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SERRE DIMENSION AND EULER CLASS GROUPS
OF OVERRINGS OF POLYNOMIAL RINGS

MANOJ K. KESHARI AND HUSNEY PARVEZ SARWAR

ABSTRACT. Let R be a commutative Noetherian ring of
dimension d and

B = R[X1, . . . , Xm, Y ±1
1 , . . . , Y ±1

n ]

a Laurent polynomial ring over R. If A = B[Y, f−1] for some
f ∈ R[Y ], then we prove the following results:

(i) if f is a monic polynomial, then the Serre dimension of
A is ≤ d. The case n = 0 is due to Bhatwadekar, without the
condition that f is a monic polynomial.

(ii) The pth Euler class group Ep(A) of A, defined by
Bhatwadekar and Sridharan, is trivial for p ≥ max{d + 1,
dimA − p + 3}. The case m = n = 0 is due to Mandal and
Parker.

1. Introduction. In this paper, we will assume that all rings are
commutative Noetherian of finite Krull dimension, all modules are
finitely generated and all projective modules are of constant rank.
Throughout this paper, R will denote a ring of dimension d and B
will denote the Laurent polynomial ring

R[X1, . . . , Xm, Y
±1
1 , . . . , Y ±1

n ]

over R.

Let P be a projective R-module. An element p ∈ P is said to be
unimodular if there exist ϕ ∈ Hom(P,R) such that ϕ(p) = 1. We write
Um(P ) for the set of all unimodular elements of P . We say that the
Serre dimension of R is ≤ t if every projective R-module of rank≥ t+1
has a unimodular element.

A classical result of Serre [22] is that the Serre dimension of R is ≤ d.
Quillen [20] and Suslin [23] proved Serre’s conjecture that projective
modules over polynomial rings k[X1, . . . , Xm] over a field k are free for
all m ≥ 1. In other words, the Serre dimension of k[X1, . . . , Xm] is 0.
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Plumstead [19, Theorem 2] generalized Serre’s result by proving that
the Serre dimension of R[Y ] is ≤ d. Rao [21, Theorem 1.1] generalized
Plumstead’s result and proved that, if C is a birational overring of
R[Y ], i.e.,

R[Y ] ⊂ C ⊂ S−1R[Y ],

where S is the set of all nonzero divisors of R[Y ], then the Serre
dimension of C is ≤ d. As a consequence of Rao’s result, we obtain the
Serre dimension of R[Y, f−1] ≤ d for any nonzero divisor f ∈ R[Y ].

Bhatwadekar and Roy [6, Theorem 3.1] generalized Plumstead’s
result to polynomial rings in many variables and proved that the
Serre dimension of the polynomial ring R[X1, . . . , Xm] is ≤ d for any
m ≥ 1. This result was generalized by Bhatwadekar, Lindel and Rao
[2, Theorem 4.1] to the Laurent polynomial case. They proved that
the Serre dimension of the Laurent polynomial ring

B := R[X1, . . . , Xm, Y
±1
1 , . . . , Y ±1

n ]

is ≤ d.

Bhatwadekar [1, Theorem 3.5] further generalized Bhatwadekar and
Roy’s result to polynomial extensions over a birational overring of R[Y ].
More precisely, he proved that, if C is a birational overring of R[Y ],
then the Serre dimension of

C[X1, . . . , Xm]

is ≤ d. As a consequence of this result, we obtain that the Serre
dimension of

R[X1, . . . , Xm, Y, f
−1]

is ≤ d for any nonzero divisor f ∈ R[Y ].

It is natural to ask whether an analogue of Bhatwadekar’s result [1]
is true for Laurent polynomial rings. More precisely, we can ask the
following.

Question 1.1. Let C be a birational overring of R[Y ]. Is the Serre
dimension of

C[X1, . . . , Xm, Y
±1
1 , . . . , Y ±1

n ] ≤ d?



SERRE DIMENSION AND EULER CLASS OVERRINGS 215

We answer this question when C = R[Y, f−1] with f ∈ R[Y ] a monic
polynomial. Note that Lindel [12] gave another proof of [2, Theorem
4.1] mentioned above. Our proof closely follows Lindel’s idea. Next,
we state our result.

Theorem 1.2. Let A = B[Y, f−1], where f ∈ R[Y ] is a monic
polynomial. Then the Serre dimension of A is ≤ d.

Assume that dimR = d ≥ 3 and p is a positive integer such that
p ≥ d− p+3. Then Bhatwadekar and Sridharan defined the pth Euler
class group Ep(R) of R which is an additive abelian group. We will not
give the explicit definition of Ep(R) (see [5, Section 4], for definition).
Rather, we will describe the elements of Ep(R), since this suffices for
our purposes. Let I be an ideal of R of height p such that the R/I-
module I/I2 is generated by p elements. Let

ϕ : (R/I)p→→I/I2

be a surjection, giving a set of p generators of R/I-module I/I2.
The surjection ϕ induces an element of the pth Euler class group
Ep(R), denoted by the pair (I, ϕ). Furthermore, it follows using the
moving lemma and addition principle, that every element of Ep(R)
is a pair (I, ϕ) for some height p ideal I of R and some surjection
ϕ : (R/I)p→→I/I2. Bhatwadekar and Sridharan [5, Theorem 4.2]
proved that there exists a surjection

Φ : Rp→→I

which is a lift of ϕ, i.e., Φ⊗A/I = ϕ, if and only if the associated
element (I, ϕ) of the group Ep(R) is the trivial element (identity
element 0 of Ep(R)).

It is well known that a projective R-module of rank d need not, in
general, have a unimodular element. The significance of Euler class
group theory is demonstrated by the result of [3], where it was proved
that, for a rank d projective R-module P with trivial determinant, the
precise obstruction for P to have a unimodular element lies in Ed(R).
More precisely, given a pair (P, χ), where

χ : ∧dP
∼→R
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is an isomorphism, an element e(P, χ) was associated with the Euler
class group Ed(R), and it was proved that P has a unimodular ele-
ment if and only if e(P, χ) is the trivial element of Ed(R). Such an
obstruction theory is not known for projective R-modules of rank d−1
except for a special class of rings. When R = S[Y ] is a polynomial ring
in one variable over a subring S of R, then Das [7] proved that, for a
rank d− 1 projective R-module Q with trivial determinant, the precise
obstruction for Q to have a unimodular element lies in Ed−1(R).

