A STRUCTURE THEOREM FOR MOST UNIONS OF COMPLETE INTERSECTIONS

ALFIO RAGUSA AND GIUSEPPE ZAPPALÀ

Abstract

Using the connections among almost complete intersection schemes, arithmetically Gorenstein schemes and schemes that are a union of complete intersections, we give a structure theorem for the arithmetically CohenMacaulay union of two complete intersections of codimension 2 , of type $\left(d_{1}, e_{1}\right)$ and $\left(d_{2}, e_{2}\right)$ such that $\min \left\{d_{1}, e_{1}\right\} \neq$ $\min \left\{d_{2}, e_{2}\right\}$. We apply the results for computing Hilbert functions and graded Betti numbers for such schemes.

Introduction. The simplest projective schemes which one can study are those whose defining ideals can be generated by the minimal number of equations with respect to their codimension c. These schemes are complete intersection schemes whose defining ideals are minimally generated by exactly c elements. In particular, this implies that they can be generated by a regular sequence. Now, there are different ways to generalize such a notion. For instance, one may study arithmetically Cohen Macaulay schemes which can be generated by a number of elements equal to one more than the codimension. These kinds of schemes are usually denominated almost complete intersections and are recently studied, for instance, in $[\mathbf{6}, \mathbf{9}, \mathbf{1 0}, \mathbf{1 4}, \mathbf{1 5}, 16]$. Another possibility is to study schemes which, as the complete intersections, have Cohen-Macaulay type 1 or equivalently with principal last syzygies module. In this case, we have arithmetically Gorenstein schemes and we have a large literature on this theme (see, for instance, $[\mathbf{1}, \mathbf{3}, \mathbf{7}$, 12, 13]). Finally, from a more geometric point of view, one can study schemes which are a finite union of complete intersections with some kind of generic property for realizing such unions.

[^0]All of these generalizations are strictly related, as we show in this paper in the codimension 2 case. Indeed, using information on an almost complete intersection and on a Gorenstein scheme directly linked to it, we obtain nice information on a union of two complete intersection schemes. The idea is very simple. Start from a union of two complete intersections X_{1} and X_{2} of codimension 2 in \mathbb{P}^{r} which realizes an arithmetically Cohen-Macaulay scheme X (this, in particular, implies that $X_{1} \cap X_{2}$ is aCM of codimension 3. The sum of their defining ideals $I_{X_{1}}$ and $I_{X_{2}}$ in the polynomial ring $R=$ $k\left[x_{0}, \ldots, x_{r}\right]$ defines an almost complete intersection of codimension 3. Now, if we link $I_{X_{1}}+I_{X_{2}}$ in a complete intersection generated by three of its generators, we get a Gorenstein scheme G of codimension 3 .

Now, we use the pfaffian resolution of this Gorenstein scheme to obtain a free resolution of the given union I_{X} obtaining in this way a structure theorem for such schemes (Theorem 1.4). In order to do so we need the assumption that, if X_{1} has type $\left(d_{1}, e_{1}\right)$ and X_{2} has type $\left(d_{2}, e_{2}\right)$, then $\min \left\{d_{1}, e_{1}\right\} \neq \min \left\{d_{2}, e_{2}\right\}$. As applications of this result we obtain a description of the Hilbert functions of these schemes, in particular, the starting degree and the Castelnuovo-Mumford regularity for I_{X}, and much information regarding their graded Betti numbers (indeed, all up to very few cancellations). In many cases, our resolutions are minimal; thus, in these cases we obtain the Hilbert-Burch matrix of the defining ideal of these schemes.

1. Union of complete intersections of codimension two. Let k be an algebraically closed field, and let $R:=k\left[x_{0}, \ldots, x_{r}\right]$. We consider the standard grading on R and we consider only homogeneous ideals in R.

An ideal $I_{Q} \subset R$ is said to be an almost complete intersection ideal of codimension c if I_{Q} is perfect and it is minimally generated by less or equal to $c+1$ forms (note that we include complete intersections in this definition).

Every almost complete intersection ideal I_{Q} of codimension c is directly linked in a complete intersection to a Gorenstein ideal $I_{G} \subset R$. Indeed, if $I_{Z} \subseteq I_{Q}$ is generated by c minimal generators of I_{Q}, which form a regular sequence, then $I_{G}:=I_{Z}: I_{Q}$ is a Gorenstein ideal. By
liaison theory (see [11] for a complete discussion on this argument) we also have $I_{Q}=I_{Z}: I_{G}$.

Gorenstein and almost complete intersection ideals in codimension 3 were extensively studied. In particular, it is well known that the Gorenstein ideals of codimension 3 are generated by the ($n-1$)-pfaffians of an alternating matrix of odd size n, see [1]. If A is an alternating matrix, we will denote by pf A its pfaffian and by $\operatorname{Pf}_{r}(A)$ the ideal generated by the r-pfaffians of A.

Let $X_{1}, X_{2} \subset \mathbb{P}^{r}, r \geq 2$, be two complete intersection schemes of codimension 2 without common components. Assume that $X_{1} \cup X_{2}$ is aCM. For instance, note that this always occurs for a disjoint union of two zero-dimensional complete intersection schemes of \mathbb{P}^{2}.

Remark 1.1. By the standard exact sequence,

$$
\begin{equation*}
0 \longrightarrow I_{X_{1}} \cap I_{X_{2}} \longrightarrow I_{X_{1}} \oplus I_{X_{2}} \longrightarrow I_{X_{1}}+I_{X_{2}} \longrightarrow 0 \tag{1.1}
\end{equation*}
$$

we see that the homological dimension of $R /\left(I_{X_{1}}+I_{X_{2}}\right)$ is less than or equal to 3 (by mapping cone); hence, since by assumption, X_{1} and X_{2} have no common components, it is exactly 3 . Consequently, the ideal $I_{X_{1}}+I_{X_{2}}$ is Artinian for $r=2$, and it is a saturated ideal for $r \geq 3$; precisely, when $r \geq 3, I_{X_{1}}+I_{X_{2}}=I_{X_{1} \cap X_{2}}$. Therefore, $X_{1} \cap X_{2}$ is aCM of codimension 3 .

