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RADICAL PERFECTNESS OF PRIME IDEALS
IN CERTAIN INTEGRAL DOMAINS

GYU WHAN CHANG AND HWANKOO KIM

ABSTRACT. For a UMT-domain D, we characterize
when the polynomial ring D[X] is t-compactly packed and
every prime t-ideal of D[X] is radically perfect. As a
corollary, for a quasi-Prüfer domain D, we also characterize
when every prime ideal of D[X] is radically perfect. Finally
we introduce the concepts of Serre’s conditions in strong
Mori domains and characterize Krull domains and almost
factorial domains, respectively.

Introduction. Let D be an integral domain. In [15], Erdoğdu
introduced the notion of radical perfectness of ideals as follows:

An ideal I of D is radically perfect if the height of I
is equal to the infimum of the number of generators of
ideals of D whose radical is equal to the radical of I.

This generalizes the notion of a set-theoretic complete intersection to
non-Noetherian rings [16, page 1802]. He then addressed the question
of under which conditions all prime ideals of the polynomial ring D[X]
over D containing a field of characteristic 0 are radically perfect. In
this direction, it was shown [14, Theorem 2.1] that over a Noetherian
domain D of Krull dimension 1 containing a field of characteristic 0,
every prime ideal of D[X] is radically perfect if and only if D is a
Dedekind domain with torsion ideal class group. In [14, Question 3.3],
he also posed the open question:
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Suppose that D is an integral domain (not necessarily
Noetherian) containing a field of characteristic zero
such that each prime ideal of D[X] is radically perfect.
Then is D necessarily of dimension one?

He answered this question in the positive in the case that D is
a Bézout domain [14, Theorem 4.1] or a finite dimensional Prüfer
domain of finite character whose maximal ideals are coprimely packed
[16, Theorems 3.1, 3.3]. Later, Mimouni also considered this question
in different contexts of integral domains, namely, he proved that, for a
quasi-Prüfer domainD, if every prime ideal ofD[X] is radically perfect,
then D is a one-dimensional domain and every prime ideal of D is the
radical of a principal ideal [30, Theorem 2.1], which is one of Mimouni’s
main results. He also proved that, for a Prüfer domain D, every prime
ideal of D[X] is radically perfect if and only if dim(D) = 1, every prime
ideal of D is the radical of a principal ideal, and the class group Cl(D)
of D is torsion [30, Theorem 2.3].

One purpose of this article is to extend a part of Mimouni’s results
[30] and to give an answer to an open problem, posed by Erdoğdu and
Harman, whether or not height-one prime ideals in D[X] over a Prüfer
domainD contracting to zero inD are radically perfect [17], that is, for
a UMT-domain D, D[X] is t-compactly packed if and only if D is a t-
compactly packed domain with Cl(D[X]) torsion (Theorem 1.1). As an
answer to the problem posed by Erdoğdu and Harman, we show that,
for a Prüfer domain D, every upper to 0 in D[X] is radically perfect if
and only if Cl(D) is torsion (Corollary 1.7). We also prove that, for a
UMT-domain D, every prime t-ideal of D[X] is radically perfect if and
only if t-dim(D) = 1, Cl(D[X]) is torsion, and every prime t-ideal of
D is radically perfect (Theorem 1.8). As a corollary of this result, it
is shown that, if D is a quasi-Prüfer domain, then every prime ideal of
D[X] is radically perfect if and only if dim(D) = 1, Cl(D[X]) is torsion,
and every prime ideal of D is radically perfect (Corollary 1.10).

For the other purpose, we first recall that D is a strong Mori domain
(SM domain) if and only if D is w-locally Noetherian and each nonzero
element of D lies in only finitely many maximal w-ideals [33, Theorem
1.9]. This result allows us to extend the concepts of Serre’s conditions
(Rn) and (Sn) in Noetherian rings to those in SM domains. We prove
that an SM domain D satisfies Serre’s condition (S2) if and only if t-
dim(D) = 1 (Proposition 2.1). By using theses notions, we characterize



RADICAL PERFECTNESS OF PRIME IDEALS 33

Krull domains and almost factorial domains, respectively (Theorem 2.3
and Corollary 2.6).