Let I be an ideal of R[Y ] containing a monic polynomial in the vari-
able Y . Assume the R[Y ]/I-module I/I2 is generated by p elements,
where p ≥ dim(R[Y ]/I) + 2. Mandal [13, Theorem 2.1] proved that
any surjection

ϕ : (R[Y ]/I)p→→I/I2

can be lifted to a surjection

Φ : R[Y ]p→→I.

Let P = Q⊕R be a projective R-module of rank p and

ψ : P [Y ]/IP [Y ]→→I/I2

a surjection. Then Bhatwadekar et al. [5, Proposition 3.3] proved that
ψ lifts to a surjection

Ψ : P [Y ]→→I,

thus generalizing Mandal’s result. If we further assume that height
of I is p and 2p ≥ dimR[Y ] + 3, then we can associate an element
(I, ϕ) ∈ Ep(R[Y ]) to the surjection ϕ. Since Φ is a surjective lift of
ϕ, by [5, Theorem 4.2], we obtain that (I, ϕ) is a trivial element of
Ep(R[Y ]).

Let
A = R[X1, . . . , Xm]

be a polynomial ring over R and I an ideal of A of height≥ d+ 1. Let

p ≥ max{dim(A/I) + 2, d+ 1}

be an integer and
ϕ : (A/I)p→→I/I2

a surjection. Since the height of I > d, by Suslin (2.5), there exists an
automorphism Θ of A such that Θ(I) contains a monic polynomial in
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Xm with coefficients from

R[X1, . . . , Xm−1].

Therefore, replacing I by Θ(I), we may assume that I contains a monic
polynomial inXm. By the above-mentioned Mandal [13, Theorem 2.1],
ϕ can be lifted to a surjection

Φ : Ap→→I.

Therefore, if we further assume that

p ≥ max{dimA− p+ 3, d+ 1},

then, by [5, Theorem 4.2], the associated element (I, ϕ) of Ep(A) is
trivial. Since any element of Ep(A) is a pair (I, ϕ) for some height p
ideal I of A, we get the pth Euler class group Ep(A) = 0. In particular,

Ed+1(R[Y ]) = 0 for d ≥ 2.

This result is generalized by Mandal and Parker [16, Theorem 3.1]
where

Ed+1(R[Y, f−1]) = 0 for d ≥ 2 and f ∈ R[Y ]

is proved. We generalize Mandal and Parker’s result as follows.

Theorem 1.3. Let A = B[Y, f−1] for some f ∈ R[Y ], and let p be an
integer such that

p ≥ max{dimA− p+ 2, d+ 1}.

Let P = Q⊕R be a projective R-module of rank p and I a proper ideal
of A of height≥ d+ 1. Assume there is a surjection

ϕ : P ⊗A/I(P ⊗A)→→I/I2.

Then ϕ can be lifted to a surjection

Φ : P ⊗A→→I.

As a consequence, taking P to be free, we obtain that any p generators
of I/I2 can be lifted to p generators of I.

The next result is a direct consequence of Theorem 1.3.
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Corollary 1.4. Let A = B[Y, f−1] for some f ∈ R[Y ], and let p be an
integer such that

p ≥ max{dimA− p+ 3, d+ 1}.

Then the pth Euler class group Ep(A) of A is zero.

Let I be an ideal of R[Y ] containing a monic polynomial and P a
projective R-module of rank p with p ≥ dim(R[Y ]/I) + 2. Let

ϕ : P [Y ]/IP [Y ]→→I/I2

and

δ : P→→I(0) := {f(0) | f ∈ I}

be two surjections such that ϕ(0) = δ⊗R/I(0). Then, Mandal [14,
Theorem 2.1] proved that there exists a surjection Φ : P [Y ]→→I such
that

Φ⊗R[Y ]/I = ϕ

and
Φ(0) = δ,

thus answering a question of Nori, see [14], on homotopy sections of
projective modules, in case the ideal I contains a monic polynomial.

The above result of Mandal on the homotopy section was generalized
by Kumar and Mandal [10, Theorem 1.2] to the Laurent polynomial
case as follows. Let I be an ideal of R[Y, Y −1] containing a monic
polynomial f in R[Y ] with f(0) = 1. Let P be a projective R-module
of rank p with

p ≥ dim(R[Y, Y −1]/I) + 2.

Let
ϕ : P [Y, Y −1]/IP [Y, Y −1]→→I/I2

and
δ : P→→I(1) := {g(Y = 1)|g ∈ I}

be two surjections such that ϕ(1) = δ⊗R/I(1). Then, there exists a
surjection

Φ : P [Y, Y −1]→→I
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such that
Φ⊗R[Y, Y −1]/I = ϕ and Φ(1) = δ.

We prove the following analogue of Kumar and Mandal’s result.

Theorem 1.5. Let A = B[Y, f−1], where f ∈ R[Y ] is a monic
polynomial with f(1) a unit in R. Let I be an ideal of A of height≥ d+1
and P a projective B-module of rank≥ max{d+1, dim(A/I)+2)}. Let

ϕ : P [Y, f−1]/IP [Y, f−1]→→I/I2

and
δ : P→→I(1) (:= {g(Y = 1) | g ∈ I})

be two surjections such that δ⊗ I(1)/I(1)2 = ϕ⊗A/(Y −1), where I(1)
is an ideal of B. Then there exists a surjection

Ψ : P [Y, f−1]→→I

such that Ψ⊗A/I = ϕ and Ψ(1) = δ.

2. Preliminaries. In this section, we note some results for later
use. For a ring A, ht I will denote the height of an ideal I of A. We
begin by stating a result of Lindel [12, Lemma 1.1].

Proposition 2.1. Let A be a ring, Q an A-module and s ∈ A such
that Qs is a free As-module of rank r. Then there exist p1, . . . , pr ∈ Q,
ϕ1, . . . , ϕr ∈ Q∗ and t ≥ 1 such that :

(i) 0 :A s′A = 0 :A s′
2
A, where s′ = st.

(ii) s′Q ⊂ F and s′Q∗ ⊂ G, where

F =
r∑

i=1

Api ⊂ Q

and

G =
r∑

i=1

Aϕi ⊂ Q∗,

(iii) (ϕi(pj))1≤i,j≤r = diagonal (s′, . . . , s′). We say F and G are s′-
dual submodules of Q and Q∗, respectively.
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Definition 2.2.

