then, |R| = 2ℵ0 and R/⟨T1, . . . , Tn⟩ ∼= k,
hence is countable; thus, R is residually small by Corollary 2.9. Now,
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choose I := ⟨Ti⟩, where 1 ≤ i ≤ n is arbitrary. It is easy to see that
|R/I| = |k[[T1, . . . , Ti−1, Ti+1, . . . , Tn]]| = 2ℵ0 = |R|.

We conclude the section with an investigation of the behavior of
residual smallness in integral extensions. Recall that a ring extension S
is integral over the ring R, provided every s ∈ S is the root of a monic
polynomial f(X) ∈ R[X]. As was shown in Proposition 3.8, residual
smallness passes easily from top to bottom if |R| = |S|. However,
it does not always pass upwards to integral extensions. In order to
simplify our analysis, we restrict our study of residual smallness to
extensions of domains. Our next example shows that, as claimed, re-
sidual smallness does not always travel upward, even for integral ex-
tensions of Noetherian domains.

Example 3.15. There exists an integral extension D1 ⊆ D2 of Noe-
therian domains such thatD1 is residually finite butD2 is not residually
small.

Proof. Let F be a finite field, and let F be an algebraic closure of F.
Then, of course, F is integral over F. Hence, F[X] is integral over F[X]
(cf., [6, Theorem 10.7]). Corollary 3.3 tells us that F[X] is residually
small; since F[X] is countable, we conclude that F[X] is residually
finite. However, for any proper ideal I of F[X], the map r 7→ I+r is an
injection of F into the countably infinite ring F[X]/I. It follows that
F[X] is not residually small. �

Observe that the domain D2 in the above example is not finitely
generated over D1. We show that, if this is the case, then residual
smallness survives.

Proposition 3.16. Let D1 be a residually small Noetherian domain,
and suppose that D2 is a finite ring extension of D1, that is, D2

is finitely generated as a D1-module. Then, D2 is also residually small.

Proof. Let D1 ⊆ D2 be a finite extension of domains, and suppose
that D1 is Noetherian and residually small. Since D2 is the homo-
morphic image of D1[X0, . . . , Xn] for some n ∈ N, it follows that D2

is Noetherian. It suffices from Theorem 2.10 to prove that D2 has a
proper large ideal. Since D1 is residually small, D1 has a proper large
ideal I. Let J1 be a maximal ideal of D1 containing I. Then, J1 is
large as well. Finite extensions are integral [6, Theorem 9.3], and thus,
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D2 is integral over D1. Hence, there exists a maximal ideal J2 of D2

such that J2 ∩ D1 = J1 [6, Theorems 11.4, 11.5]. As we have seen,
there is an injective (ring) map φ : D1/J1 → D2/J2. Identifying D1/J1
with its image in D2/J2, it follows that D2/J2 is a finite field exten-
sion of D1/J1. Thus, |D2/J2| = |D1/J1|n for some positive integer
n. Therefore, |D2/J2| = |D1/J1|n < |D1| = |D2|, and the proof is
complete. �

Corollary 3.17. Suppose that D is a residually small Noetherian
domain and that I is an ideal of D[X] containing a monic polynomial
such that I ∩D = {0}. Then, D[X]/I is residually small.

Proof. Let D and I have the above properties. Since I ∩ D =
{0}, it follows that the map d 7→ I + d maps D injectively into
D[X]/I; thus (up to isomorphism), D[X]/I is a ring extension of D.
Now, let f ∈ I be monic of degree n. Then, it is easy to see that
{I +1, I +X, . . . , I +Xn−1} generates D[X]/I over D. We now apply
Proposition 3.16. �

Also of interest is the fact that the domain D1 constructed in
Example 3.15 is countable. Indeed, this must be so, as we now
demonstrate.

Proposition 3.18. Suppose that D1 ⊆ D2 is an integral extension of
domains such that D1 is uncountable and D2 is Noetherian. If D1 is
residually small, then so is D2.

