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IDEAL ZERO-DIVISOR COMPLEX

NELA MILOŠEVIĆ AND ZORAN Z. PETROVIĆ

ABSTRACT. Using discrete Morse theory for simplicial
complexes we determine the homotopy type of ideal zero-
divisor complex for finite rings and for rings with infinitely
many maximal ideals.

1. Introduction. In [3], the authors studied the set of zero-divisors
in a commutative ring with identity R by associating a graph to that
ring, the so called zero-divisor graph ΓR, with vertices being zero-
divisors and xy being an edge if and only if xy = 0. Akhtar and Lee [1]
used a different approach, replacing zero-divisors of R by proper ideals
and studying homology. They were mainly concerned with calculations
concerning 0th homology for general rings and the first homology group
and Euler characteristic for the ring Z/prZ, for a prime number p. For
a more thorough account of zero-divisor graphs for commutative rings,
see [2].

Inspired by the approach in [1], in this paper, we investigate the
ideal zero-divisor simplicial complex (which was implicit in [1]) and
analyze its topology for the case when a ring R has infinitely many
maximal ideals and for the case when R is a finite ring.

When analyzing topology of a simplicial complex, one of the most
widely used tools is discrete Morse theory for simplicial complexes
that was introduced by Forman [4] in the 1990s as a combinatorial
analogue to the original Morse theory. It was developed as a powerful
tool useful in reducing the size of simplicial complexes while preserving
their homotopy type. In this paper, when R is a finite ring, we use
discrete Morse theory as a tool in determining the homotopy type, and
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when the ring R has infinitely many maximal ideals, we can obtain the
results directly.

For another example of associating simplicial complexes to commu-
tative rings, the reader may wish to consult [9], where the authors
associated order complex with a general commutative ring via chains
of ideals and they had determined the homotopy type of that complex.

2. Notation, definitions and previous results. This section is
divided into two subsections. In the first, we give necessary background
and definitions regarding simplicial complexes, while, in the second, we
present discrete Morse theory for simplicial complexes.

2.1. Simplicial complex. For further information concerning sim-
plicial complexes, geometric realization, etc., the reader is referred to
[8, 10]. For information concerning necessary notions and results from
homotopy theory, the reader is referred to [6]. Here, we present only
the basic notions, mainly to fix notation and terminology.

Let a0, a1, . . . , an be elements in some RN . They are said to be
geometrically (or affinely) independent if, from

n∑
i=0

λiai = 0, where
∑n

i=0 λi = 0,

it follows that λ0 = λ1 = · · · = λn = 0. If these points are geometrically
independent, then the convex hull σ forms a geometric n-simplex.
Convex hulls of subsets of {a0, a1, . . . , an} form faces of σ, and ai are
its vertices. The standard geometric n-simplex ∆n is given by:

∆n := {(x0, x1, . . . , xn) ∈ Rn+1
+ : x0 + x1 + · · ·+ xn = 1},

where R+ is the set of all non-negative real numbers. Any geometric
n-simplex is homeomorphic to the standard geometric n-simplex. In
what follows, we will usually simply state simplex instead of geometric
simplex.

An abstract simplicial complex K is a collection of finite non-empty
sets such that, if A ∈ K, and ∅ ≠ B ⊆ A, then B ∈ K. The union ∪K
is the set of all vertices of K. If A ∈ K, and A has n+ 1 elements, we
refer to A as an n-simplex of K. A non-empty subset B of A is called
a face of A.
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We can associate to any abstract simplicial complex K a topological
space |K|, the geometric realization of K. This space lies in an
Euclidean space (of possibly infinite dimension). Simply, to every n-
simplex A of K is associated a geometric n-simplex σA in such a way
that faces of σA are associated to faces of A. If A and B are disjoint
the associated geometric simplices are also disjoint. Union of all of
these geometric simplices is the required geometric realization. The
topology on |K| is given as follows: a set F is closed in |K| if and
only if F ∩ σA is closed in σA for every σ ∈ K (σA itself has the
subspace topology induced by the n-dimensional plane determined by
its vertices). Space |K| is determined up to a homeomorphism.

In what follows, we use the same letter to denote simplex of K and
the corresponding geometric simplex in a geometric realization. Note
that, when we refer to the topological properties of the simplicial com-
plex K, we are always actually referring to the topological space |K|.

We refer to the ideal zero-divisor complex for a commutative ring
with identity R as ∆(R), the definition of which will be given in
Section 3, or simply write ∆. Furthermore, for a simplex σ =

{I0, . . . , In} ∈ ∆, we use the notation σ \ Ii = {I0, . . . , Îi, . . . , In} and
σ × J = {I0, . . . , In, J}. Also, α(p) denotes a p-dimensional simplex.