(i) Let A be a ring, M an A-module and δ an A-endomorphism. We
say that the maps

ξ :M −→M and ξ∗ :M∗ −→M∗

are δ-semilinear if ξ and ξ∗ are group homomorphisms with
respect to addition operation and

ξ(αm) = δ(α)ξ(m), ξ∗(αϕ) = δ(α)ξ∗(ϕ)

for any m ∈M , ϕ ∈M∗ and α ∈ A.
(ii) Let I be an ideal of A and s ∈ A. An endomorphism h : A → A

is called stI-analytic, t ∈ N, if h(s) = s and h(a) − a ∈ stI with
0 :A st−1 = 0 :A st.

The next result is due to Lindel [12, Lemma 1.4].

Lemma 2.3. Let A be a ring, I an ideal in A and M an A-module
such that Ms is free for some s ∈ A. Let

F =
r∑

i=1

Api ⊂M and G =
r∑

i=1

Aϕi ⊂M∗

be two submodules as in Proposition 2.1. Assume that an s2tI-analytic
endomorphism h of A is given. Then there exist h-semilinear maps

ξ :M −→M and ξ∗ :M∗ −→M∗

with the following properties:

(i) ξ(p) − p ∈ stIF , ξ∗(ϕ) − ϕ ∈ stIG and ξ∗(ϕ)ξ(p) = h(ϕ(p)) for
all p ∈M and ϕ ∈M∗.

(ii) If N and N ′ are submodules of F and G, respectively, such that

F ⊂ N ⊂M and G ⊂ N ′ ⊂M∗,

then ξ(N) = N and ξ∗(N ′) = N ′.

The next result on fiber products is well known. For a reference, see
[15, Proposition 2.2.1].
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Proposition 2.4. Let A be a ring, and let f, g ∈ A be such that
fA+ gA = A. Let M and N be two A-modules. Suppose that

ϕ :Mf −→ Nf

is an Af -homomorphism and

ψ :Mg −→ Ng

is an Ag-homomorphism such that ϕg = ψf . Then,

(i) there exists an A-homomorphism ξ : M → N such that ξf = ϕ
and ξg = ψ.

(ii) If ϕ and ψ are surjective, then ξ is surjective.

The following is implicit in Suslin’s result [24, Lemma 6.2] and is
known as Suslin’s monic polynomial theorem.

Theorem 2.5. Let I be an ideal of R[X1, . . . , Xm] of height> d.
Then there exist a positive integer N such that, for any integers
si > N , if ϕ is the R[Xm]-automorphism of R[X1, . . . , Xm] defined
by ϕ(Xi) = Xi + Xsi

m for 1 ≤ i ≤ m − 1, then ϕ(I) contains a monic
polynomial in Xm with coefficients from R[X1, . . . , Xm−1].

The next result is implicit in Mandal’s result [13, Lemma 2.3].

Lemma 2.6. Let I be an ideal of B of height> d and n > 0. Then
there exists an R[Y ±1

n ]-automorphism Θ of B such that Θ(I) contains
a monic polynomial in Yn of the form 1 + Ynh for some

h ∈ R[X1, . . . , Xm, Y
±1
1 , . . . , Y ±1

n−1, Yn].

The next result is due to Bhatwadekar et al. [2, Theorem 4.1].

Theorem 2.7. Let P be a projective B-module of rank> d. Then P
has a unimodular element.

The next result is due to Bhatwadekar et al. [4, Proposition 3.3].
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Proposition 2.8. Let I be an ideal of R[X] containing a monic
polynomial and P = Q⊕A a projective R-module of rank r, where
r ≥ dim(R[X]/I) + 2. Let

ϕ : P [X]→→I/I2

be a surjection. Then, ϕ can be lifted to a surjection

Φ : P [X]→→I.

The next result is due to Dhorajia and Keshari [8, Theorem 3.12].
We will only state the necessary part here.

Theorem 2.9. Let

A = R[X1, . . . , Xm, Y1, . . . , Yn, (f1 . . . fn)
−1]

with fi ∈ R[Yi] and P a projective A-module of rank r ≥ d + 1. Then
P is cancellative, i.e.,

P⊕At ∼→Q⊕At

for some integer t > 0 implies P
∼→Q.

Definition 2.10. For an integer n > 0, a sequence of elements
a1, . . . , an in R is said to be a regular sequence of length n if ai is
a nonzero divisor in

R/(a1, . . . , ai−1) for i = 1, . . . , n.

Let I be an ideal of R. We say I is set theoretically generated by n
elements f1, . . . , fn ∈ R if

√
I =

√
(f1, . . . , fn).

Assume that the height of I is n. Then I is said to be a complete
intersection ideal if I is generated by a regular sequence of length n.
Furthermore, I is said to be a locally complete intersection ideal if Ip
is a complete intersection ideal of height n for all prime ideals p of R
containing I. �

The next result is due to Mandal and Roy [17, Theorem 2.1]. See
also [13, Theorem 6.2.2].
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Theorem 2.11. Let J ⊂ I be two ideals of R[X] such that I contains
a monic polynomial. Assume that

I = (f1, . . . , fn) + I2

and

J = (f1, . . . , fn−1) + I(n−1)!.

Then J is generated by n elements. As a consequence, since
√
I =

√
J ,

I is set-theoretically generated by n elements.

The next result is due to Ferrand and Szpiro. For a proof, see
[18, 26].

Theorem 2.12. Let I be a locally complete intersection ideal of R of
height n ≥ 2 with dim(R/I) ≤ 1. Then there is a locally complete
intersection ideal J ⊂ R of height n such that :

(i)
√
I =

√
J and

(ii) J/J2 is a free R/J-module of rankn.

The next result is easy to prove; hence, we omit the proof.

Lemma 2.13. Let f ∈ R[T ]−R. Then

(i) if I is a proper ideal of R[T, f−1], then

ht I = ht (I ∩R[T ]).

(ii) If I is a proper ideal of R[f, f−1], then

ht I = ht (I ∩R[f−1]).

Lemma 2.14. Let I be an ideal of A = R[T, f−1], where f ∈ R[T ]−R.
If

J = I ∩R[f−1],

then htJ = ht I.
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Proof. Assume that I is a prime ideal. If we write a = I ∩R, then

ht I = ht IAa and htJ = ht JRa[f
−1].