We give a structure theorem for schemes of the type $X_{1} \cup X_{2}$, with a light restriction about the degrees.

We begin by collecting some well-known facts about pfaffians and determinants of skew-symmetric matrices which will be useful for proving our results.

We introduce the following notation. If M is a matrix, we denote by $M_{\left[i_{1}, \ldots, i_{r} ; j_{1}, \ldots, j_{s}\right]}$ the submatrix of M obtained by deleting the rows labeled by the integers i_{1}, \ldots, i_{r} and the columns labeled by the integers j_{1}, \ldots, j_{s}. By $M_{\left[i_{1}, \ldots, i_{r} ;-\right]}$, we will denote the submatrix of M obtained by deleting only the rows, and analogously for $M_{\left[-; j_{1}, \ldots, j_{s}\right]}$. Moreover, $M_{\left[i_{1}, \ldots, i_{r} ; i_{1}, \ldots, i_{r}\right]}$ will be denoted by $M_{\left(i_{1}, \ldots, i_{r}\right)}$.

In the sequel, if $a_{1}<\cdots<a_{n}$ are integers and $\left(b_{1}, \ldots, b_{n}\right)$ is a permutation of them, we use $\operatorname{sgn}\left(b_{1}, \ldots, b_{n}\right)$ as the sign of the permutation $\left(b_{1}, \ldots, b_{n}\right)$ with respect to $\left(a_{1}, \ldots, a_{n}\right)$.

Lemma 1.2. Let A be an alternating matrix of odd size n. Then:
(i) $\operatorname{det} A_{[i ; j]}=\operatorname{pf} A_{(i)} \operatorname{pf} A_{(j)}$.
(ii) $\operatorname{det} A_{[i, j ; h, k]}=\operatorname{sgn}(i, j) \operatorname{sgn}(h, k)\left(\operatorname{sgn}(i, j, h) \operatorname{pf} A_{(i, j, h)} \operatorname{pf} A_{(k)}-\right.$ $\left.\operatorname{sgn}(i, j, k) \operatorname{pf} A_{(i, j, k)} \operatorname{pf} A_{(h)}\right)=\operatorname{sgn}(h, k) \operatorname{sgn}(i, j)\left(\operatorname{sgn}(h, k, j) \operatorname{pf} A_{(h, k, j)}\right.$ $\left.\times \operatorname{pf} A_{(i)}-\operatorname{sgn}(h, k, i) \operatorname{pf} A_{(h, k, i)} \operatorname{pf} A_{(j)}\right)$.

Proof. The first result is due to Cayley, see [2]. The second is a revision of a generalization due to Heymans, see [5, formula (3.31)].

Lemma 1.3. Let A be an alternating matrix of odd size n, and let $p_{i}:=(-1)^{i} \mathrm{pf} A_{(i)}$. Let

$$
B:=\left(\begin{array}{cccc}
0 & a_{1} & \cdots & a_{n} \\
b_{1} & & & \\
\vdots & & A & \\
b_{n} & & &
\end{array}\right) .
$$

Then

$$
\operatorname{det} B=\sum_{i=1}^{n} a_{i} p_{i} \sum_{j=1}^{n} b_{j} p_{j}
$$

Proof. Using Lemma 1.2 (i), we know that

$$
\operatorname{det} A_{[i ; j]}=\operatorname{pf} A_{(i)} \operatorname{pf} A_{(j)}
$$

Thus, to obtain the result, it is sufficient to compute $\operatorname{det} B$ by using the Laplace rule with respect to the first row and the first column.

Theorem 1.4.

(i) Let $X_{1}, X_{2} \subset \mathbb{P}^{r}, r \geq 2$, be two complete intersection schemes of codimension 2 without common components of type, respectively, $\left(d_{1}, e_{1}\right)$ and $\left(d_{2}, e_{2}\right)$, with $d_{1} \geq e_{1}, d_{2} \geq e_{2}$, and assume that $e_{1}>e_{2}$. Suppose that $X:=X_{1} \cup X_{2}$ is aCM. Then, there exists an alternating matrix A of odd size n with entries in R and $3 n$ forms $\alpha_{i}, \beta_{i}, \gamma_{i}$, $1 \leq i \leq n$, such that I_{X} is the ideal generated by the maximal minors
of the matrix

$$
M=\left(\begin{array}{cccccc}
0 & \beta_{1} & \beta_{2} & \cdots & \beta_{n-1} & \beta_{n} \\
0 & \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n-1} & \alpha_{n} \\
\gamma_{1} & & & & & \\
\gamma_{2} & & & & & \\
\vdots & & & A & & \\
\gamma_{n-1} & & & & & \\
\gamma_{n} & & & & &
\end{array}\right) .
$$

Precisely, it is possible to choose four forms f_{1}, g_{1}, f_{2} and g_{2}, with g_{2} of minimal degree among the four forms, such that $I_{X_{1}}=\left(f_{1}, g_{1}\right)$, $I_{X_{2}}=\left(f_{2}, g_{2}\right)$ and $\left(f_{1}, g_{1}, f_{2}\right)$ is a regular sequence, and we can choose M in such a way that

$$
f_{1}=\sum_{i=1}^{n} \alpha_{i} p_{i}, \quad g_{1}=\sum_{i=1}^{n} \beta_{i} p_{i}
$$

and

$$
f_{2}=\sum_{i=1}^{n} \gamma_{i} p_{i}, \quad g_{2}=\operatorname{pf} \bar{A}
$$

where $p_{i}=(-1)^{i} \mathrm{pf} A_{(i)}$ and

$$
\bar{A}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \gamma_{1} & \cdots & \gamma_{n} \\
0 & 0 & 0 & \beta_{1} & \cdots & \beta_{n} \\
0 & 0 & 0 & \alpha_{1} & \cdots & \alpha_{n} \\
-\gamma_{1} & -\beta_{1} & -\alpha_{1} & & & \\
\vdots & \vdots & \vdots & & A & \\
-\gamma_{n} & -\beta_{n} & -\alpha_{n} & & &
\end{array}\right) .
$$

(ii) If M is a matrix as above where $\operatorname{Pf}_{n-1} A$ is an ideal of height 3 , we set

$$
\begin{aligned}
f_{1} & :=\sum_{i=1}^{n} \alpha_{i} p_{i} \\
g_{1} & :=\sum_{i=1}^{n} \beta_{i} p_{i} \\
f_{2} & :=\sum_{i=1}^{n} \gamma_{i} p_{i}
\end{aligned}
$$

where the p_{i} 's are as in (i). If $\left(f_{1}, g_{1}, f_{2}\right)$ is a regular sequence and f_{2} and $\operatorname{pf} \bar{A}$ are coprime, then the ideal generated by the maximal minors of M defines a scheme which is a union of two complete intersections of codimension 2 .