Let D be an integral domain with quotient field K, F (D) the set of
nonzero fractional ideals of D and f(D) = {A ∈ F (D) | A is finitely
generated}; so f(D) ⊆ F (D). For I ∈ F (D), let I−1 = {x ∈ K |
xI ⊆ D}, Iv = (I−1)−1, It =

∪
{Jv | J ∈ f(D) with J ⊆ I}, and

Iw = {x ∈ K | Jx ⊆ I for some J ∈ f(D) with J−1 = D} [32].
Obviously, Iw ⊆ It ⊆ Iv for all I ∈ F (D). For ∗ = v, t or w, an
I ∈ F (D) is called a ∗-ideal if I∗ = I; a ∗-ideal is a maximal ∗-ideal
if it is maximal among proper integral ∗-ideals; ∗-Spec(D) denotes the
set of prime ∗-ideals; and ∗-Max(D) is the set of maximal ∗-ideals.
While v-Max(D) can be empty, as in the case of D being a rank 1
non-discrete valuation domain, it is well known that t-Max(D) ̸= ∅
if D is not a field; t-Max(D) = w-Max(D); a maximal t-ideal is a
prime ideal; every integral t-ideal is contained in a maximal t-ideal; and
D =

∩
P∈t-Max(D) DP . The t-dimension of D (denoted by t-dim(D)) is

defined to be the supremum of

{n | P1 ( P2 ( · · · ( Pn, Pi ∈ t- Spec(D)}.

In particular, if D is not a field, then t-dim(D) = 1 if and only if
every prime t-ideal of D is a maximal t-ideal. An I ∈ F (D) is said
to be t-invertible if (II−1)t = D, equivalently, if II−1 * P for every
maximal t-ideal P of D. An integral domain D is called a Prüfer v-
multiplication domain (PvMD) if every nonzero finitely generated ideal
I of D is t-invertible, i.e., (II−1)t = D.

Let X be an indeterminate over D, and let D[X] be the polynomial
ring over D. An upper to zero in D[X] is a nonzero prime ideal Q of
D[X] such that Q∩D = (0). Clearly, if Q is an upper to zero in D[X],
then Q is a prime t-ideal, htQ = 1, and Q is a maximal t-ideal if and
only if Q is t-invertible [25, Theorem 1.4]. We say that D is a UMT-
domain if each upper to zero in D[X] is a maximal t-ideal of D[X]. It
is well known that D is an integrally closed UMT-domain if and only
if D is a PvMD [25, Proposition 3.2] and D is a UMT-domain if and
only if D[X] is a UMT-domain, if and only if the integral closure of DP

is a Prüfer domain for every maximal t-ideal P of D [18, Theorems
1.5, 2.4].

Let {Xα} be a nonempty set of indeterminates over D. Then D is
called a quasi-Prüfer domain if, for each prime ideal P of D, if Q is a
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prime ideal of D[{Xα}] with Q ⊆ P [{Xα}], then Q = (Q ∩D)[{Xα}].
It is well known that D is quasi-Prüfer if and only if D, the integral
closure of D, is a Prüfer domain [19, Corollary 6.5.14], if and only if
D is a UMT-domain whose maximal ideals are t-ideals [11, Corollary
1.3]. Hence, we have the following implications:

Prüfer domain +3

��

quasi-Prüfer domain

��
PvMD +3 UMT-domain

In [32, 33], Wang and McCasland defined an integral domain D
to be a strong Mori domain (SM domain) if D satisfies the ascending
chain condition on integral w-ideals. Note that the class of Noetherian
domains is properly contained in the class of SM domains, and the class
of SM domains is properly contained in the class of Mori domains. (An
integral domain D is called a Mori domain if D satisfies the ascending
chain condition on integral v-ideals.)