Hence, we assume that (R, a) is a local ring. Furthermore, if I = aA is
an extended ideal, then

ht I = ht a = ht J.

Hence, assume that I ̸= aA. In this case ht I = ht a+ 1. Since R/a is
a field, we obtain that

R/a[f, f−1] −→ R/a[T, f−1]

is an integral extension. Hence,

ht I/a = ht J̃/a,

where J̃ = I ∩R[f, f−1]. Therefore,

ht I = ht a+ 1 = ht J̃ = htJ,

by equation (2.13). The general case follows by noting that ht I =

ht
√
I,

√
I = P1 ∩ · · · ∩ Pr,

√
J = P ′

1 ∩ · · · ∩ P ′
r,

where
P ′

i = Pi ∩R[f−1] and htPi = htP ′
i. �

Lemma 2.15. Let R be a ring of dimension d,

B = R[X1, . . . , Xm, Y
±1
1 , . . . , Y ±1

n ],

A = B[Y, f−1],

where f ∈ R[Y ] is a nonconstant polynomial and I an ideal of A of
height> d. Then, there exists an integer N > 0 such that, for any set
of integers si, li > N and the R[Y, f−1]-automorphism ϕ of A defined
by

ϕ(Xi) = Xi + f−si and ϕ(Yi) = Yif
li

such that ϕ(I) contains a polynomial of the form 1 + fh for some
h ∈ B[Y ].
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Proof. We induct on n. Assume that n = 0. If I1 = I∩B[f−1], then
by Lemma 2.14,

ht I1 = ht I > d.

Applying Theorem 2.5 to the ring

B[f−1] = R[X1, . . . , Xm, f
−1],

we can find a positive integer N1 such that, for any integers si > N1,
if ϕ1 is the R[f−1]-automorphism of B[f−1] defined by

ϕ1(Xi) = Xi + f−si for 1 ≤ i ≤ m,

then ϕ1(I1) contains a monic polynomial, say F , of degree u, in the
variable f−1 with coefficients from B. Since ϕ1 naturally extends to
an R[Y, f−1]-automorphism of A, we obtain that ϕ1(I) contains F , and
hence, it contains fuF which is of the form 1 + fg for some g ∈ B[Y ].

Assume that n > 0. Define LYn(I) and LYn
−1(I) as the set of

highest degree coefficients and lowest degree coefficients, respectively,
of elements in I as a Laurent polynomial in the variable Yn. It is easy
to see that LYn(I) and LYn

−1(I) are ideals of C[Y, f−1], where

C = R[X1, . . . , Xm, Y
±1
1 , . . . , Y ±1

n−1].

By [13, Lemma 3.1], we obtain that the height of the ideals LYn(I)
and LYn

−1(I) is ≥ ht I.

If we write
L = LYn(I) ∩ LYn

−1(I),

then L is an ideal of C[Y, f−1] of height≥ ht I > d. Hence, by induction
on n, there exists an integer N2 such that, for any set of integers si, li
all greater than N2, if θ1 is an R[Y, f−1]-automorphism of C[Y, f−1]
defined by

θ1(Xi) = Xi + f−si and θ1(Yj) = Yjf
lj

for 1 ≤ i ≤ m and 1 ≤ j ≤ n− 1, then θ1(L) contains a polynomial

h̃ = 1 + fh′ for some h′ ∈ C[Y ].

We extend θ1 to an R[Y ±1
n , Y, f−1]-automorphism of A. We can find

a polynomial G in θ1(I) of the form

G = h̃+ h1Yn + · · ·+ htY
t
n for some t ∈ N,
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hi ∈ C[Y, f−1] and h̃ as above. We can choose an integer

N3 = max{power of f−1 occuring in G}

such that, for any integer ln > N3, if θ2 is an C[Y, f−1]-automorphism
of A defined by θ2(Yn) = Ynf

ln , then

θ2(G) = 1 + fh for some h ∈ B[Y ].

We note that θ2θ1 is an R[Y, f−1]-automorphism of A defined by

Xi 7−→ Xi + f−si and Yj 7−→ Yjf
lj

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Taking N = max{N2, N3} completes the
proof. �

Proposition 2.16. Let A = B[Y, f−1], where f ∈ R[Y ] is a monic
polynomial and I an ideal of A of height> d. Then, there exists an
integer N > 0 such that, for any set of integers ti, si, li all greater than
N , the R[Y, f−1]-automorphism ϕ of A defined by

ϕ(Xi) = Xi + Y ti + f−si

and
ϕ(Yi) = Yif

li

satisfies the following :

(i) ϕ(I) contains a monic polynomial in Y with coefficients from B,
and

(ii) ϕ(I) contains a polynomial of the form 1+fh for some h ∈ B[Y ].

Proof. If n = 0, then

B = R[X1, . . . , Xm].

If I1 = I ∩ B[f−1], then by Lemma 2.14, ht I1 = ht I > d. By
Lemma 2.15, we can find a positive integer N1 such that, for any
integers si > N1, if ϕ1 is the R[Y, f

−1]-automorphism of B[f−1] defined
by

ϕ1(Xi) = Xi + f−si for 1 ≤ i ≤ m.

Then ϕ1(I1) contains a polynomial of the form 1+fg for some g ∈ B[Y ].
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If I2 = ϕ1(I) ∩B[Y ], then by Lemma 2.13,

ht I2 = ht I > d.

Applying Theorem 2.5 to the ring

B[Y ] = R[X1, . . . , Xm, Y ],

we can find a positive integer N2 such that, for any integers ti > N2, if
ϕ2 is the R[Y ]-automorphism of B[Y ] defined by

ϕ2(Xi) = Xi + Y ti for 1 ≤ i ≤ m,

then ϕ2(I2) contains a monic polynomial, say G, in the variable Y
with coefficients from B. Since ϕ2 naturally extends to an R[Y, f−1]-
automorphism of A, we obtain that ϕ2ϕ1(I) contains

(i) a monic polynomial G in the variable Y with coefficients from B,
and

(ii) an element 1 + fh, where h = ϕ2(g) ∈ B[Y ].

Note that ϕ2ϕ1 is an R[Y, f−1]-automorphism of A defined by

Xi 7−→ Xi + Y ti + f−si .

This proves the result in case n = 0 by taking N = max{N1, N2}.