2.2. Discrete Morse theory for simplicial complexes. Here, we
present some basic notions from discrete Morse theory applied to finite
simplicial complexes, which we will use as a tool for determining the
homotopy type of the ideal zero-divisor complex for finite rings. For
a more thorough background, we encourage the reader to consult [4],
which is Forman’s original paper dealing with discrete Morse theory for
simplicial complexes, as well as his guide [5]. Furthermore, Jonsson’s
book on simplicial complexes of graphs [7], in which an algebraic
version of discrete Morse theory is presented, provides some very useful
theorems.

Definition 2.1. A function f : K → R is a discrete Morse function if,
for every α(p) ∈ K,

(1) f(β(p+1)) ≤ f(α(p)) for at most one β(p+1) ⊃ α(p), and
(2) f(γ(p−1)) ≥ f(α(p)) for at most one γ(p−1) ⊂ α(p)
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We say that α(p) is a critical simplex if, for all β(p+1) ⊃ α(p),
f(β(p+1)) > f(α(p)), and, for all γ(p−1) ⊂ α(p), f(γ(p−1)) < f(α(p)).

Forman’s main theorem is as follows.

Theorem 2.2 ([5]). Suppose K is a simplicial complex with a discrete
Morse function. Then, K is homotopy equivalent to a CW complex with
exactly one cell of dimension p for each critical simplex of dimension p.

Writing a discrete Morse function for a simplicial complex is not
difficult, for example, take f(α(p)) = p, but writing a good discrete
Morse function that gives as little critical simplices as possible proves
to be challenging. This is why Forman, instead of directly considering
a discrete Morse function, looked at a discrete vector field which, under
certain conditions, gives rise to a discrete Morse function.

Definition 2.3. A discrete vector field V on a finite simplicial complex
K is a set of pairs {α(p), β(p+1)} where α(p) ⊂ β(p+1), and each simplex
is in at most one pair. We say that {α(p), β(p+1)} is a matching in V ,
that is, simplices α(p) and β(p+1) are matched in V , while simplex σ
in K is critical or unmatched with respect to V if σ is not contained in
any pair in V .

If we have a discrete Morse function f , then we can specify a discrete
vector field by forming the pairs {α(p), β(p+1)} whenever f(β(p+1)) ≤
f(α(p)) (notice that conditions (1) and (2) from Definition 2.1 cannot
simultaneously occur for the same simplex α(p)). The converse is not
always true; thus, we introduce a necessary and sufficient condition
for V to be a discrete vector field of some Morse function f .

Definition 2.4. Given a discrete vector field V on a finite simplicial
complex K, a V -path is a sequence of simplices

α
(p)
0 , β

(p+1)
0 , α

(p)
1 , β

(p+1)
1 , α

(p)
2 , . . . , β

(p+1)
r+1

such that, for each i = 0, . . . , r, {αi, βi} ∈ V and βi ⊃ αi+1 ̸= αi. We
say that such a path is non-trivially closed if r > 0 and α0 = αr+1.
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Theorem 2.5 ([5]). A discrete vector field V on a finite simplicial
complex K is a discrete vector field of some Morse function if and only
if there are no non-trivially closed V -paths.

We say that V is acyclic if this condition holds. By Theorem 2.5, an
acyclic discrete vector field V on K gives rise to a discrete Morse func-
tion on K whose critical simplices are exactly the critical (unmatched)
simplices of V . Then, by Theorem 2.2, such a complex is homotopy
equivalent to a CW complex with cells that correspond to critical sim-
plices of V .

In order to determine the homotopy type of such a CW complex we
need some further theoretical background.

Consider a discrete vector field V on a finite simplicial complex K.
Let D = D(K,V ) be the digraph with the set of all simplices of K as
its vertex set and with a directed edge from σ to τ if and only if one of
the following holds:

(1) {σ, τ} ∈ V ;
(2) {σ, τ} /∈ V and σ = τ × x for some x /∈ τ .

Thus, every edge in D corresponds to an edge in Hasse diagram of K
ordered by set inclusion; edges corresponding to pairs in V are directed
from the smaller set to the larger set, while other edges are directed
from the larger to the smaller set. We write σ → τ if there is a directed
path from σ to τ in D. It is easily proven that, if V is acyclic, then
D is an acyclic digraph, that is, σ → τ and τ → σ implies σ = τ . For
details, see [7, 11].

We use the following construction from Jonsson, see [7], together
with the Forman’s theorems of simplicial Morse theory, in order to
determine the homotopy type of ideal zero-divisor complex in Section 3.