Sketch of Proof. Suppose that D1 and D2 are as stated and that D1

is residually small. The proof proceeds almost identically to the proof
of Proposition 3.16; as such, we indicate only the necessary modifica-
tions to the previous proof. By [6, Lemma 10.1], D2/J2 is integral over
D1/J1. However, both rings are fields, and hence, D2/J2 is algebraic
over D1/J1. Therefore (by the standard set-theoretic argument count-
ing roots of polynomials over fields), |D2/J2| ≤ max(ℵ0, |D1/J1|) <
|D1| ≤ |D2|, concluding the proof. �

Given our results thus far, the next natural question is as follows:
suppose that D1 is an uncountable residually small domain and that
D1 ⊆ D2 is an integral extension. Must D2 be residually small as well?
While the answer to this question is currently unknown, we do have
partial results. Towards this end, we introduce a new definition.
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Definition 3.19. Let R be an infinite ring. Say that R is strongly
residually small if, for every r ∈ R\{0}, there exists a prime ideal P of
R such that r /∈ P and |R/P | < |R|.

Note trivially that a strongly residually small domain is not a G-
domain;4 indeed, if D is a domain for which the intersection of the
nonzero prime ideals of D is nonzero, then choose a nonzero d in the
intersection. Clearly, there can be no prime ideal P of D such that
d /∈ P and |D/P | < |D|. We conclude that any strongly residually
small domain has infinitely many prime ideals. Thus, for example,
no valuation domain of finite Krull dimension is strongly residually
small. Applying Corollary 2.9, a discrete valuation domain (V,m) is
residually small if and only if |V/m| < |V |. This yields a nontrivial
class of examples of residually small domains which are not strongly
residually small. On the other hand, it is not difficult to show that there
exist strongly residually small domains of every infinite cardinality, as
the next example demonstrates.

Example 3.20. The following hold:

(i) let F be a field. Then, F [X] is strongly residually small if and
only if F is finite.

(ii) Let ρ > ℵ0 and D be an infinite domain of size less than ρ. Then,
D[Xi : i < ρ] has size ρ and is strongly residually small.

Proof.

(i) If F is an infinite field, then |F [X]| = |F |. The argument
presented in the proof of Example 3.15 shows that F [X] is not residually
small. Now, suppose that F is a finite field, and let f(X) ∈ F [X]
be nonzero. Choose any irreducible polynomial p(X) which does not
divide f(X). Then, f(X) /∈ ⟨p(X)⟩, ⟨p(X)⟩ is a maximal (hence, prime)
ideal, and F [X]/⟨p(X)⟩ is finite.

(ii) Assume that ρ > ℵ0, and D is an infinite domain of size less
than ρ. That |D[Xi : i < ρ]| = ρ follows from elementary set theory.
Now, let f(X) ∈ D[Xi : i < ρ] be nonzero. Without loss of generality,
f(X) ∈ D[X0, . . . , Xn] for some natural number n. Then, f(X) /∈
⟨Xi : n < i < ρ⟩ := P . Moreover, |D[Xi : i < ρ]/P | = |D| < ρ. �

We now prove that residual smallness passes to integral extensions
when the base ring is strongly residually small.
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Proposition 3.21. Let D1 be an uncountable strongly residually small
domain, and let D1 ⊆ D2 be an integral extension. Then, D2 is strongly
residually small.

Proof. Suppose that D1 ⊆ D2 is an integral extension and D1 is
uncountable and strongly residually small. Now, let x ∈ D2\{0} be
arbitrary. Then, of course, the principal ideal D2x is nonzero. Since
D2 is integral over D1, it follows that D2x ∩ D1 is a nonzero ideal of
D1 [6, Lemma 11.1]. Hence, there exists some d ∈ D2 such that dx is
a nonzero element of D1. Since D1 is strongly residually small, there
exists a prime ideal P1 ⊆ D1 such that dx /∈ P1 and |D1/P1| < |D1|.
From the Lying Over theorem, there exists a prime ideal P2 ⊆ D2 such
that P2 ∩D1 = P1. We deduce that dx /∈ P2, and thus, x /∈ P2. Now,
D2/P2 is an integral over D1/P1. Let S be the set of nonzero elements
of D1/P1. Then, by [6, Proposition 10.2], the quotient ring (D2/P2)S
is integral over (D1/P1)S . Observe that (D1/P1)S is the quotient field
of D1/P1. Thus, (D2/P2)S is integral over a field, hence, is also a field.
Finally,