Proof.
(i) Let $I_{X_{1}}=\left(f_{1}, g_{1}\right)$ and $I_{X_{2}}=\left(f_{2}, g_{2}\right)$, with $d_{i}=\operatorname{deg} f_{i}$ and $e_{i}=\operatorname{deg} g_{i}$ for $i=1,2$. Consequently, we may choose f_{1}, g_{1}, f_{2} such that they form a regular sequence (this can be done since the codimension of $X_{1} \cap X_{2}$ is 3). Denote by $I_{Q}=I_{X_{1}}+I_{X_{2}}$ and $I_{Z}=\left(f_{1}, g_{1}, f_{2}\right)$. Let $I_{G}:=I_{Z}: I_{Q}$, and note that, since I_{Q} is the ideal of an almost complete intersection and I_{Z} is the ideal of a complete intersection contained within it, I_{G} is the ideal of a Gorenstein scheme of codimension 3. By the structure theorem of Buchsbaum and Eisenbud, see [1], there exists an alternating matrix A of odd size n such that $I_{G}=\operatorname{Pf}_{n-1}(A)$. Thus, $I_{G}=\left(p_{1}, \ldots, p_{n}\right)$, where $p_{i}=(-1)^{i}$ pf $A_{(i)}$. Since $f_{1}, g_{1}, f_{2} \in I_{G}$, we can write

$$
\begin{aligned}
f_{1} & =\sum_{i=1}^{n} \alpha_{i} p_{i} \\
g_{1} & =\sum_{i=1}^{n} \beta_{i} p_{i} \\
f_{2} & =\sum_{i=1}^{n} \gamma_{i} p_{i}
\end{aligned}
$$

Furthermore, in this setting, since $e_{1}>e_{2}$, using [14, Theorem 3.3], we have that $\left(f_{2}, g_{2}\right)=\left(f_{2}, \operatorname{pf} \bar{A}\right)$ (in particular, if $e_{2}<d_{2}$, then $g_{2}=\operatorname{pf} \bar{A}$,
up to a unit). Then, we set

$$
M:=\left(\begin{array}{cccccc}
0 & \beta_{1} & \beta_{2} & \cdots & \beta_{n-1} & \beta_{n} \\
0 & \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n-1} & \alpha_{n} \\
\gamma_{1} & & & & & \\
\gamma_{2} & & & & & \\
\vdots & & & \mathrm{~A} & & \\
\gamma_{n-1} & & & & & \\
\gamma_{n} & & & & &
\end{array}\right)
$$

We want to show that $I_{X}=I_{n+1}(M)$. At first, we show that

$$
I_{n+1}(M) \subseteq I_{X}=I_{X_{1}} \cap I_{X_{2}}
$$

By Lemma 1.3, we immediately obtain that

$$
\operatorname{det} M_{[1 ;-]}=f_{1} f_{2}, \quad \operatorname{det} M_{[2 ;-]}=g_{1} f_{2}
$$

Now let t be an integer, $3 \leq t \leq n+2$. We want to compute $\operatorname{det} M_{[t ;-]}$. In order to do so, we apply the Laplace rule with respect to the first row, the second row and the first column. Thus, if we set

$$
\begin{aligned}
& \sigma_{i j}:= \begin{cases}(-1)^{i+j} & \text { if } i<j \\
(-1)^{i+j+1} & \text { if } i>j\end{cases} \\
& \tau_{i j}:= \begin{cases}(-1)^{i+1} & \text { if } i<j \\
(-1)^{i} & \text { if } i>j\end{cases}
\end{aligned}
$$

and $S_{t}:=\{(i, j, h) \mid 1 \leq i, j, h \leq n, i \neq j, h \neq t-2\}, 3 \leq t \leq n+2$, we obtain the following expansion

$$
\operatorname{det} M_{[t,-]}=\sum_{S_{t}} \sigma_{i j} \tau_{h, t-2} \alpha_{i} \beta_{j} \gamma_{h} \operatorname{det} A_{[t-2, h ; i, j]}
$$

Applying Lemma 1.2 (ii), we have

$$
\begin{aligned}
& \operatorname{det} M_{[t,-]} \\
& \qquad=\sum_{S_{t}} \sigma_{i j} \tau_{h, t-2} \alpha_{i} \beta_{j} \gamma_{h} \operatorname{sgn}(t-2, h) \\
& \quad \times \operatorname{sgn}(i, j)\left(\operatorname{sgn}(t-2, h, i) \operatorname{pf} A_{(t-2, h, i)} \operatorname{pf} A_{(j)}\right. \\
& \left.\quad-\operatorname{sgn}(t-2, h, j) \operatorname{pf} A_{(t-2, h, j)} \operatorname{pf} A_{(i)}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{S_{t}}(-1)^{i+h} \operatorname{sgn}(t-2, h, i) \alpha_{i} \beta_{j} \gamma_{h} \operatorname{pf} A_{(t-2, h, i)} p_{j} \\
& -\sum_{S_{t}}(-1)^{j+h} \operatorname{sgn}(t-2, h, j) \alpha_{i} \beta_{j} \gamma_{h} \operatorname{pf} A_{(t-2, h, j)} p_{i} \\
= & \sum_{j}\left(\sum_{i \neq j ; h \neq t-2}(-1)^{i+h} \operatorname{sgn}(t-2, h, i) \alpha_{i} \gamma_{h} \operatorname{pf} A_{(t-2, h, i)}\right) \beta_{j} p_{j} \\
& -\sum_{i}\left(\sum_{j \neq i ; h \neq t-2}(-1)^{j+h} \operatorname{sgn}(t-2, h, j) \beta_{j} \gamma_{h} \operatorname{pf} A_{(t-2, h, j)}\right) \alpha_{i} p_{i}
\end{aligned}
$$