For an acyclic discrete vector field V on a finite simplicial complexK,
let U(K,V ) be the family of critical simplices of K with respect to V .
For a non-empty family of critical simplices V ⊆ U(K,V ), consider the
following subcomplex of K:

KV = {τ ∈ K : σ → τ, for some σ ∈ V}.

We assume that V ⊆ KV . When V contains only one critical simplex σ,
we denote it as Kσ. The following results are due to Jonsson [7, Proof
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of Theorem 4.11 and following corollary]. They will prove useful in
determining the homotopy type of ideal zero-divisor complex for finite
rings.

Theorem 2.6 ([7]). Suppose that σ ∈ U(K,V ) has the property that
Σ = Kσ ∩KU\{σ} is not empty and contractible to a point. Then K is
homotopy equivalent to Kσ ∨KU\{σ}.

This theorem yields the following result:

Corollary 2.7. Let U(K,V ) be a collection of k distinct critical

simplices, U(K,V ) = {σ1, . . . , σk} with the property that
∩k

i=1 Kσi is
non-empty and contractible to a point. Then, K is homotopy equivalent

to
∨k

i=1 Kσi .

3. Ideal zero-divisor complex.

Definition 3.1. Let R be a commutative ring with identity, and let
I∗(R), the set of all proper non-zero ideals of R, be the vertex set. We
define ideal zero-divisor complex ∆(R) as follows:

{I0, I1, . . . , In} ∈ ∆(R) if and only if I0I1 · · · In ̸= 0.

First, we will look at a few examples of ideal zero-divisor complexes.

Example 3.2. Let R = Z/p8Z. We will abuse notation and denote
the ideal I = ⟨pi⟩ by pi. Geometric realization of this complex is
represented in Figure 1.

..
p4
.

p
.

p6
.

p2

.

p3

.

p5

.

p7

Figure 1. |∆(Z/p8Z)|.
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Example 3.3. Let R = Z/p2q2Z. Again, we will abuse notation and
let piqj stand for the ideal I = ⟨piqj⟩. Geometric realization of this
complex is represented in Figure 2.

..p . q.
q2

.

pq

.

pq2

.

p2q

.

p2

Figure 2. |∆(Z/p2q2Z)|.

In the following subsections, we determine the homotopy type of this
complex for commutative rings with identity that have either infinitely
many maximal ideals or are finite.

3.1. Ideal zero-divisor complex for rings with infinitely many
maximal ideals.

Lemma 3.4. Suppose that R is such that Max(R) is infinite. If K0 is
a finite subcomplex of ∆(R), then there is a subcomplex K1 such that
K0 is a subcomplex of K1 and |K1| is contractible.

Proof. Let K0 be a finite subcomplex of ∆(R). For each simplex
σi = {I0, . . . , In} ∈ K0, let Mi be a maximal ideal in R such that
Ann(I0 · · · In) ⊆ Mi. Since there are finitely many, say k, maximal
simplices in K0, we can identify a finite collection of such maximal
ideals M1, . . . ,Mk (not necessarily distinct). Now, choose a non-unit

element a ∈ R\
∪k

i=1 Mi (since there are infinitely many maximal ideals
in the ring, such an a always exists). Then, for any simplex σ ∈ K0,
if ⟨a⟩ is not already a vertex of σ, we have ⟨a⟩I0 · · · In ̸= 0; thus,
σ × ⟨a⟩ ∈ ∆(R). Now consider K1 to be a subcomplex of ∆(R) which
is the complex K0 together with simplices σ × ⟨a⟩ for all σ ∈ K0 when
⟨a⟩ is not already a vertex of σ. Therefore, |K1| is a cone with apex
⟨a⟩, and hence, contractible. �
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Proposition 3.5. If Max(R) is infinite, then |∆(R)| is contractible.

Proof. Let us first show that the complex is connected. We proceed
as in the previous proof. If I and J are any two non-zero proper
ideals, let M1 and M2 be maximal ideals such that Ann(I) ⊆ M1 and
Ann(J) ⊆ M2. If a is a non-unit element from R \ (M1 ∪ M2), then
⟨a⟩ is adjacent to I and J . The rest of the proof is the same as in [9],
and we give it here for the sake of completeness. Since |∆(R)| has the
homotopy type of a CW complex, we may use the Whitehead theorem.
We only need to show that all homotopy groups of |∆(R)| are trivial.
Suppose that n ≥ 1 and that g : Sn → |∆(R)| is a continuous map.
Since the image g[Sn] is compact, by [10, Lemma 2.5], there is a finite
subcomplex K0 such that g[Sn] ⊆ |K0|. By Lemma 3.4, there is a
subcomplex K1 such that K0 ⊂ K1 and |K1| is contractible. So, the
map g may be factored through the contractible space |K1|, and it is
homotopically trivial. We conclude that πn(|∆(R)|, ∗) is trivial. Since
this holds for all n, by Whitehead’s theorem, we obtain that |∆(R)| is
contractible. �

3.2. Ideal zero-divisor complex for finite rings. In subsection
3.2.1 we give an algorithm for constructing a discrete vector field V for
ideal zero-divisor complex for finite rings. We prove that the vector field
so obtained is acyclic, and we explicitly show which simplices remain
unmatched (critical). Then, we determine the homotopy type of this
complex.

3.2.1. Acyclic discrete vector field. Let R be a finite commutative
ring with identity. We have finitely many maximal ideals, |Max(R)| =
m, which we denote by M1, . . . ,Mm.

First, we present a discrete vector field for the case m = 1. Let
σ = {I0, . . . , In} be any simplex in ∆(R). We want to show that there
exists τn−1 ⊂ σ such that {τ, σ} ∈ V or that there exists ρn+1 ⊃ σ
such that {σ, ρ} ∈ V , or that σ remains unmatched.

Take {M1} to be an unmatched simplex. For any other simplex
σ = {I0, . . . , In} apply the algorithm for forming pairs in V , given in
Figure 3.

Now, suppose that m > 1, and suppose that, if R has exactly two
maximal ideals, then M1M2 ̸= 0. We will deal with the case m = 2
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..M1 ∈ {I0, . . . , In}?.

{σ\M1, σ} ∈ V

.

yes

.

M1 × σ ∈ ∆?

.

{σ,M1 × σ} ∈ V

.

yes

.

σ unmatched

.

no

.

no

Figure 3. A discrete vector field for a finite local ring.

with M1M2 = 0 later in subsection 3.2.2 and directly determine the
homotopy type.

Take {M1} to be an unmatched simplex. For any other simplex
σ = {I0, . . . , In}, apply the algorithm for forming pairs in V , given in
Figure 4.

In order to show that this is a discrete vector field we will need the
next lemma. It will also prove useful in the following subsections.

Lemma 3.6. Suppose that I0 · · · In ̸= 0 and MiI0 · · · In = 0 for some
maximal ideal Mi in R. Then, for any other maximal ideal Mj in R,
j ̸= i, we have MjI0 · · · In ̸= 0.

Proof. Obviously, Mi ⊆ Ann(I0 · · · In) and, since Mi is maximal,
we have Mi = Ann(I0 · · · In). Now, for any maximal ideal Mj ̸= Mi,
Mj * Mi = Ann(I0 · · · In); thus, MjI0 · · · In ̸= 0. �

In Figure 3, when the answer to the question whether M2 ∈
{I0, . . . , In} is no, by Lemma 3.6, we know that M2I0 · · · In ̸= 0. Thus,
having {σ,M2 × σ} ∈ V is valid. Furthermore, we need to ensure that
we are not matching an empty set in V , that is, that we do not have
a pair {σ\Mi, σ} ∈ V where σ = Mi. Consider what simplices {Mi},
i > 1, get matched to. If |Max(R)| = 2, we assume that M1M2 ̸= 0;
thus, {{M2}, {M1,M2}} ∈ V . Now, if |Max(R)| > 2, we claim that
M1Mi ̸= 0, for i > 1. Suppose that Mj is some other maximal ideal,
j ̸= 1 and j ̸= i, Mj ⊇ M1Mi = 0. Since maximal ideals are prime, we
have Mj ⊇ M1 or Mj ⊇ Mi, which is a contradiction. Therefore, for
each maximal ideal Mi, i > 1, we have {{Mi}, {M1,Mi}} ∈ V .
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..M1 ∈ {I0, . . . , In}?.

{σ\M1, σ} ∈ V

.

yes

.

M1 × σ ∈ ∆?

.

{σ,M1 × σ} ∈ V

.

yes

.

M2 ∈ {I0, . . . , In}?

.

σ\M2 ×M1 ∈ ∆?

.

M3 ∈ {I0, . . . , In}?

.

σ\M3 ×M1 ∈ ∆?

..

Mm ∈ {I0, . . . , In}?

.

σ\Mm ×M1 ∈ ∆?

.

σ unmatched

.

yes

.

{σ\Mm, σ} ∈ V

.

no

.

yes

.

{σ,Mn × σ} ∈ V

.

no

.

.

..

.

yes

.