|D2/P2| = |(D2/P2)S | ≤ max(ℵ0, |(D1/P1)S |)
= max(ℵ0, |D1/P1|) < |D1| ≤ |D2|,

and the proof is complete. �

Remark 3.22. Recall from Example 3.20 that, if F is a finite field,
then F [X] is a countable strongly residually small domain. Thus,
Example 3.15 shows that we cannot eliminate the assumption that D1

is uncountable in the statement of the previous proposition.

We will soon show that, for many infinite cardinals κ, all residually
small domains of size κ are strongly residually small. Before proceeding,
we pause to recall some basic set theory. Let α be a nonzero limit
ordinal, and suppose that S is a subset of α, that is, S is a set of
ordinals and every member of S is smaller than α. Then, S is cofinal
in α if ∪S = α. The cofinality of α, denoted cf(α), is the smallest
cardinality of a cofinal subset of α. An infinite cardinal κ is regular if
cf(κ) = κ. It is well known that cf(α) is a regular cardinal for every
nonzero limit ordinal α. For further details on set theory, we refer to
the standard text by Jech [10].
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Proposition 3.23. Suppose that κ is a cardinal with the following two
properties:

(i) κ has uncountable cofinality ; and
(ii) βℵ0 < κ for all cardinals β < κ.

Then, every residually small domain of size κ is strongly residually
small.

Proof. Let κ satisfy (i) and (ii) above, and suppose that D is a
residually small domain of cardinality κ. Now, let x ∈ D be arbitrary.
Since D is residually small (and a domain), it follows that, for every
positive integer n, there exists an ideal In such that xn /∈ In and
κn := |D/In| < κ. Let

ρ :=
∪

n∈Z+

κn.

Since the cardinal κ has uncountable cofinality, we deduce that ρ < κ.
From (ii), in addition, ρℵ0 < κ. Setting

I∗ :=
∞∩

n=1

In,

observe that D/I∗ maps injectively into
∏∞

n=1 D/In. Therefore,

|D/I∗| ≤
∣∣∣∣ ∞∏
n=1

D/In

∣∣∣∣ = ∞∏
n=1

κn ≤ ρℵ0 < κ = |D|.

Since xn /∈ In for each n, we see by the definition of I∗ that xn /∈ I∗

for every positive integer n. Hence, I∗ is an ideal which is disjoint
from the multiplicative set S := {xn : n > 0}. From Zorn’s lemma,
I∗ is contained in an ideal P which is maximal with respect to being
disjoint from S. As is well known, P is a prime ideal. Finally, we see
that x /∈ P and |D/P | ≤ |D/I∗| < |D|. The proof is concluded. �

We now establish an abundance of cardinals κ satisfying (i) and
(ii) of Proposition 3.23. Recall that the beth cardinals are defined by
recursion on the ordinals as follows: i0 := ℵ0, ia+1 := 2ia and

ib :=
∪
i<b

ii
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if b is a nonzero limit. It is an exercise in elementary set theory to show
that, if b is a limit ordinal of uncountable cofinality (for example, if b
is an uncountable regular cardinal), then ib satisfies properties (i) and
(ii) above. Thus, there are arbitrarily large cardinals κ which satisfy
(i) and (ii).

We conclude this section by providing an example of a residually
small ring-theoretic statement that is independent of ZFC. First, we
recall a bit more set theory. The continuum hypothesis (CH) is the
assertion that there is no cardinal number κ satisfying ℵ0 < κ < 2ℵ0

(equivalently, every infinite set of real numbers is either countable
or in one-to-one correspondence with R). The generalized continuum
hypothesis (GCH) is the assertion that, for every infinite cardinal β,
there is no cardinal κ satisfying β < κ < 2β . It is well known (through
the work of Gödel and Cohen) that CH and GCH can neither be proved
nor refuted from the usual axioms of ZFC, that is, CH and GCH are
independent of ZFC.