Let T (D) be the set of t-invertible fractional t-ideals of D. Then
T (D) is an abelian group under the t-multiplication I ∗ J = (IJ)t.
Hence, if we let P (D) be the subgroup of nonzero principal fractional
ideals of T (D), then Cl(D) := T (D)/P (D), called the (t-)class group of
D, is an abelian group. Clearly, if D is a Prüfer domain or an integral
domain of dimension one (respectively, a Krull domain), then Cl(D) is
the ideal (respectively, divisor) class group of D. The notion of (t-)class
group was introduced by Bouvier [10], at the suggestion of Zafrullah.
We know that a GCD domain D is a PvMD with Cl(D) = 0 and a
UFD D is a Krull domain with Cl(D) = 0.

An integral domain D is said to be of finite character (respectively,
finite t-character) if each nonzero nonunit of D is contained in only
finitely many maximal ideals (respectively, maximal t-ideals) of D. We
know that D is of finite t-character if and only if D[X] is of finite t-
character [22, Lemma 2.1], but if D is not a field, then D[X] is not of
finite character because D[X]/M [X] ∼= (D/M)[X] for a maximal ideal
M of D has infinitely many nonzero prime ideals [3, Proposition 17].
We say that a nonzero element a ∈ D is a primary element if aD is a
primary ideal and that D is a weakly factorial domain (WFD) if each
nonzero element of D can be written as a finite product of primary
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elements. Following [27], for ∗ = t, w, an integral ∗-ideal I of D is said
to be ∗-compactly packed if, for any set Λ of prime ∗-ideals of D with
I ⊆

∪
Q∈Λ Q, one has I ⊆ P for some P ∈ Λ; an integral domain D

is said to be ∗-compactly packed if every ∗-ideal of D is ∗-compactly
packed.

1. When is every prime ideal of D[X] radically perfect?
Let D be an integral domain that is not a field, and let X be an
indeterminate over D. Recall that D is t-compactly packed if and
only if every prime t-ideal of D is the radical of a principal ideal [12,
Proposition 3.1] or [27, Theorem 2.1]. Hence, if t-dim(D) = 1, then
D is t-compactly packed if and only if each nonzero prime ideal of D
contains a primary element [12, Theorem 3.2], if and only if each prime
t-ideal of D is radically perfect. In this section, we study when D[X]
is t-compactly packed for a UMT-domain D.

Theorem 1.1. If D is a UMT-domain, then D[X] is t-compactly
packed if and only if D is a t-compactly packed domain with Cl(D[X])
torsion.

Proof.

(⇒). Let P be a prime t-ideal of D. Then P [X] is a prime t-ideal

of D[X], and hence, P [X] =
√
fD[X] for some f ∈ P [X]. Clearly,

f ∈ D, and thus, P =
√
fD. Next, let Q be a nonzero prime ideal of

D[X] with Q ∩D = (0). Then Q is a maximal t-ideal of D[X], and so

Q =
√
gD[X] for some g ∈ Q. Since Q is a maximal t-ideal, gD[X] is a

primary ideal [2, Lemma 1], and hence, Q contains a primary element.
Thus, Cl(D[X]) is torsion [7, Theorem 2.4].

(⇐). Let Q be a prime t-ideal of D[X]. If Q ∩ D = (0), then
Q is a maximal t-ideal, and hence, t-invertible. Hence, there is an
integer n ≥ 1 such that (Qn)t = fD[X] for some f ∈ Q. Thus,

Q =
√
fD[X]. Next, if Q∩D ̸= (0), then Q∩D is a prime t-ideal of D

andQ = (Q∩D)[X] becauseD is a UMT-domain. Hence, Q∩D =
√
aD

for some a ∈ D. Thus, Q =
√
aD[X]. �

Corollary 1.2. If D is a PvMD, then D[X] is t-compactly packed if
and only if D is a t-compactly packed domain with Cl(D) torsion.
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Proof. This is an immediate consequence of Theorem 1.1 because