{σ\M3, σ} ∈ V

.

no

.

yes

.

{σ,M3 × σ} ∈ V

.

no

.

yes

.

{σ\M2, σ} ∈ V

.

no

.

yes

.

{σ,M2 × σ} ∈ V

.

no

.

no

.

no

Figure 4. A discrete vector field for non-local finite ring not isomorphic to
a product of two fields.

With this background, the algorithm given in Figure 4 precisely gives
a discrete vector field V for simplicial complex ∆(R) for finite ring R



IDEAL ZERO-DIVISOR COMPLEX 253

such that |Max(R)| = m > 1, and R is not isomorphic to a product
of two fields. To illustrate this, in Figure 5, we give an example of the
digraph D of such a discrete vector field V for the case R = Z/p2q2Z.
Reverse arrows show which pairs are in V . Notice that the simplices
which are shaded are critical, as there are no reverse arrows leading
from them.

..

{p, p2, p2q}

.

{p, p2, q}

.

{p, p2, pq}

.

{p, q, q2}

.

{q, q2, pq}

.

{q, q2, pq2}

.

{p2, p2q}

.

{p, p2q}

.

{p, p2}

.

{p2, q}

.

{p, pq}

.

{p2, pq}

. {p, q}.

{p, q2}

.

{q, q2}

.

{q, pq}

.

{q2, pq}

.

{q, pq2}

.

{q2, pq2}

.

{p2q}

.

{p2}

.

{p}

. {pq}.

{q}

.

{q2}

.

{pq2}

Figure 5. Digraph of discrete vector field for R = Z/p2q2Z.

In order to show that V is acyclic (in both cases when m = 1 and
m > 1), we show that there are no non-trivial closed V -paths.

Note that the matchings in V for the case when m > 1 are:

(i) {{I0, . . . , In}, {M1, I0, . . . , In}}; or
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(ii) {{I0, . . . , In}, {Mk, I0, . . . , In}}, which we can denote {σ\Mk, σ}.
The conditions which are satisfied when we have this type of
matching are:

• M1 /∈ {I0, . . . , In};
• M1I0 · · · In = 0;
• Mi ∈ {I0, . . . , In} and σ\Mi×M1 ∈ ∆ for all 1 < i < k; and
• σ\Mk ×M1 /∈ ∆.

When R is a finite ring with one maximal ideal, matchings in V
are only of the first type, so the proof of acyclicity follows the same
argument as in the case when the number of maximal ideals is greater
than one.

Now suppose that we have a V -path as described in subsection 2.2.
Denote this path as α0, β0, α1, β1, . . . , αr, βr, where each αi is an n-
simplex, each βi is an n+ 1-simplex, {αi, βi} ∈ V and βi ⊃ αi+1 ̸= αi

for each 0 ≤ i ≤ r. We will show that this path cannot be nontrivially
closed, that is, we cannot have α0 = αr+1 where r > 0.

Suppose that {α0, β0} ∈ V is a matching of the first type, that is,
α0 = {I0, . . . , In} and β0 = {M1, I0, . . . , In}. Since α1 is a face of

β0 and α1 ̸= α0, we must have α1 = {M1, I0, . . . , Îi, . . . In} for some
0 ≤ i ≤ n. Now, in V this n-simplex gets matched to an n− 1-simplex

{I0, . . . , Îi, . . . In} which cannot be β1 (β1 must be an n + 1-simplex).
Therefore, the above path ends at β0.

Now suppose that {α0, β0} ∈ V is a matching of the second type,
that is, α0 = {I0, . . . , In}, β0 = {Mk, I0, . . . , In}, with conditions
that are described above for this type of matching, which we denote
{σ \ Mk, σ}. Since α1 is a face of β0 and α1 ̸= α0, we must have

α1 = {Mk, I0, . . . , Îi, . . . , In} for some 0 ≤ i ≤ n. β1 is dependent
upon which ideal from simplex β0 is missing in α1. First, suppose
that the excluded ideal is one of the maximal ideals Mi, 1 < i <
k. Then, by the condition σ \ Mi × M1 ∈ ∆, we must have that
β1 = M1 × α1. Then, by the same argument as for the first type of
matching, α2, which is a face of β1 different from α1, gets matched to
α2 \M1 which is an n− 1-simplex so that the path ends and it is not
closed. Second, suppose that the excluded ideal is some other maximal
ideal Mj , j > k, that might be among ideals {I0, . . . , In}. Then, if

M1MkI0 · · · Îi · · · In ̸= 0 we have β1 = M1×α1 and the same argument
as above applies, by which the path ends and is not closed. Otherwise, if
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M1MkI0 · · · Îi · · · In = 0 by Lemma 3.6, M1MjI0 · · · Îi · · · In ̸= 0 which
exactly gives σ\Mk×M1 ∈ ∆, a contradiction to the conditions for this
type of matching. Therefore, the excluded ideal Ii from β0 to α1 cannot
be any maximal ideal. This means that we cannot obtain a closed
V -path, and α0 = αr+1 since we it is not possible to reintroduce the
deleted ideal Ii as we do not have a matching of the type {τ, τ×Ii} ∈ V
for ideal Ii, which is not maximal.