Now we sum, subtract the quantity

$$
\sum_{k ; h \neq t-2}(-1)^{k+h} \operatorname{sgn}(t-2, h, k) \operatorname{pf} A_{(t-2, h, k)} \alpha_{k} \gamma_{h} \beta_{k} p_{k}
$$

and obtain

$$
\begin{aligned}
\sum_{j} & \left(\sum_{i ; h \neq t-2}(-1)^{i+h} \operatorname{sgn}(t-2, h, i) \alpha_{i} \gamma_{h} \operatorname{pf} A_{(t-2, h, i)}\right) \beta_{j} p_{j} \\
& -\sum_{i}\left(\sum_{j ; h \neq t-2}(-1)^{j+h} \operatorname{sgn}(t-2, h, j) \beta_{j} \gamma_{h} \operatorname{pf} A_{(t-2, h, j)}\right) \alpha_{i} p_{i}
\end{aligned}
$$

if we set

$$
\lambda:=\sum_{i ; h \neq t-2}(-1)^{i+h} \operatorname{sgn}(t-2, h, i) \alpha_{i} \gamma_{h} \operatorname{pf} A_{(t-2, h, i)}
$$

and

$$
\mu:=\sum_{j ; h \neq t-2}(-1)^{j+h} \operatorname{sgn}(t-2, h, j) \beta_{j} \gamma_{h} \operatorname{pf} A_{(t-2, h, j)}
$$

we have

$$
\lambda \sum_{j} \beta_{j} p_{j}-\mu \sum_{i} \alpha_{i} p_{i}=\lambda g_{1}-\mu f_{1} \in\left(f_{1}, g_{1}\right)=I_{X_{1}}
$$

On the other hand,

$$
\operatorname{det} M_{[t,-]}=\sum_{S_{t}} \sigma_{i j} \tau_{h, t-2} \alpha_{i} \beta_{j} \gamma_{h} \operatorname{det} A_{[t-2, h ; i, j]}
$$

Applying the second equality in Lemma 1.2 (ii), we have

$$
\begin{aligned}
\operatorname{det} & M_{[t,-]} \\
= & \sum_{S_{t}} \sigma_{i j} \tau_{h, t-2} \alpha_{i} \beta_{j} \gamma_{h} \operatorname{sgn}(h, t-2) \operatorname{sgn}(i, j) \\
\times & \left(\operatorname{sgn}(i, j, t-2) \operatorname{pf} A_{(i, j, t-2)} \operatorname{pf} A_{(h)}\right. \\
& \left.\quad-\operatorname{sgn}(i, j, h) \operatorname{pf} A_{(i, j, h)} \operatorname{pf} A_{(t-2)}\right) \\
= & \sum_{S_{t}}(-1)^{i+j+1} \operatorname{sgn}(i, j, t-2) \alpha_{i} \beta_{j} \gamma_{h} \operatorname{pf} A_{(i, j, t-2)} p_{h} \\
\quad & \left.-\sum_{S_{t}}(-1)^{i+j+h+1} \operatorname{sgn}(i, j, h) \alpha_{i} \beta_{j} \gamma_{h} \operatorname{pf} A_{(i, j, h)} \operatorname{pf} A_{(t-2)}\right) .
\end{aligned}
$$

Now sum and subtract the quantity

$$
\sum_{i, j ; i \neq j}(-1)^{i+j+1} \operatorname{sgn}(i, j, t-2) \alpha_{i} \gamma_{j} \beta_{t-2} \operatorname{pf} A_{(i, j, t-2)} p_{t-2}
$$

Then, we obtain

$$
\begin{aligned}
\sum_{h} & \left(\sum_{i, j ; i \neq j}(-1)^{i+j+1} \operatorname{sgn}(i, j, t-2) \alpha_{i} \beta_{j} \operatorname{pf} A_{(i, j, t-2)}\right) \gamma_{h} p_{h} \\
& -\operatorname{pf} A_{(t-2)} \sum_{i, j, h ; i \neq j}(-1)^{i+j+h+1} \operatorname{sgn}(i, j, h) \alpha_{i} \beta_{j} \gamma_{h} \operatorname{pf} A_{(i, j, h)} \\
= & \left(\sum_{i, j ; i \neq j}(-1)^{i+j+1} \operatorname{sgn}(i, j, t-2) \alpha_{i} \beta_{j} \operatorname{pf} A_{(i, j, t-2)}\right) \\
\times & \sum_{h} \gamma_{h} p_{h}-\operatorname{pf} A_{(t-2)} \operatorname{pf} \bar{A} \\
= & \left(\sum_{i, j ; i \neq j}(-1)^{i+j+1} \operatorname{sgn}(i, j, t-2) \alpha_{i} \beta_{j} \operatorname{pf} A_{(i, j, t-2)}\right) f_{2} \\
& -\operatorname{pf} A_{(t-2)} \operatorname{pf} \bar{A} \in\left(f_{2}, \operatorname{pf} \bar{A}\right)=I_{X_{2}}
\end{aligned}
$$

Note that, in the last step, we computed $\mathrm{pf} \bar{A}$ by the Laplace rule with respect to the 3×3 minors of the first three rows. Thus, $I_{n+1}(M)$ is contained in $I_{X_{1}} \cap I_{X_{2}}$.

Now let Y be the scheme defined by the ideal $I_{n+1}(M)$. In order to complete the proof, it will be enough to show that $\operatorname{deg} Y=\operatorname{deg} X=$ $\operatorname{deg} X_{1}+\operatorname{deg} X_{2}$, i.e., we must show that $\operatorname{deg} Y=d_{1} e_{1}+d_{2} e_{2}$.