(i) D is a PvMD if and only if D is an integrally closed UMT-domain,
and

(ii) Cl(D[X]) = Cl(D) if and only if D is integrally closed [21,
Theorem 3.6]. �

An integral domain D is called an almost GCD domain (AGCD do-
main) if, for each 0 ̸= a, b ∈ D, there is an integer n = n(a, b) ≥ 1
such that anD ∩ bnD is principal. Clearly, a GCD domain is an inte-
grally closed AGCD domain, although there do exist integrally closed
AGCD domains such as almost factorial domains as characterized in
[20, Proposition 6.8]. Also, it is known that, if D is integrally closed,
then D is an AGCD domain if and only if D is a PvMD with Cl(D)
torsion [34, Theorem 3.9]. Hence, by Corollary 1.2, we have

Corollary 1.3. If D is an integrally closed AGCD-domain, then D is
t-compactly packed if and only if D[X] is t-compactly packed.

The next results are already known, but we use our results to give
simple proofs. For convenience, let X(1)(D) be the set of height 1 prime
ideals of D.

Corollary 1.4. Let D be a Krull domain, and hence, t-dim(D) = 1.

(1) (cf., [9, Proposition 3.1]). The following statements are equivalent.
(a) D is t-compactly packed.
(b) Cl(D) is torsion.
(c) D[X] is t-compactly packed.
(d) Each prime t-ideal of D is radically perfect.

(2) [17, Theorem 4.1]. If D is a two-dimensional domain of finite
character, then each prime ideal of D is radically perfect if and
only if Cl(D) is torsion.

Proof.

(1) (a) ⇔ (b). Since D is a Krull domain, Cl(D) is torsion if and only
if each P ∈ X(1)(D) is the radical of a principal ideal. Thus, as
each prime t-ideal is in X(1)(D), D is t-compactly packed if and
only if Cl(D) is torsion.
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(b) ⇒ (c). Note that a Krull domain is a PvMD and D is
t-compactly packed by (a). Hence, by Corollary 1.2, D[X] is t-
compactly packed.

(c) ⇒ (a). This follows from Theorem 1.1 because a Krull
domain is a UMT-domain.

(a) ⇔ (d). This follows because t-dim(D) = 1.
(2) (⇒). This is an immediate consequence of (1) above.

(⇐). Let M be a nonzero prime ideal of D. If ht(M) = 1, then
M is a t-ideal, and hence, by (1), M is radically perfect. Next, as-
sume ht(M) = 2. Choose 0 ̸= a ∈ M . Since D is of finite character,
there are only finitely many maximal ideals M,M1, . . . ,Mk of D
containing a. Also, since D is a Krull domain, there do exist only
finitely many height 1 prime ideals, say P1, . . . , Pn, that contain a.
Hence, we can choose another b ∈ M \ ((

∪
Mi)∪ (

∪
Pi)), and thus,

M =
√

(a, b). If M =
√
xD for some x ∈ D, then M is minimal

over xD, and hence, M is a t-ideal, which is contrary to the fact
that t-dim(D) = 1. Thus, M is radically perfect. �

Let Q be an upper to zero in D[X]. Then ht(Q) = 1, and hence, Q

is radically perfect if and only if Q =
√
fD[X] for some f ∈ Q. Hence,

in this case, Q is a maximal t-ideal if and only if f is a primary element
[2, Lemma 1]. Thus, by [7, Theorem 2.4], we have

Lemma 1.5. If D is a UMT-domain, then every upper to zero in D[X]
is radically perfect if and only if Cl(D[X]) is torsion.

Clearly, if D is a GCD domain, then D is a UMT-domain and
Cl(D[X]) = Cl(D) = 0. Thus, by Lemma 1.5, every upper to zero
in D[X] over a GCD domain D is radically perfect. More generally, we
have

Corollary 1.6. If D is an AGCD domain, then every upper to zero in
D[X] is radically perfect if and only if Cl(D[X]) is torsion.