In the presence of GCH, cardinal exponentiation becomes much more
tame. In particular,

Fact 3.24 ([10, Theorem 5.15]). Assume that GCH holds, and suppose
that κ and λ are infinite cardinals such that κ < cf(λ). Then, λκ = λ.

Returning to ring theory, recall that a ring R is semiprimitive if
the Jacobson radical of R is trivial. An integral domain D is one-
dimensional (Krull dimension is what is intended here) if D is not a
field and every nonzero prime ideal of D is maximal. We now present
the final theorem of this note.

Theorem 3.25. For i ∈ {0, 1, 2}, let φi denote the statement, “All
one-dimensional residually small domains of cardinality ℵi are semi-
primitive.” Then, φ0 and φ1 can be refuted in ZFC, but φ2 is indepen-
dent of ZFC.

Proof. Observe that 2 + ℵ0 ≤ ℵ0 < ℵ1 ≤ 2ℵ0 . Lemma 3.11 yields
local principal ideal domains D0 and D1 of cardinality ℵ0 and ℵ1,
respectively, such that |Di/Ji| = 2, where Ji is the maximal ideal of Di.
Therefore, D0 and D1 are one dimensional, and Corollary 2.9 implies
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that D0 and D1 are residually small. Since D0 and D1 are local and
not fields, clearly, D0 and D1 are not semiprimitive.

Suppose now that CH fails. Then, 2+ℵ0 < ℵ2 ≤ 2ℵ0 . It now follows
from the above argument that there exists a one-dimensional residually
small domain of size ℵ2 which is not semiprimitive. On the other hand,
suppose that GCH holds, and let D be a one-dimensional residually
small domain of size ℵ2. We shall prove that D is semiprimitive. Since
ℵ2 is a successor cardinal, ℵ2 is regular (this can be proven in ZFC). Let
λ be a cardinal such that λ < ℵ2. Then, λ ≤ ℵ1. Employing Fact 3.24,
we see that λℵ0 ≤ ℵℵ0

1 = ℵ1 < ℵ2. The hypotheses of Proposition 3.23
are now satisfied, and we deduce that D is strongly residually small.
Let d ∈ D\{0} be arbitrary. Then, there is a large prime ideal P of D
such that d /∈ P . Since D is one dimensional, P is maximal. It follows
that J(D) = {0}, and D is semiprimitive, as claimed. �

4. Open questions. We conclude the paper with some open ques-
tions for further study.

Open Question 4.1. We showed in Proposition 3.13 that, if R is a
Noetherian local ring and I is an ideal of R with |R/I| = |R|, then R is
residually small if and only if R/I is residually small. Does this result
still hold if we omit the word “Noetherian”?

Open Question 4.2. Suppose that D1 ⊆ D2 is an integral extension
of domains and that D1 is residually small and uncountable. Must D2

be residually small? Is this question even decidable in ZFC?

Open Question 4.3. Suppose that D1 ⊆ D2 is a finite ring extension
and D1 is residually small. Must D2 be residually small?

Open Question 4.4. Let D be an infinite domain, and suppose
that S ⊆ D is multiplicative. Are the sufficient conditions given in
Theorem 3.10 for the quotient ring DS to be residually small also
necessary?

Acknowledgments. The authors thank the referee for a careful
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clarity of this article.
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ENDNOTES

1. The definition of “residually finite ring” is, quite unfortunately,
not unique in the literature. In [4], the authors define a (not necessarily
commutative) ring R to be residually finite if R/I is finite for every
nonzero two-sided ideal I of R.

2. In this paper, the authors call an infinite, non-simple unital ring
R a finite quotient ring if R/I is finite for every nonzero two-sided ideal
I of R. Using Chew and Lawn’s terminology, a finite quotient ring is
an infinite, non-simple residually finite ring.

3. If n = 0, then φ : R/I → R[Xi : i < ρ] is given by φ(r0) := r0
(mod M).

4. Recall that a domain D is a G-domain if the intersection of the
nonzero prime ideals of D is nonzero.
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