From M, we can now deduce the degrees of a set of generators and of the corresponding syzygies of I_{Y}. The degrees of generators are

$$
d_{1}+d_{2}, e_{1}+d_{2}, e_{2}+\pi_{1}, \ldots, e_{2}+\pi_{n}
$$

where $\pi_{i}=\operatorname{deg} p_{i}$. The degrees of syzygies are

$$
e_{2}+d_{2}, d_{1}+e_{1}+d_{2}-\pi_{1}, \ldots, d_{1}+e_{1}+d_{2}-\pi_{n}
$$

Now, by the degrees of generators and syzygies, the Hilbert function of Y may be computed, from which one can easily deduce the degree of Y. We obtain

$$
\begin{aligned}
2 \operatorname{deg} Y= & \left(e_{2}+d_{2}\right)^{2} \\
& +\sum_{i=1}^{n}\left(d_{1}+e_{1}+d_{2}-\pi_{i}\right)^{2}-\left(d_{1}+d_{2}\right)^{2}-\left(e_{1}+d_{2}\right)^{2} \\
& -\sum_{i=1}^{n}\left(e_{2}+\pi_{i}\right)^{2} .
\end{aligned}
$$

Since the $p_{i} \mathrm{~S}$ are minimal generators for $I_{G}=I_{Z}: I_{Q}$, we have that

$$
2 \sum_{i=1}^{n} \pi_{i}=(n-1)\left(d_{1}+e_{1}+d_{2}-e_{2}\right)
$$

see, for instance, [12]. Now a straightforward computation shows that

$$
2 \operatorname{deg} Y=2 d_{1} e_{1}+2 d_{2} e_{2}
$$

and we are done.
(ii) Let $I_{G}:=\operatorname{Pf}_{n-1} A . I_{G}$ defines an aG scheme of codimension 3 . Of course, I_{G} contains the complete intersection ideal $I_{Z}:=\left(f_{1}, g_{1}, f_{2}\right)$. Now, we set $I_{Q}:=I_{Z}: I_{G}$. Using [14, Theorem 3.3], $I_{Q}=$ $\left(f_{1}, g_{1}, f_{2}, g_{2}\right)$, where $g_{2}:=\operatorname{pf} \bar{A}$. Let $I_{X_{1}}:=\left(f_{1}, g_{1}\right)$ and $I_{X_{2}}:=\left(f_{2}, g_{2}\right)$. By the hypotheses, X_{1} and X_{2} are complete intersection schemes. By (i), $I_{n+1}(M)=I_{X_{1} \cup X_{2}}$.

Remark 1.5. The hypothesis $e_{1}>e_{2}$ is essential for our construction. Indeed, if we consider $I_{X_{1}}:=\left(x^{2}, y^{2}\right)$ and $I_{X_{2}}:=\left(t^{2},(x+y+t)^{2}\right)$ as ideals in $k[x, y, t]$, our construction produces the ideal $I_{X_{1}} \cap I_{X_{2}^{\prime}}$ where $I_{X_{2}^{\prime}}:=\left(t^{2}, x y+x t+y t\right)$ which is different from $I_{X_{1}} \cap I_{X_{2}}$ although $I_{X_{1}}+I_{X_{2}}=I_{X_{1}}+I_{X_{2}^{\prime}}$.

Corollary 1.6. Using the same hypotheses of Theorem 1.4, the ideal $I_{X_{1}} \cap I_{X_{2}}$ admits the following free graded resolution (not necessarily minimal):

$$
\begin{align*}
0 & \longrightarrow R\left(-\left(d_{2}+e_{2}\right)\right) \oplus \bigoplus_{i=1}^{n} R\left(-\left(d_{1}+e_{1}+d_{2}-\pi_{i}\right)\right) \tag{1.2}\\
& \xrightarrow{M} R\left(-\left(d_{1}+d_{2}\right)\right) \oplus R\left(-\left(e_{1}+d_{2}\right)\right) \oplus \bigoplus_{i=1}^{n} R\left(-\left(e_{2}+\pi_{i}\right)\right) \\
& \longrightarrow I_{X_{1}} \cap I_{X_{2}} \longrightarrow 0 .
\end{align*}
$$

Proof. The result follows by the degree matrix of M.

2. Applications to Hilbert functions and graded Betti num-

 bers. From Theorem 1.4, we are able to describe all possible Hilbert functions for aCM schemes which are a union of two complete intersection schemes of codimension 2 without common components. For this, we need no assumption on the degrees.In the sequel, we will set $(a)_{+}:=\max \{0, a\}$.
Proposition 2.1. Let $X_{1}, X_{2} \subset \mathbb{P}^{r}, r \geq 2$, be two complete intersection schemes of codimension 2, without common components, of type, respectively, $\left(d_{1}, e_{1}\right)$ and $\left(d_{2}, e_{2}\right)$, with $d_{1} \geq e_{1}$ and $d_{2} \geq e_{2}$ and say $e_{2}=\min \left\{e_{1}, e_{2}\right\}$. Then, the Hilbert function of the Artinian reduction A of $I_{X_{1}} \cap I_{X_{2}}$ is:

$$
\begin{align*}
H_{A}(t)= & t+1-\sum_{i=1}^{n}\left(t+1-e_{2}-\pi_{i}\right)_{+} \tag{2.1}\\
& -\left(t+1-d_{1}-d_{2}\right)_{+}-\left(t+1-e_{1}-d_{2}\right)_{+} \\
& +\sum_{i=1}^{n}\left(t+1-d_{1}-e_{1}-d_{2}+\pi_{i}\right)_{+}+\left(t+1-d_{2}-e_{2}\right)_{+}
\end{align*}
$$

where the $\pi_{i} s$ are the minimal generators degrees of an aG scheme linked to $X_{1} \cap X_{2}$ in a complete intersection of type $\left(e_{1}, d_{1}, d_{2}\right)$.