We showed that there are no non-trivial closed V -paths; hence, by
Theorem 2.5, V is a discrete vector field of some Morse function.

From Figures 3 and 4, note that:

(i) for the case m = 1, the unmatched (critical) simplices are {M1}
and simplices of the form {I0, . . . , In} where M1 /∈ {I0, . . . , In}
and M1I0 · · · In = 0;

(ii) for the case m > 1, the unmatched (critical) simplices are
{M1} and simplices of the form {M2, . . . ,Mm, I0, . . . , In} where
M1 /∈ {I0, . . . , In}, M1M2 · · ·MmI0 · · · In = 0 and the product

M1M2 · · · M̂i · · ·MmI0 · · · In ̸= 0 for all 2 ≤ i ≤ m.

3.2.2. Homotopy type. In order to determine the homotopy type of
the ideal zero-divisor complex for finite rings, we will consider several
cases of finite rings.

Theorem 3.7. Let R be a finite local ring with maximal ideal M . If
Ann(M) = 0, then ∆(R) is contractible to a point. If Ann(M) = M ,
then ∆(R) is homotopy equivalent to a disjoint union of a finite number
of points. Finally, if Ann(M) ̸= 0 and Ann(M) ̸= M , then ∆(R) is
homotopy equivalent to a disjoint union of a finite number of points and
a connected complex that is homotopy equivalent to a wedge of spheres.

Proof. If Ann(M) = 0, then ∆(R) is obviously a cone with apex M ,
and hence, contractible to a point. Suppose Ann(M) ̸= 0. Ann(M) is
a proper ideal in R, and obviously, for any other non-zero ideal I in
R, we have I ⊆ M . Thus, Ann(M) · I = 0, and hence, Ann(M) is an
isolated point. By the same argument, any ideal I ⊂ Ann(M) is an
isolated point.

When Ann(M) ̸= M , the complex |∆(R)| is the union of finite

number of isolated points and the subcomplex |∆̃(R)| whose vertices
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are ideals I * Ann(M). For each vertex I, we have I ·M ̸= 0, which
shows that this subcomplex is connected. We apply the discrete vector
field for the case ring, finite with one maximal ideal, to this subcomplex,
and denote the set of critical simplices with respect to this vector field

as U(∆̃, V ). The critical simplices are {M} and {I0, . . . , In} where
M /∈ {I0, . . . , In} and MI0 · · · In = 0. Since the vertices are only the
ideals which are not in Ann(M), M is the only critical 0-simplex. Let

σ ∈ U(∆̃, V ). Consider the following subcomplex of |∆̃(R)|, introduced
in subsection 2.2:

∆σ = {τ ∈ ∆ : σ → τ}.

If σ = {M}, then ∆σ = {M}. Let σ = {I0, . . . , In} ∈ U(∆̃, V ).

Note that MI0 · · · Îi · · · In ̸= 0 for all 0 ≤ i ≤ n, since each Ii ⊂ M
and I0 · · · In ̸= 0. Therefore, for each 0 ≤ i ≤ n, we have pairs

{{I0, . . . , Îi, . . . , In}, {M, I0, . . . , Îi, . . . , In}} ∈ V . Consequently, apart

from the faces of σ, the only τ ∈ ∆̃ such that σ → τ are simplices

{M, I0, . . . , Îi, . . . , In} and, naturally, their faces. Hence, |∆σ| is the
boundary of an n-simplex, which is homotopy equivalent to Sn−1.

Note that
k∩

i=1

∆σi = {M};

thus, using Corollary 2.7 from subsection 2.2, |∆̃(R)| is homotopy
equivalent to

k∨
i=1

|∆σi |. �

Proposition 3.8. Let R be a ring with two maximal ideals M1 and
M2 such that M1M2 = 0. Then, R is isomorphic to a product of two
fields, and |∆(R)| is homotopy equivalent to two isolated points.