Proof. This follows directly from Lemma 1.5 because an AGCD
domain is a UMT-domain [7, Lemma 3.1]. �

In [17, page 539], the authors say “We failed in our attempt to see
whether or not height-one prime ideals in D[X] over a Prüfer domain D
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contracting to zero inD are radically perfect.” Note that height 1 prime
ideals in D[X] contracting to 0 inD are just the uppers to zero in D[X].
Hence, the next result is an answer to the open problem in [17, page
539].

Corollary 1.7. If D is a Prüfer domain, then every upper to zero in
D[X] is radically perfect if and only if Cl(D) is torsion.

Proof. This is an immediate consequence of Lemma 1.5 because
Prüfer domains are UMT-domains and Cl(D) = Cl(D[X]) when D
is integrally closed. �

An integral domain D is called a weakly Krull domain if

D =
∩

P∈X(1)(D)

DP ,

and this intersection is locally finite. Hence, D is a weakly Krull
domain if and only if t-dim(D) = 1 and D is of finite t-character.
An almost WFD (AWFD) is a weakly Krull domain with torsion (t-)
class group; and D is a generalized WFD (GWFD) if each nonzero
prime ideal of D contains a primary element. It is known that
WFD ⇒ AWFD ⇒ GWFD ⇒ weakly Krull domain. Recall from
[30, Lemma 3.4] that, if every prime ideal of D[X], where D is a
UMT-domain, is radically perfect, then t-dim(D) = 1.

Theorem 1.8. The following statements are equivalent for a UMT-
domain D.

(1) Every prime t-ideal of D[X] is radically perfect.
(2) t-dim(D) = 1, Cl(D[X]) is torsion and every prime t-ideal of D is

radically perfect.
(3) t-dim(D) = 1, Cl(D[X]) is torsion and D is of finite t-character.
(4) D is a weakly Krull domain and Cl(D[X]) is torsion.
(5) D[X] is an AWFD.
(6) D[X] is a GWFD.

Proof.

(1) ⇒ (2). For t-dim(D) = 1, see the proof of [30, Lemma 3.4].
Next, note that an upper to zero in D[X] is a prime t-ideal; hence, by
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Lemma 1.5, Cl(D[X]) is torsion. Finally, for the radical perfectness of
every prime t-ideal of D, let P be a prime t-ideal of D. Then P [X]
is a prime t-ideal of D[X] and ht(P [X]) = ht(P ) = 1 because D is a

UMT-domain and t-dim(D) = 1. Hence, P [X] =
√

gD[X] for some
g ∈ P [X], and since P [X]∩D ̸= (0), g must be in P . Thus, P =

√
gD.

(2) ⇒ (3). Let a ∈ D be a nonzero nonunit. Then each prime
ideal of D minimal over aD is a maximal t-ideal and the radical of a
principal ideal by assumption. Hence, the number of maximal t-ideals
of D containing a is finite [24, Theorem 1.6].

(3) ⇔ (4). Clear.

(4) ⇔ (5). This is an immediate consequence of the fact that D
is a weakly Krull UMT-domain if and only if D[X] is a weakly Krull
domain [4, Proposition 4.11].

(5) ⇔ (6). [7, Corollary 2.9].

(6) ⇒ (1). We use the equivalence of (3)–(6) above. Let Q be a
prime t-ideal of D[X]. Then ht(Q) = 1 because t-dim(D[X]) = 1, and
hence, either Q∩D = (0) or Q = (Q∩D)[X] and Q∩D is a t-ideal of D
[25, Proposition 1.1]. If Q∩D = (0), then Q is t-invertible because D
is a UMT-domain. Hence, as Cl(D[X]) is torsion, (Qn)t = fD[X]

for some integer n ≥ 1 and f ∈ Q, and thus, Q =
√
fD[X]. If

Q = (Q ∩ D)[X], then Q ∩ D =
√
bD for some b ∈ D because D

is a GWFD [8, Proposition 2.3], and so, Q =
√

bD[X]. Therefore,
every prime t-ideal of D[X] is radically perfect. �

Corollary 1.9. The following statements are equivalent for a PvMD D.