Proof. If $e_{1}>e_{2}$, then this result follows immediately by Corollary 1.2. Otherwise, the construction of Theorem 1.4 produces the
scheme $X_{1} \cup X_{2}^{\prime}$ (where X_{2}^{\prime} is a complete intersection of the same type of X_{2}) such that $I_{X_{1}}+I_{X_{2}^{\prime}}=I_{X_{1}}+I_{X_{2}}$. Thus, using sequence (1.1), we obtain that the resolution of $I_{X_{1}} \cap I_{X_{2}}$ is up to cancelations the same as the resolution of $I_{X_{1}} \cap I_{X_{2}^{\prime}}$, from which we get the assertion.

Remark 2.2. By the formula (2.1), we deduce some facts about the ideal $I_{X_{1}} \cap I_{X_{2}}$. For this, we use the following setting $d_{1} \geq e_{1}$ and $\pi_{i} \leq \pi_{i+1}$ for every i.
(i) The degree of the first generator is $e_{2}+\pi_{1}$; indeed, since $I_{Z} \subseteq I_{G}$, we have in particular that $\pi_{1} \leq e_{1} \leq d_{1}$; thus, $e_{2}+\pi_{1} \leq e_{1}+d_{2} \leq d_{1}+d_{2}$.
(ii) The degree of the second generator is $e_{2}+\pi_{2}$; indeed, by the previous observation, $\pi_{2} \leq \max \left\{e_{1}, d_{2}\right\}$; thus, $e_{2}+\pi_{2} \leq e_{1}+d_{2} \leq$ $d_{1}+d_{2}$.
(iii) Let

$$
\sigma:=\max \left\{t \mid H_{A}(t)>0\right\}
$$

(the socle degree of the Artinian algebra A). Note that, since $I_{Z} \subseteq I_{G}$, if we arrange $\left(e_{1}, d_{1}, d_{2}\right)$ in a manner that is not decreasing, we have that they are, respectively, greater than or equal to $\pi_{1} \leq \pi_{2} \leq \pi_{3}$. In any case, $\sigma \leq e_{1}+d_{1}+d_{2}-\pi_{1}-2$ since the biggest degree of a minimal syzygy of A is less than or equal to $e_{1}+d_{1}+d_{2}-\pi_{1}$ because $d_{2}+e_{2} \leq e_{1}+d_{1}+d_{2}-\pi_{1}$ (as $e_{1} \geq \pi_{1}$). This bound is sharp if and only if $e_{1}>\pi_{1}$. Whenever $e_{1}=\pi_{1}, \sigma \leq e_{1}+d_{1}+d_{2}-\pi_{2}-2$ since, in this case, the biggest degree of a minimal syzygy of A is less than or equal to $e_{1}+d_{1}+d_{2}-\pi_{2}$ because $d_{2}+e_{2} \leq e_{1}+d_{1}+d_{2}-\pi_{2}$ (as $d_{1} \geq \pi_{2}$). This bound is sharp if and only if $e_{1}=\pi_{1}$ and $d_{1}>\pi_{2}$. Whenever $e_{1}=\pi_{1}$ and $d_{1}=\pi_{2}, \sigma \leq \max \left\{e_{1}+d_{1}+d_{2}-\pi_{3}-2, d_{2}+e_{2}-2\right\}$; moreover, if $\max \left\{e_{1}+d_{1}+d_{2}-\pi_{3}-2, d_{2}+e_{2}-2\right\}=e_{1}+d_{1}+d_{2}-\pi_{3}-2$, then $\sigma=e_{1}+d_{1}+d_{2}-\pi_{3}-2$.
(iv) Although the complete intersections have Hilbert function of decreasing type, this is no longer true, in general, for the unions of two of them, as we will see in the Proposition 2.3.

In Proposition 2.3 and Corollary 2.4 we consider some special cases.

Proposition 2.3. Let $X_{1}, X_{2} \subset \mathbb{P}^{r}, r \geq 2$, be two complete intersection schemes of codimension 2 of type, respectively, $\left(d_{1}, e_{1}\right)$ and $\left(d_{2}, e_{2}\right)$.

Assume that $X_{1} \cup X_{2}$ is aCM. Let $I_{X_{1}}=\left(f_{1}, g_{1}\right)$ and $I_{X_{2}}=\left(f_{2}, g_{2}\right)$, $\operatorname{deg} f_{i}=d_{i}$ and $\operatorname{deg} g_{i}=e_{i}$. Suppose that $f_{2} \in\left(f_{1}, g_{1}, g_{2}\right)$, say $f_{2}=a_{1} f_{1}+b_{1} g_{1}+b_{2} g_{2}$. Then the Hilbert-Burch matrix of $I_{X_{1}} \cap I_{X_{2}}$ is

$$
M=\left(\begin{array}{cc}
-g_{2} & 0 \\
b_{1} & f_{1} \\
a_{1} & -g_{1}
\end{array}\right)
$$

Consequently, $I_{X_{1}} \cap I_{X_{2}}=\left(f_{2}-b_{2} g_{2}, g_{1} g_{2}, f_{1} g_{2}\right)$.
The graded minimal free resolution of $I_{X_{1}} \cap I_{X_{2}}$ is

$$
\begin{aligned}
0 \longrightarrow R\left(-\left(d_{2}+e_{2}\right)\right. & \oplus R\left(-\left(e_{1}+e_{2}+d_{1}\right)\right. \\
& \longrightarrow R\left(-d_{2}\right) \oplus R\left(-\left(e_{1}+e_{2}\right)\right) \oplus R\left(-\left(d_{1}+e_{2}\right)\right) .
\end{aligned}
$$

The Hilbert function of the Artinian reduction A of $I_{X_{1}} \cap I_{X_{2}}$ is

$$
H_{A}(t)=H_{A_{1}}\left(t-e_{2}\right)+H_{A_{2}}(t)
$$

where A_{i} is the Artinian reduction of $I_{X_{i}}$.
Proof. Let $I_{Y}=I_{2}(M)$. Note that ht $I_{Y}=\operatorname{ht}\left(f_{2}-b_{2} g_{2}, g_{1} g_{2}, f_{1} g_{2}\right)=$ 2; namely, if ht $I_{Y}=1$, the three generators should have a common factor. Since $\left(f_{1}, g_{1}\right)$ is a regular sequence, f_{2} should have a common factor with g_{2}, a contradiction.