Proof. By the Chinese remainder theorem, R ∼= R/M1×R/M2. For
any ideals I ⊆ M1 and J ⊆ M2, we have that IJ = 0. Hence, ∆(R)
is the disjoint union of two subcomplexes: ∆(M1) as the subcomplex
generated by all ideals that are contained in M1 and ∆(M2) as the
subcomplex generated by all ideals that are contained in M2. Now,
let {I0, . . . , In} be any simplex in ∆(M1). If I0 · · · InM1 = 0, then
M1 = Ann(I0 · · · In), but we also have M2 ⊆ Ann(I0 · · · In) since
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M1M2 = 0. Hence, we have arrived at a contradiction. Therefore,
∆(M1) is a cone with apex M1, and hence, contractible to a point. By
symmetry, the same argument holds for ∆(M2). �

In order to determine the homotopy type of the ideal zero-divisor
complex for the final case, we need the next lemma.

Lemma 3.9. Let R be a non-local finite ring which is not isomorphic to
a product of two fields. Let σi, σj ∈ U(∆, V ), i ̸= j, and σi, σj ̸= {M1}.
Then, σi ̸⊃ σj.

Proof. Note that, if σj = {M1}, σi ̸⊃ σj for any critical simplex σi.
Suppose that we have σj ⊂ σi. Denote σj = {M2, . . . ,Mm, I0, . . . , Ir}
and σi = {M2, . . . ,Mm, I0, . . . , Ir, Ir+1, . . . , In} with the following con-
ditions:

• M1 /∈ {I0, . . . , In};
• M1M2 · · ·MmI0 · · · Ir = 0; and

• M1M2 · · · M̂i · · ·MmI0 · · · In ̸= 0 for all 2 ≤ i ≤ m.

Consider the ideal Ir+1. Having Ir+1 ⊂ M1 = Ann(M2 · · ·MmI0 · · · Ir)
would contradict the fact that M2 · · ·MmI0 · · · IrIr+1 ̸= 0 (note that
{M2, . . . ,Mn, I0, . . . , Ir+1} is a face of σi). Hence, Ir+1 ⊂ Mi for some

2 ≤ i ≤ m. Now, since we have M1M2 · · · M̂i · · ·MmI0 · · · Ir ̸= 0 and

M1M2 · · ·MmI0 · · · Ir = 0, then Ann(M1M2 · · · M̂i · · ·MmI0 · · · Ir) =

Mi. Having Ir+1 ⊂ Mi gives M1M2 · · · M̂i · · ·MmI0 · · · IrIr+1 = 0,

which is a contradiction to the condition M1M2 · · · M̂i · · ·MmI0 · · · In
̸= 0. �

Theorem 3.10. Let R be a finite ring such that |Max(R)| = m > 1,
and suppose that R is not isomorphic to a product of two fields. Then

|∆(R)| is homotopy equivalent to
∨k

i=1 S
di , where di is the dimension

of the critical simplex σi with respect to the discrete vector field V .

Proof. For any nonzero proper ideal I ̸= M1 in R, if M1I = 0, then
M2I ̸= 0 by Lemma 3.6 from subsection 3.2.1. This shows that the
complex is connected since we have that M1M2 ̸= 0. Furthermore, it
also shows that we have {{I}, {Mi, I}} ∈ V where i = 1 or i = 2, so
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{M1} is the only critical 0-simplex with respect to the discrete vector
field V .

Let U(∆, V ) be the set of critical simplices of ∆ with respect to V ,
and let D be the corresponding digraph, as described in Section 2. Let
σ ∈ U(∆, V ), and:

∆σ = {τ ∈ ∆ : σ → τ}.

If σ = {M1}, then ∆σ = {M1}. Let σ = {M2, . . . ,Mm, I0, . . . , In} ∈
U(∆, V ). We want to show that σ \ J ×M1 ∈ ∆(R) for J being each
of the ideals {M2, . . . ,Mm, I0, . . . , In}. If J ∈ {M2, . . . ,Mm}, or if
J ⊂ Mi for some 2 ≤ i ≤ n, the stated claim is true by the condition

M1M2 · · · M̂i · · ·MmI0 · · · In ̸= 0 which holds for critical simplex σ.
Suppose that J ⊂ Mi. If we were to have σ\J × M1 /∈ ∆(R), then
σ\J would be a critical simplex which is contradictory to Lemma 3.9.
Therefore, apart from the faces of σ, the only τ ∈ ∆ such that σ → τ
are simplices σ\J×M1 for J ∈ {M2, . . . ,Mm, I0, . . . , In} and, naturally,
their faces.