(1) Every prime t-ideal of D[X] is radically perfect.
(2) t-dim(D) = 1, Cl(D) is torsion, and every prime t-ideal of D is

radically perfect.
(3) t-dim(D) = 1, Cl(D) is torsion, and D is of finite t-character.
(4) D is an AWFD.
(5) D[X] is an AWFD.
(6) D[X] is a GWFD.

Proof. This is an immediate consequence of Theorem 1.8 since a
PvMD D is an integrally closed UMT-domain and Cl(D) = Cl(D[X]).

�



40 G.W. CHANG AND H. KIM

Let D be a quasi-Prüfer domain. In [30, Theorem 2.1], Mimouni
showed that, if every prime ideal of D[X] is radically perfect, then D
is a one-dimensional domain and every prime ideal of D is the radical
of a principal ideal.

We next give a complete characterization of a quasi-Prüfer domain
D such that every prime ideal of D[X] is radically perfect. To do this,
it is useful to recall that D is a quasi-Prüfer domain if and only if D is
a UMT-domain whose maximal ideals are t-ideals [11, Corollary 1.3].
Also, note that, if P is a prime ideal of D with ht(P ) = 1, then P is
radically perfect if and only if P is the radical of a principal ideal.

Corollary 1.10. The following statements are equivalent for a quasi-
Prüfer domain D.

(1) Every prime ideal of D[X] is radically perfect.
(2) Every prime t-ideal of D[X] is radically perfect.
(3) dim(D) = 1, Cl(D[X]) is torsion, and every prime ideal of D is

radically perfect.

Proof.

(1) ⇒ (2). Clear.

(2) ⇒ (3). This follows directly from Theorem 1.8 because a quasi-
Prüfer domain is a UMT-domain whose maximal ideals are t-ideals.

(3) ⇒ (1). Let D be the integral closure of D. Then D is a Prüfer

domain [19, Corollary 6.5.14] and D[X] = D[X]; so dim(D[X]) =
dim(D[X]) = 2 [23, Proposition 30.4].

Next, let Q be a nonzero prime ideal of D[X]. If ht(Q) = 1,

then Q =
√

fD[X] for some f ∈ Q by the proof of Theorem 1.8

(6) ⇒ (1). Assume ht(Q) = 2. Then Q ̸=
√
gD[X] for all g ∈ D[X]

because Q is not a t-ideal, and (0) ( (Q ∩ D)[X] ( Q. Hence,
Q/(Q ∩ D)[X] is a nonzero prime ideal of D[X]/(Q ∩ D)[X] and
D[X]/(Q ∩ D)[X] ∼= (D/Q ∩ D)[X] is a PID. So there is an h ∈ Q
such that Q/(Q ∩D)[X] = (hD[X] + (Q ∩D)[X])/(Q ∩D)[X]. Note

that Q ∩D =
√
bD for some b ∈ Q ∩D. Thus, Q =

√
(h, b)D[X]. �

It is known that D[X] is a WFD if and only if D is a weakly factorial
GCD domain [5, Theorem 17]. Hence, by Corollary 1.9, every prime
t-ideal of a WFD D[X] is radically perfect.
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The next result is already known [30, Theorem 2.3], but we can
recover it easily.

Corollary 1.11. The following statements are equivalent for a Prüfer
domain D.

(1) Every prime ideal of D[X] is radically perfect.
(2) dim(D) = 1, Cl(D) is torsion and every prime ideal of D is

radically perfect.
(3) dim(D) = 1, Cl(D) is torsion and D is of finite character.