Trivially, $I_{Y} \subseteq I_{X_{1}} \cap I_{X_{2}}$; on the other hand, an easy computation shows that $\operatorname{deg} I_{Y}=d_{1} e_{1}+d_{2} e_{2}=\operatorname{deg} I_{X_{1}} \cap I_{X_{2}}$. Thus, $I_{Y}=I_{X_{1}} \cap I_{X_{2}}$.

A minimal set of generators of $I_{X_{1}} \cap I_{X_{2}}$, and its resolution can be deduced immediately from the matrix M.

With regard to the Hilbert function, we have, for every $t \in \mathbb{Z}$, that

$$
\begin{gathered}
H_{A}(t)=(t+1)_{+}-\left(t+1-d_{2}\right)_{+}-\left(t+1-e_{1}-e_{2}\right)_{+}-\left(t+1-d_{1}-e_{2}\right)_{+} \\
+\left(t+1-d_{2}-e_{2}\right)_{+}+\left(t+1-e_{1}-e_{2}-d_{1}\right)_{+} \\
H_{A_{1}}\left(t-e_{2}\right)=\left(t+1-e_{2}\right)_{+}-\left(t+1-e_{2}-d_{1}\right)_{+} \\
\quad-\left(t+1-e_{2}-e_{1}\right)_{+}+\left(t+1-e_{2}-d_{1}-e_{1}\right)_{+} ; \\
H_{A_{2}}(t)=(t+1)_{+}-\left(t+1-d_{2}\right)_{+}-\left(t+1-e_{2}\right)_{+}+\left(t+1-d_{2}-e_{2}\right)_{+}
\end{gathered}
$$

from which we obtain our formula.

Corollary 2.4. Let $X_{1}, X_{2} \subset \mathbb{P}^{r}, r \geq 2$, be two complete intersection schemes of codimension 2 of type, respectively, $\left(d_{1}, e_{1}\right)$ and $\left(d_{2}, e_{2}\right)$. Assume that $X_{1} \cup X_{2}$ is aCM. Let $I_{X_{1}}=\left(f_{1}, g_{1}\right)$ and $I_{X_{2}}=\left(f_{2}, g_{2}\right)$, $\operatorname{deg} f_{i}=d_{i}$ and $\operatorname{deg} g_{i}=e_{i}$. We suppose that $d_{2} \geq d_{1}+e_{1}+e_{2}-2$, and $\left(f_{1}, g_{1}, g_{2}\right)$ is a regular sequence. Then, the same conclusions of Proposition 2.3 hold.

In particular, when $d_{2}>d_{1}+e_{1}+e_{2}$, then H_{A} is no longer of decreasing type, where A is the Artinian reduction of $I_{X_{1}} \cap I_{X_{2}}$.

Proof. Our assumptions imply that $I_{X_{1}}+I_{X_{2}}$ is an aCM ideal of height 3. Let B be the Artinian reduction of the complete intersection ideal $\left(f_{1}, g_{1}, g_{2}\right)$. Then, $B_{t}=0$ for $t \geq d_{1}+e_{1}+e_{2}-2$; thus, since $d_{2} \geq d_{1}+e_{1}+e_{2}-2, f_{2} \in\left(f_{1}, g_{1}, g_{2}\right)$. Now, applying Proposition 2.3, we obtain our assertion.

If $d_{2}>d_{1}+e_{1}+e_{2}$, then

$$
H_{A}(t)=H_{A_{1}}\left(t-e_{2}\right)+H_{A_{2}}(t)=e_{2}<e_{1}+e_{2}
$$

for every t such that $d_{1}+e_{1}+e_{2}-1 \leq t \leq e_{2}-1$, i.e., H_{A} takes the same value (less than $e_{1}+e_{2}$) in at least two adjacent degrees.

In the next proposition, we collect results on the graded Betti numbers of our schemes which are consequences of Theorem 1.4.

Proposition 2.5. Using the same assumptions of Theorem 1.4, we have
(i) The graded Betti numbers can be obtained by the resolution (1.2), only deleting at most three terms in degrees $d_{1}+d_{2}, e_{1}+d_{2}$ and $e_{2}+d_{2}$.
(ii) In any case, two among the products $f_{1} f_{2}, f_{1} g_{2}, g_{1} f_{2}$ or $g_{1} g_{2}$ are minimal generators for $I_{X_{1}} \cap I_{X_{2}}$.

Proof. (i) It is enough to observe that the only units in matrix M can appear in the first two rows or in the first column.
(ii) If the resolution (1.2) is minimal, then $f_{1} f_{2}$ and $g_{1} f_{2}$ are the first two maximal minors of the matrix M. Otherwise, suppose that, say $f_{1} f_{2}$ is not a minimal generator for $I_{X_{1}} \cap I_{X_{2}}$. This implies that $e_{1}=\pi_{i}$ for some i and g_{1} is a minimal generators for I_{G}; thus, we can
replace p_{i} with g_{1}. Note that $\operatorname{deg} \operatorname{det} M_{[i+2 ;-]}=\pi_{i}+e_{2}=e_{1}+e_{2}$, so $\operatorname{det} M_{[i+2 ;-]}$ can be chosen as a minimal generator for $I_{X_{1}} \cap I_{X_{2}}$. Now $\operatorname{det} M_{[i+2 ;-]}=q+g_{1} \operatorname{pf} \bar{A}$ (see the computation in the proof of Theorem 1.4). However, $q+g_{1} \operatorname{pf} \bar{A}=q+g_{1} g_{2}+\lambda f_{2} g_{1}$ for some q and λ. Then $g_{1} g_{2}$ can replace it as a minimal generator for $I_{X_{1}} \cap I_{X_{2}}$. Analogously, when $g_{1} f_{2}$ is not a minimal generator for our ideal, the same argument shows that we can take $f_{1} g_{2}$ as a minimal generator.