Assume that n > 0, and use induction on n. Defining LYn(I),
LYn

−1(I) and L as in Lemma 2.15, we obtain that L is an ideal of
C[Y, f−1] of height≥ ht I > d. Hence, by induction on n, there exists
an integer N3 such that, for any set of integers ti, si, li all greater than
N3, if θ1 is an R[Y, f−1]-automorphism of C[Y, f−1] defined by

θ1(Xi) = Xi + Y ti + f−si and θ1(Yj) = Yjf
lj

for 1 ≤ i ≤ m and 1 ≤ j ≤ n− 1, then θ1(L) contains

(a) a monic polynomial, say g̃, in Y with coefficients from C, and

(b) a polynomial h̃ of the form 1 + fh′ for some h′ ∈ C[Y ].
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We extend θ1 to an R[Y ±1
n , Y, f−1]-automorphism of A. We can find

polynomials F and G in θ1(I) of the form

F = g̃Y s
n + gn−1Y

s−1
n + · · ·+ g0

and

G = h̃+ h1Yn + · · ·+ htY
t
n,

for some s, t ∈ N, gi, hi ∈ C[Y, f−1] and g̃, h̃ as in (a) and (b). We can
choose an integer

N4 = max{power of f−1 occuring in G and degrees of g̃, gi in Y }

such that, for any integer ln > N4, if θ2 is an C[Y, f−1]-automorphism
of A defined by θ2(Yn) = Ynf

ln , then

(i) Y −s
n θ2(F ) is a monic polynomial in Y with coefficients from
C[Y ±1

n ] = B (here we are using f to be monic), and
(ii) θ2(G) = 1 + fh for some h ∈ B[Y ].

We note that θ2θ1 is an R[Y, f−1]-automorphism of A defined by

Xi 7−→ Xi + Y ti + f−si

and
Yj 7−→ Yjf

lj

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Taking N = max{N3, N4} completes the
proof. �

3. Main theorems. In this section, we prove the results stated in
the introduction.

Theorem 3.1. Let R be a ring of dimension d,

B = R[X1, . . . , Xm, Y
±1
1 , . . . , Y ±1

n ]

and A = B[Y, f−1], where f ∈ R[Y ] is a monic polynomial. Then the
Serre dimension of A is ≤ d.

Proof. Without loss of generality, we may assume that R is reduced.
If m = 0, then replacing A by A[X1], we will assume that m > 0. Let
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P be a projective A-module of rank r > d = dimR. We need to show
that P has a unimodular element. If S denotes the set of all nonzero
divisors of R, then S−1R is a zero-dimensional ring. Therefore, by [8,
Lemma 3.9], we can find some s ∈ S such that Ps is a free As-module
of rank r. By Proposition 2.1, there exist an integer t > 0,

p1, . . . , pr ∈ P and ϕ1, . . . , ϕr ∈ P ∗

such that the submodules

F =
r∑

i=1

Api of P and G =
r∑

i=1

Aϕi of P ∗

satisfy:
stP ⊂ F, stP ∗ ⊂ G

and the matrix
(ϕi(pj)) = diag (st, . . . , st).

Submodules F and G are called st-dual submodules of P and P ∗,
respectively. Replacing s by st, we assume that F and G satisfy

sP ⊂ F, sP ∗ ⊂ G

and
(ϕi(pj)) = diag (s, . . . , s).

Since

A/(s(Y − 1)) = R̃[X1, . . . , Xm, Y
±1
1 , . . . , Y ±1

n ]

is a Laurent polynomial ring over a d dimensional ring R̃ := R[Y, f−1]/
(s(Y − 1)), by Theorem 2.7, P/(s(Y − 1)) has a unimodular element.
Let p ∈ P be such that its image p in P/s(Y − 1)P is a unimodular
element.

Let us write ϕi(p) = ai ∈ A for 1 ≤ i ≤ r and define b :=
(1 − Y )

∏m
i=1Xi

∏n
j=1 Yj . Then sb is a nonzero divisor in A. We can

find an integer l > deg(a1) such that a′1 := a1 + s2bl is a nonzero
divisor in A, where deg(a1) is the total degree of a1 as a polynomial
in X1, . . . , Xm with coefficients from R[Y ±1

1 , . . . , Y ±1
n , Y, f−1]. Hence

height of the ideal a′1A is ≥ 1.
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Since p is a unimodular element in P/s(Y − 1)P and ϕ1, . . . , ϕr is a
basis of the free module P ∗

s , we get that

(a1, a2, . . . , ar, s
2(Y − 1)) ∈ Umr+1(As).

Since
a′1 ∈ a1 + s2(Y − 1)A,

we obtain
(a′1, a2, . . . , ar, s

2(Y − 1)) ∈ Umr+1(As).

Hence, by the prime avoidance argument, we can choose c2, . . . , cr in
A such that if

a′i = ai + s2(Y − 1)ci for 2 ≤ i ≤ r,

then height of the ideal

(a′1, . . . , a
′
r)As(Y−1)

is ≥ r. Let l′ > 2d̃ be an integer, where d̃ is the maximum of total
degrees of a′1, . . . , a

′
r as a polynomial in X1, . . . , Xm. If we write

a′′r := a′r + s2(Y − 1)(a′1)
l′ ,

then the degree of a′′r as a polynomial in X1, . . . , Xm is e′ := mll′.

Let
q = c2p2 + · · ·+ cr−1pr−1 + (cr + (a′1)

l′)pr.

Then
p̃ := p+ sblp1 + s(Y − 1)q

is also a lift of p. Furthermore, we have ϕi(p̃) = a′i for 1 ≤ i ≤ r−1 and
ϕr(p̃) = a′′r . Hence, replacing p by p̃, we see that height of the ideal

OP (p)As(Y−1) = (a′1, . . . , a
′
r−1, a

′′
r )As(Y−1)

is ≥ r.

Since p is a unimodular element in P/s(Y − 1)P and p ∈ P is a lift
of p, we get

OP (p) + s(Y − 1)A = A.

Furthermore, height of the ideal OP (p)As(Y−1) is ≥ r. Therefore, we
get that the height of the ideal OP (p) is ≥ r. By Proposition 2.16,
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there exists an integer N > 0 such that, for any integers t′, s′, l′′ all
greater than N , if Θ is the R[Y, f−1]-automorphism of A defined by

Θ(Xi) = Xi + Y t′ + f−s′ and Θ(Yj) = Yjf
l′′

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, then the following hold:

(a) Θ(OP (p)) contains a monic polynomial in Y with coefficients
from B.