Proof. This is an immediate consequence of Corollaries 1.9 and 1.10
because a Prüfer domain is a PvMD whose maximal ideals are t-
ideals. �

Corollary 1.12. The following statements are equivalent for a Dedekind
domain D.

(1) Every prime ideal of D[X] is radically perfect.
(2) Cl(D) is torsion.
(3) Every prime ideal of D is radically perfect.

Proof.

(1) ⇔ (2) ⇒ (3). This is an immediate consequence of Corollary 1.11
because a Dedekind domain is a one-dimensional Prüfer domain of finite
character.

(3) ⇒ (2). Since a Dedekind domain is a Krull domain, Cl(D) is
torsion by Corollary 1.4 (1). �

2. On strong Mori domains satisfying Serre’s conditions. Let
R be a Noetherian ring. Recall the Serre’s conditions (Ri) and (Si) for
i = 0, 1, 2, . . . .

(Ri) RP is regular for all prime ideals P of R with ht(P ) ≤ i, and

(Si) depth(RP ) ≥ min{ht(P ), i} for all prime ideals P of R.

The Krull-Serre normality criterion says that a Noetherian domain D
is integrally closed if and only if (R1) and (S2) hold in D [29, Theorem
23.8].
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Now we extend the concepts (Ri) and (Si) in Noetherian domains
to those in SM domains. Let D be an SM domain and n a positive
integer. Then we say that D satisfies Serre’s condition (Rn) if, for
any P ∈ w-Spec(D) of height m ≤ n, the localization DP is regular
of dimension m. We also say that D satisfies Serre’s condition (Sn) if
depth(DP ) ≥ min{n,ht(P )} for all P ∈ w-Spec(D). Clearly, if an SM
domain D satisfies (Rn) (respectively, (Sn)), then DP as a Noetherian
domain satisfies (Rn) (respectively, (Sn)) for all P ∈ w-Spec(D). Set
∆ := {P ∈ w-Spec(D) | depth(DP ) = 1}. Then X(1)(D) ⊆ ∆ and

D =
∩

P∈∆

DP .

Let D be any integral domain. Following [31], we say that D
satisfies (S∗

2 ) if every nonzero principal ideal xD is expressed as a finite
intersection Q1∩ · · ·∩Qn of primary w-ideals Qi with

√
Qi ∈ X(1)(D).

If D satisfies (S∗
2 ), then, for a prime ideal P with ht(P ) ≥ 2, P contains

a, b ∈ D such that a, b is a DP -sequence, and hence,

D =
∩

P∈X(1)

DP .

Note that D satisfies (S∗
2 ) if and only if D is a weakly Krull domain

[6, Theorem 3.1].

It is well known that, for a Noetherian local ring R with maximal
ideal m and a nonzero finitely generated R-module M , depth(M) = 1
if and only if there is an x ∈ m such that x is not a zero-divisor of M
and m is an associated prime ideal of M/xM .

Proposition 2.1 (cf., [1, Lemma 23.16]). The following statements
are equivalent for an SM domain D.

(1) D satisfies (S2).
(2) Every prime divisor of a nonzero principal ideal of D has height 1.
(3) For all P ∈ w-Spec(D), PDP contains a regular sequence of length

at least min{2, ht(P )}.
(4) D satisfies (S∗

2 ).
(5) X(1)(D) = ∆.
(6) t-dim(D) = 1.
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Proof.

(1) ⇒ (2). It is well known that, for a Noetherian domain, (S2)
is equivalent to the condition that every prime divisor of a nonzero
principal ideal has height 1 [29, page 183].

Now let P be a prime divisor of a nonzero principal ideal (a) of D.
Then P = (aD : b) for some b ∈ D. Then P is a prime w-ideal. Thus,
P is contained in some maximal w-ideal M of D. By [33, Theorem
1.9], DM is Noetherian and, since PM is a prime divisor of aDM , we
have ht(P ) = ht(PM ) = 1.