Example 2.6. An example is given here in which the resolution (1.2) is minimal free for $I_{X_{1}} \cap I_{X_{2}}$. In $R=k\left[x_{0}, \ldots, x_{8}\right]$, we consider the following two complete intersections $I_{X_{1}}=\left(f_{1}, g_{1}\right)$ and $I_{X_{2}}=\left(f_{2}, g_{2}\right)$, where

$$
\begin{aligned}
f_{1} & =x_{0}^{3} x_{1}^{3} x_{7} \\
g_{1} & =x_{2}^{3} x_{5}^{3} x_{6} \\
f_{2} & =\left(x_{0}^{3}+x_{2}^{3}+x_{4}^{3}\right) x_{3}^{3} x_{8}+\left(x_{0}^{3} x_{7}-x_{5}^{3} x_{8}\right) x_{1}^{3} \\
g_{2} & =\left(x_{0}^{3}+x_{2}^{3}+x_{4}^{3}\right) x_{6} x_{7} x_{8}
\end{aligned}
$$

Let $I_{G}:=\left(f_{1}, g_{1}, f_{2}\right):\left(f_{1}, g_{1}, f_{2}, g_{2}\right) ; I_{G}$ is a Gorenstein ideal with five generators in degree 6. Consequently, the resolution (1.2) is

$$
0 \rightarrow R(-13) \oplus R(-15)^{5} \rightarrow R(-12)^{5} \oplus R(-14)^{2} \rightarrow I_{X_{1}} \cap I_{X_{2}} \rightarrow 0
$$

which is clearly minimal.
Remark 2.7. Note that, concerning the cancellations, we describe all the possibilities which could occur in Proposition 2.5. Indeed, it will be sufficient to choose for a suitable Gorenstein G a complete intersection containing it and whose generators are or are not minimal generators for G.

Remark 2.8. Note that, in resolution (1.2), a syzygy of degree $d_{2}+e_{2}$ appears. It induces the trivial syzygy on $I_{X_{2}}$ via the map in the exact sequence (1.1). This implies that we will have a cancelation in degree $d_{2}+e_{2}$ in the mapping cone in the exact sequence (1.1). In fact, we have

$$
I_{X_{1}} \cap I_{X_{2}}=\left(f_{1} f_{2}, g_{1} f_{2}, h_{1}, \ldots, h_{n}\right)
$$

where $h_{i}:=\operatorname{det} M_{[i+2 ;-]}$ (see the proof of Theorem 1.4). The syzygy of degree $d_{2}+e_{2}$, in the same notation of Theorem 1.4, is $\left(0,0, \gamma_{1}, \ldots, \gamma_{n}\right)$.

From the proof of Theorem 1.4, we have that $h_{i}=\lambda_{i} f_{2}+p_{i} \operatorname{pf} \bar{A}$; thus, we obtain

$$
\sum_{i=1}^{n} \gamma_{i}\left(\lambda_{i} f_{2}+p_{i} \operatorname{pf} \bar{A}\right)=0 \Longrightarrow \sum_{i=1}^{n} \gamma_{i} \lambda_{i} f_{2}+\sum_{i=1}^{n} \gamma_{i} p_{i} \operatorname{pf} \bar{A}=0
$$

Since

$$
\sum_{i=1}^{n} \gamma_{i} p_{i}=f_{2}
$$

we are done.

REFERENCES

1. D.A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 447-485.
2. A. Cayley, Sur les déterminants gauches, Crelle's J. 38 (1854), 93-96.
3. S. Diesel, Irreducibility and dimension theorems for families of height 3 Gorenstein algebras, Pacific J. Math. 172 (1996), 365-397.
4. F. Gaeta, Quelques progrès récents dans la classification des variétés algébriques d'un espace projectif, Deuxième Colloque de Géométrie Algébrique, Liège, 1952.
5. P. Heymans, Pfaffians and skew-symmetric matrices, Proc. Lond. Math. Soc. 19 (1969), 730-768.
6. C. Huneke and J. Koh, Resolutions of almost complete intersections, J. Algebra 145 (1992), 22-31.
7. A. Iarrobino and V. Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lect. Notes Math. 1721, Springer-Verlag, New York, 1999.
8. J. Migliore, Introduction to liaison theory and deficency modules, Progr. Math. 165, Birkhauser, Boston, 1998.
9. J. Migliore and R.M. Miró-Roig, On the minimal free resolution of $n+1$ general forms, Trans. Amer. Math. Soc. 355 (2003), 1-36.
10. J. Migliore, R.M. Miró-Roig and U. Nagel, Monomial ideals, almost complete intersections and the weak Lefschetz property, Trans. Amer. Math. Soc. 363 (2011), 229-257.
11. C. Peskine and L. Szpiro, Liaison des variétés algébriques, I, Invent. Math. 26 (1974), 271-302.
12. A. Ragusa and G. Zappalà, Properties of 3-codimensional Gorenstein schemes, Comm. Algebra 29 (2001), 303-318.
13. \qquad , Complete intersections containing Cohen Macaulay and Gorenstein schemes Alg. Colloq. 18 (2011), 857-872.
14. A. Ragusa and G. Zappalà, On the structure of resolutions of almost complete intersections, Int. J. Pure Appl. Math. 83 (2013), 13-23.
15. \qquad , Characterization of the graded Betti numbers for almost complete intersections, Comm. Alg. 41 (2013), 492-506.
16. S. Seo, Almost complete intersections, J. Algebra 320 (2008), 2594-2609.

Università di Catania, Dip. di Matematica e Informatica, Viale A. Doria 6, 95125 Catania, Italy
Email address: ragusa@dmi.unict.it
Università di Catania, Dip. di Matematica e Informatica, Viale A. Doria 6, 95125 Catania, Italy
Email address: zappalag@dmi.unict.it

[^0]: 2010 AMS Mathematics subject classification. Primary 13D40, 13H10.
 Keywords and phrases. Almost complete intersections, Gorenstein rings, pfaffians, Betti numbers.

 Received by the editors on March 4, 2015, and in revised form on August 20, 2015.