(b) Θ(OP (p)) contains a polynomial g ∈ B[Y ] of the form 1 + fh
for some h ∈ B[Y ].

Furthermore, if we choose s′ and l′′ in the automorphism Θ such that
s′ > nl/(ml − 1)l′′, then with e := (ms′ − nl′′)ll′, the following hold:

(c) feΘ(a′i) ∈ B[Y ] for 1 ≤ i ≤ r − 1.

(d) feΘ(a′′r ) ∈ s2l
′+2

∏n
1 Y

ll′

i + fB[Y ].

Parts (a) and (b) follow from Proposition 2.16. For (c), recall that
l′ > is the maximum of total degrees of a′1, . . . , a

′
r; hence, we must only

ensure e > l′s′. This is indeed the case because of our choice of s′.
Part (d) is a direct consequence of the choice of e and s′.

Replacing A by Θ(A), we assume that:

(a′) OP (p) contains a monic polynomial in Y with coefficients from
B.

(b′) OP (p) contains a polynomial g ∈ B[Y ] of the form 1 + fh for
some h ∈ B[Y ].

(c′) fea′i ∈ B[Y ] for 1 ≤ i ≤ r − 1.

(d′) fea′′r ∈ s2l
′+2

∏n
1 Y

ll′

i + fB[Y ].

We have g = 1 + fh ∈ OP (p) for some h ∈ B[Y ], hence

(∗) A = B[Y ] + gY.

In order to see (∗), let a ∈ A. Then a = b/f t for some b ∈ B[Y ]. Hence,
f ta = b, giving (g−1)ta = bht which implies a = b′+ga′, where a′ ∈ A,
b′ ∈ B[Y ].

Since A = OP (p) + s(Y − 1)A, using equation (∗), we obtain

A = OP (p) + s(Y − 1)B[Y ].
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Therefore,

B[Y ] = A ∩B[Y ] = OP (p) ∩B[Y ] + s(Y − 1)B[Y ].

Using (a′), [11, page 100, Lemma 1.1] and

B[Y ] = OP (p) ∩B[Y ] + sB[Y ],

we get B = (OP (p) ∩B) + sB. Hence, we now obtain:

(i) OP (p) contains an element 1 + b′s for some b′ ∈ B.
(ii) OP (p) contains an element 1 + s(Y − 1)a for some a ∈ B[Y ].

Let ψ′
1 and ψ′

2 in P ∗ be such that

ψ′
1(p) = 1 + b′s and ψ′

2(p) = 1 + s(Y − 1)a.

We can choose an integer l0 > 0 such that f l0 ψ′
j(pi) ∈ B[Y ] for

j = 1, 2 and 1 ≤ i ≤ r. Write ϕr+j = f l0ψ′
j ∈ P ∗ for j = 1, 2 and

pr+1 = fep ∈ P .

Consider the B[Y ]-modules

M :=

r+1∑
i=1

B[Y ]pi and H :=

r+2∑
i=1

B[Y ]ϕi.

We have ϕi(pj) ∈ B[Y ] for 1 ≤ i ≤ r+2 and 1 ≤ j ≤ r+1. Furthermore,
we have

M ⊗B[Y ] A ⊂ P and H ⊗B[Y ]A ⊂ P ∗.

Since sP ⊂ F , we obtain

spr+1 =
r∑

i=1

bipi

for some bi ∈ A, and hence, ϕi(spr+1) = sbi for 1 ≤ i ≤ r. Since s is a
nonzero divisor in A, we get bi = ϕi(pr+1) ∈ B[Y ]. Therefore,

spr+1 =
r∑
1

ϕi(pr+1)pi.

Hence, if we write

F ′ :=
r∑

i=1

B[Y ]pi,
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then we have spr+1 ∈ F ′. Similarly, if we write

G′ :=

r∑
i=1

B[Y ]ϕi,

then we obtain sϕr+j ∈ G′ for j = 1, 2. Therefore, Ms and Hs are free
modules over Bs[Y ] with Ms = F ′

s and Hs = G′
s. Furthermore, F ′ and

G′ are s-dual submodules of M and M∗, respectively, i.e., sM ⊂ F ′,
sH ⊂ G′ and the matrix

(ϕi(pj)) = diag (s, . . . , s).

Let us define a B-algebra endomorphism

δ : B[Y ] −→ B[Y ]

by
δ | B = id

and
δ(Y ) = 1 + (Y − 1)(1− b′2s2) = Y + s2b′2(1− Y ),

where b′ ∈ B was chosen earlier as

ϕr+1(p) = f l0(1 + b′s).

Since δ(Y t)− Y t ∈ s2B[Y ] for all integers t ≥ 0, we obtain that

δ(α)− α ∈ s2B[Y ]

for any α ∈ B[Y ]. Such an endomorphism δ of B[Y ] is called s2-
analytic, see [12, page 304]. Recall that

M =
r+1∑
1

B[Y ]pi

is a B[Y ]-module.

Applying Lemma 2.3 to the above data, we obtain δ-semilinear maps

ξ :M −→M and ξ∗ :M∗ −→M∗

such that
ξ∗(ϕ)(ξ(p)) = δ(ϕ(p))
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for any ϕ ∈M∗ and p ∈M . Furthermore, ξ∗(H) ⊂ H. Therefore,

A⊗B[Y ] ξ
∗(H) ⊂ P ∗.

We have the following:

(i′) ϕr(pr+1) = ϕr(f
ep) = s2l

′+2
∏n

1 Y
ll′

i + f b̃ for some b̃ ∈ B[Y ],
using (d′).

(ii′) ϕr+1(pr+1) = f l0ψ′
1(f

ep) = f l0+e(1 + b′s) for b′ ∈ B, using (i).
(iii′) ϕr+2(pr+1) = f l0ψ′

2(f
ep) = f l0+e(1 + s(Y − 1)a) for some

a ∈ B[Y ], using (ii).

Using the relation

ξ∗(ϕ)(ξ(pr+1)) = δ(ϕ(pr+1)),

we see that the δ-images of elements in (i′)–(iii′) belong toOM (ξ(pr+1)).
Furthermore, using

A⊗B[Y ] ξ(M) ⊂ P

and

A⊗B[Y ] ξ
∗(H) ⊂ P ∗,

we see that δ-images of the above three elements belong to

OP (1⊗ ξ(pr+1)).