If σ is a simplex of dimension d (we have d = n + m − 1), we
may conclude that ∆σ is the boundary of an (d+ 1)-simplex given by
vertices {M1,M2, . . . ,Mm, I0, . . . , In}, which is homotopy equivalent
to Sd. Furthermore, the complex ∆(R) has {M1} as the only critical
0-simplex with respect to V , so we have

k∩
i=1

∆σi = {M1}.

Now, using Corollary 2.7 from subsection 2.2, |∆(R)| is homotopy

equivalent to
∨k

i=1 |∆σi |. Therefore, if we denote the dimension of
σi with di, then we can conclude that |∆(R)| is homotopy equivalent

to
∨k

i=1 S
di . �

We now consider some results which are direct consequences of the
above theorems.

Proposition 3.11. When R is a finite ring isomorphic to a product
of m fields, m > 2, |∆(R)| is homotopy equivalent to Sm−2.
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Proof. We have that M1M2 · · ·Mm = 0 so the only critical simplices
with respect to V are {M1} and {M2, . . . ,Mm}. Hence, by using
Corollary 2.7, |∆(R)| is homotopy equivalent to Sm−2. �

Example 3.12. Let R = Z/prZ where p is prime and r > 1. Then
|∆(R)| is homotopy equivalent to the disjoint union of a point and a

wedge of spheres
∨k

i=1 S
di , where the number of spheres of dimension n

is the number of integer partitions of r − 1 into n+ 1 distinct integers
larger than 1.

Proof. The ideals in R are of the form I = ⟨pi⟩. Note that
Ann(⟨p⟩) = ⟨pr−1⟩, which has no non-zero ideals as proper subsets;
thus, the only isolated point in the complex is the ideal ⟨pr−1⟩. As for
the connected subcomplex, see Theorem 3.7, the critical simplices with
respect to V are of the form {⟨p⟩} and {I0, . . . , In} such that

⟨p⟩ /∈ {I0, . . . , In}

and

⟨p⟩I0 · · · In = 0.

Therefore, the ideals I0, . . . , In are such that I0 · · · In = ⟨pr−1⟩. Fur-
thermore, ideals are of the form I = ⟨pi⟩, i ̸= 1, each of which must
have a different power of p as the generator, and the sum of powers
of all generators must be r − 1. Therefore, the number of critical n-
simplices is the number of integer partitions of r− 1 into n+1 distinct
integers larger than 1. �

Note that, in [1], the authors studied the homology groups for the
ring R = Z/prZ and calculated the rank of H1(Z/prZ) (we use notation
from [1]) to be (r − 4)/2 when r is even and (r − 5)/2 when r is odd.
This is exactly the number of integer partitions of r−1 into two distinct
integers larger than 1, that is, the number of spheres of dimension 1
shown in Example 3.12.

Example 3.13. Let R = Z/aZ where a = pr11 · · · prmm for some prime
numbers p1, . . . , pm, m > 1. Suppose that R is not isomorphic to a
product of two fields. Then, |∆(R)| is homotopy equivalent to a wedge

of spheres
∨k

i=1 S
di where the number of spheres of dimension n is the
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number of ways in which we can write pr1−1
1 · · · prm−1

m as a product of
n −m + 2 distinct integers where none of the integers is from the set
{p1, . . . , pm}.

Proof. We can apply the algorithm for discrete vector field V which
gives critical simplices {⟨p1⟩} and {⟨p2⟩, . . . , ⟨pm⟩, I0, . . . , In−m+1} where
⟨p2⟩ · · · ⟨pm⟩I0 · · · In−m+1 = ⟨a/p1⟩. Therefore, ideals I0, . . . , In−m+1

such that I0 · · · In−m+1 = pr1−1
1 · · · prm−1

m give different critical sim-
plices concludes the proof. �

4. Concluding remarks. In the previous section, we proved that
the ideal zero-divisor complex for rings with infinitely many maximal
ideals is contractible. In addition, we presented a (powerful) tool for
determining the homotopy type of the ideal zero-divisor complex for
finite rings, namely, the complex is homotopy equivalent to a wedge
of spheres (plus some finite number of points for the case where
the ring has one maximal ideal), or in the case of a ring which is
isomorphic to two fields where it is homotopy equivalent to two points.
Forman’s main theorem for simplicial Morse theory shows that the
complex is homotopy equivalent to a CW complex with exactly one
cell of dimension d for each critical simplex of dimension d, and in
subsection 3.2.1, we stated an algorithm for discrete vector field V
which precisely describes those critical simplices. We also proved that,
each time, when we glue a critical simplex in the CW complex, we are
gluing it to the critical 0-simplex, which then gives a sphere. Thus, the
complex is homotopy equivalent to a wedge of spheres.
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