We will show that 1⊗ξ(pr+1) is a unimodular element of P by showing
that the δ-images of the above three elements generate the unit ideal.
Suppose not. Then there exists a maximal ideal m containing elements

(i′′)

δ
(
s2l

′+2
n∏
1

Y ll′

i + f b̃
)
= s2l

′+2
n∏
1

Y ll′

i + δ(f)δ(̃b),

(ii′′) δ(f l0+e(1 + b′s)) = δ(f)l0+e(1 + b′s), and
(iii′′) δ(f l0+e(1 + s(Y − 1)a)) = δ(f)l0+e(1 + sδ(Y − 1)δ(a)).

Assume that δ(f) ∈ m. Then, by (i′′), we obtain that s ∈ m as
the Yi’s are units in A. Since δ(f) − f ∈ (s2), we get f ∈ m. This
is a contradiction, since f is a unit in A. In the other case, assume
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δ(f) /∈ m. Then

1 + sδ(Y − 1)δ(a) ∈ m and 1 + b′s ∈ m.

Since
δ(Y − 1) = (Y − 1)(1− b′2s2) ∈ (1 + b′s)A,

we obtain δ(Y − 1) ∈ m. This shows that 1 ∈ m, a contradiction.
Therefore, we get that 1 ⊗ ξ(pr+1) is a unimodular element. This
completes the proof. �

Theorem 3.2. Let A = B[Y, f−1] for some f ∈ R[Y ] and p be an
integer such that

p ≥ max{dimA− p+ 2, d+ 1}.

Let P = Q⊕R be a projective R-module of rank p and I a proper
ideal of A of height≥ d + 1. Assume that there is a surjection
ϕ : P ⊗A/I(P ⊗A)→→I/I2. Then ϕ can be lifted to a surjection
Φ : P ⊗A→→I. As a consequence, taking P to be free, we get that
any p generators of I/I2 can be lifted to p generators of I.

Proof. We assume that n ≥ 1 because we can always use more
variables as well as retraction. If

C := R[X1, . . . , Xm, Y
±1
1 , . . . , Y ±1

n−1],

then
A = C[Y ±1

n , Y, f−1] with f ∈ R[Y ].

We are given a surjection

ϕ : P ⊗ (A/I)→→I/I2,

where P = Q⊕R. We want to show that ϕ can be lifted to a surjection

Φ : P ⊗A→→I.

Let
Φ1 : P ⊗A −→ I

be a lift of ϕ. We can find an integer k > 0 such that fkΦ1 maps
P ⊗C[Y ±1

n , Y ] into J := I ∩ C[Y ±1
n , Y ]. Now, fkΦ1 induces a map

ψ : P ⊗ (C[Y ±1
n , Y ]/J) −→ J/J2.
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Note that
ψf = fkϕ : P ⊗ (A/I)→→(J/J2)f

is a surjection.

Using the height of I > d and applying Lemma 2.15, we obtain an
R[Y, f−1]-automorphism Θ of A such that Θ(I) contains 1+fh for some
h ∈ C[Y ±1

n , Y ]. Replacing A by Θ(A) and I by Θ(I), we can assume
that 1 + fh ∈ I. Since 1 + fh ∈ J , we obtain that (J/J2)1+fh is the
zero module. Hence, ψ1+fh is a surjection. Applying Proposition 2.4,
we get that

ψ : P ⊗ (C[Y ±1
n , Y ]/J) −→ J/J2

is a surjection. If ψ has a surjective lift

Ψ : P ⊗C[Y ±1
n , Y ]→→J,

then
f−kΨf : P ⊗A→→I

will be our required surjective lift of ϕ. Therefore, it is enough to show
that ψ has a surjective lift from P ⊗C[Y ±1

n , Y ] onto J .

Note that C[Y ±1
n , Y ] = B[Y ] is a Laurent polynomial ring over R

and J is an ideal of C[Y ±1
n , Y ] of height> d = dimR. By Lemma 2.6,

there exists an R[Y ±1
n ]-automorphism Θ of C[Y ±1

n , Y ] such that Θ(J)
contains a monic polynomial in Yn of the form 1 + Ynh

′ for some
h′ ∈ C[Y, Yn]. Replacing J by Θ(J), we can assume that J contains a
monic polynomial 1 + Ynh

′ in the variable Yn.

Lift ψ to a map

Ψ1 : P ⊗C[Y, Y ±1
n ] −→ J.

If we set K := J ∩ C[Y, Yn], then Y l
nΨ1 will map P ⊗C[Y, Yn] into K

for some integer l > 0. Now Y l
nΨ1 will induce a map

δ : P ⊗ (C[Y, Yn]/K) −→ K/K2

such that δYn = Y l
nψ is a surjection from P ⊗ (C[Y, Y ±1

n ]/J) onto
J/J2. Since K contains a monic polynomial 1 + Ynh

′ in Yn, we get
(K/K2)1+Ynh′ = 0. Applying Proposition (2.4), we obtain that

δ : P ⊗ (C[Y, Yn]/K)→→K/K2
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is a surjection. Applying Proposition 2.8, we have that δ can be lifted
to a surjection

∆ : P ⊗C[Y, Yn]→→K.

Therefore, Y −l
n ∆ is a surjective lift of ψ. This completes the proof. �

Theorem 3.3. Let A = B[Y, f−1], where f ∈ R[Y ] is a monic
polynomial with f(1) a unit in R. Let I be an ideal of A of height≥ d+1
and P a projective B-module of rank≥ max{d+1, dim(A/I)+2)}. Let

ϕ : P [Y, f−1]/IP [Y, f−1]→→I/I2

and

δ : P→→I(1) (:= {g(Y = 1)|g ∈ I})

be two surjections such that δ = ϕ⊗A/(Y − 1), where I(1) is an ideal
of B. Then there exists a surjection

Ψ : P [Y, f−1]→→I

such that Ψ⊗A/I = ϕ and Ψ(1) = δ.

Proof. Without loss of generality, we assume that f ∈ R[Y ]−R. Let
Φ1 : P [Y, f−1] → I be any lift of ϕ. Then, Φ1(1) = δ modulo I(1)2.
Hence, Φ1(1)− δ ∈ I(1)2 Hom(P,B). Set

Φ1(1)− δ = f1(1)g1(1)α1 + · · ·+ fr(1)gr(1)αr

for some fi, gi ∈ I and αi ∈ Hom(P,B). If we write

Φ2 := Φ1 − (f1g1α̃1 + · · ·+ frgrα̃r),

where α̃i = αi ⊗ id : P ⊗BA→ A, then

Φ2 : P [Y, f−1] −→ I

is also a lift of ϕ with Φ2(1) = δ.

Let J := I ∩ B[Y ]. Then there exists k > 0 such that fkΦ2 maps
P [Y ] into J . Now fkΦ2 induces a map

ψ : P [Y ]/JP [Y ] −→ J/J2.

Note that
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ψf = fkϕ : P [Y, f−1]/IP [Y, f−1]→→(J/J2)f

is a surjection.

Since ht I > d, by Proposition 2.16, applying anR[Y, f−1]-automorphism
of A, we may assume that I contains

(i) a monic polynomial g in Y with coefficients from B, and
(ii) an element 1 + fh for some h ∈ B[Y ].

Since 1 + fh ∈ J , we obtain (J/J2)1+fh = 0. Therefore, ψ1+fh is the
zero map. By equation (2.4), we get that

ψ : P [Y ]/JP [Y ]→→J/J2

is a surjection. Furthermore,

f(1)kδ : P→→J(1)

is a surjection with ψ(1) = f(1)kδ⊗B/J(1). Since the rank of
P ≥ dimB[Y ]/J + 2 holds and J contains monic polynomial g, using
[14, Theorem 2.1], there exists a surjection Ψ : P [Y ]→→J which is a
lift of ψ and Ψ(1) = f(1)kδ. Therefore,

Φ = f−kΨf : P [Y, f−1]→→I

is a surjection which is a lift of f−kψ = ϕ with Φ(1) = δ. This completes
the proof. �

4. Applications. Let M be a finitely generated R-module. If we
write µ(M) for the minimum number of generators of M as an R-
module, then Föster [9] and Swan [25] proved that

µ(M) ≤ max{µ(Mp) + dim(R/p) | p ∈ Spec (R),Mp ̸= 0}.

In particular, if P is a projective R-module of rank r, then µ(P ) ≤ r+d.
As a consequence of our result (1.2), we prove the next theorem.

Theorem 4.1. Let A = B[Y, f−1] for some monic polynomial f ∈
R[Y ] and P be a projective A-module of rank r. Then µ(P ) ≤ r + d.

Proof. Assume that P is generated by s elements, where s > r + d.
Then we will show that P is also generated by s − 1 elements. By
Förster and Swan, we have s ≤ dimA + r = d +m + n + 1 + r. Let
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ϕ : As→→P be a surjection. If Q is the kernel of ϕ, then the rank of Q
is s− r > d. Hence, by Theorem 1.2, Q has a unimodular element, say
q ∈ Um(Q). Since As ∼→P⊕Q, we obtain q ∈ Um(As). Since ϕ(q) = 0,
ϕ induces a surjection

ϕ : As/qA→→P.

Since s− 1 > d, by Theorem 2.9, As−1 is cancelative. Hence,

As/qA
∼→As−1.

Therefore, P is generated by s − 1 elements. This completes the
proof. �

Proposition 4.2. Let A = B[Y, f−1] for some f ∈ R[Y ]. Let J ⊂ I
be two ideals of A such that

I = (f1, . . . , fn) + I2

and

J = (f1, . . . , fn−1) + I(n−1)!.

Assume that I contains

(i) a monic polynomial F ∈ C[Y ] in the variable Y , and

(ii) an element of the form 1 + fh for some h ∈ C[Y ].

Then J is generated by n elements. As a consequence, I is set-
theoretically generated by n elements.

Proof. Replacing fi by f
Nfi for an integer N > 0, we may assume

that fi ∈ B[Y ] for all i. Let K = I ∩B[Y ] be an ideal of B[Y ]. Let

ϕ : (B[Y ]/K)n −→ K/K2

be the map defined by ei 7→ f i. Then ϕf is surjective and ϕ1+fh is a
zero map since 1+fh ∈ K. Hence, by Proposition 2.4, ϕ is a surjection.
Therefore, we obtain

K = (f1, . . . , fn) +K2.

If
L := (f1, . . . , fn−1) +K(n−1)!,
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then Lf = J . Since K contains a monic polynomial F , using Theo-
rem 2.11, we get that L is generated by n elements. Therefore, J is
generated by n elements. �

Theorem 4.3. Let A = B[Y, f−1] for some f ∈ R[Y ]. Let J ⊂ I be
two ideals of A such that

I = (f1, . . . , fn) + I2

and

J = (f1, . . . , fn−1) + I(n−1)!.

Assume that the height of I > d. Then J is generated by n elements.
In particular, I is set-theoretically generated by n elements.

Proof. Applying an automorphism as in Lemma 2.15, we may as-
sume that I contains an element 1+ fh for some h ∈ B[Y ]. Now, as in
Proposition 4.2, replacing fi by f

Nfi, we may assume that fi ∈ B[Y ].
Then, if K = I ∩B[Y ], then

K = (f1, . . . , fn) +K2

as in Proposition 4.2. Since the height of K > d, using an automor-
phism of B[Y ], we may assume that K contains a monic polynomial in
Y . Now, if

L = (f1, . . . , fn−1) +K(n−1)!,

then, by Theorem 2.11, L is generated by n elements. Hence, J = Kf

is generated by n elements. �

Theorem 4.4. Let A = B[Y, f−1] for some f ∈ R[Y ] with the further
condition that m+ n ≥ 1. Let I ⊂ A be a locally complete intersection
ideal of height

r ≥ max{dimA− 1, dimA− r + 2}

with dimA/I ≤ 1. Then, I is set-theoretically generated by r elements.

Proof. By Ferrand and Szpiro’s Theorem 2.12, there is a locally
complete intersection ideal J of height r such that (i)

√
J =

√
I and

(ii) J/J2 is a free A/J-module of rank r. Since m + n ≥ 1, we get
r ≥ d+ 1. By Theorem 1.3, the r generators of free module J/J2 can
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be lifted to r generators of J . Hence, I is set-theoretically generated
by r elements. �
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