(2) ⇒ (5). If P ∈ ∆, then depth(DP ) = 1. Then, by the above
remark, PDP is a prime divisor of a nonzero principal ideal of DP . It
is routine to show that P is a prime divisor of a nonzero principal ideal
of D. Thus by hypothesis, P has height 1.

(5) ⇒ (6). Suppose on the contrary that t-dim(D) ≥ 2. Then
there exists a prime t-ideal P with ht(P ) ≥ 2. Since D is an SM
domain, PDP is a prime t-ideal of DP , [35]. But, by hypothesis, PDP

contains a regular sequence of length 2. Thus, by [26, Exercise 1,
p.102], (PDP )

−1 = DP , which is a contradiction.

(6) ⇒ (4). This is clear.

(4) ⇒ (3). Suppose that D satisfies (S∗
2 ). Then, by [31, Remark

(3)], for a prime ideal P with ht(P ) ≥ 2, P contains elements f, g ∈ D
such that f, g is a DP -regular sequence.

(3) ⇒ (1). This follows from the definition of Serre’s condition
(S2). �

Recall from [28] that D is an infra-Krull domain if:

(i) D =
∩

P∈X(1)(D) DP , where the intersection is locally finite, and

(ii) DP is Noetherian for each P ∈ X(1)(D).

Thus, D is an infra-Krull domain if and only if D is an SM domain
with t-dim(D) = 1. We also remark that several equivalent conditions
for an SM domain D to be t-dim(D) = 1 are given in [13, Corollary
3.2]. In particular, an SM domain is of t-dimension 1 if and only if it
is a UMT-domain. Hence, an SM domain satisfies (S2) if and only if it
is a UMT-domain, if and only if it is a weakly Krull domain.
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Combining Proposition 2.1 with [27, Theorem 3.6], we obtain the
next result.

Corollary 2.2. Let D be an SM domain satisfying the condition (S2).
Then the following statements are equivalent.

(1) D is w-compactly packed.
(2) D is t-compactly packed.
(3) Every t-ideal of D is radically perfect.
(4) Every w-ideal of D is radically perfect.
(5) Every (t-)subintersection

∩
P∈Λ DP (Λ ⊆ t-Spec(D)) is a ring of

quotients of D.

Now we can characterize Krull domains in terms of Serre’s conditions
(S2) and (R1) over SM domains. The equivalence of (1) and (4) is
already shown in [6, Corollary 3.2] without the assumption that D is
an SM domain.

Theorem 2.3. The following statements are equivalent for an SM
domain D.

(1) D is a Krull domain.
(2) D satisfies (S2) and (R1).
(3) D satisfies (S2), and, for every P ∈ X(1)(D), any P -primary w-

ideal Q is a symbolic power, i.e., Q = P (n) for some n ∈ N.
(4) For any nonzero nonunit d ∈ D, dD is expressed by a finite

intersection of symbolic powers of prime ideals in X(1)(D).

Proof.

(1) ⇒ (3). This is obvious.

(3) ⇒ (2). It suffices to show that DP is a DVR for each P ∈
X(1)(D). So we may assume that (D,P ) is a one-dimensional local
Noetherian domain satisfying the condition that every P -primary ideal
is of the form P k for some k ∈ N. Now note that every nonzero proper
ideal of D is P -primary. Thus, D is a DVR.

(2) ⇒ (1). Assume that D satisfies (S2) and (R1). Then it suffices
to show that D is integrally closed, since D is a Krull domain if and
only if D is an integrally closed SM domain. Note that t-dim(D) = 1
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by Proposition 2.1. So D =
∩

P∈X(1)(D) DP . Also, DP is a DVR,

and hence, DP is integrally closed for each P ∈ X(1)(D). Thus, D is
integrally closed.

(1) ⇒ (4). This is obvious.

(4) ⇒ (1). Clearly, D satisfies (S∗
2 ), and so, t-dim(D) = 1 by

Proposition 2.1. Also, if P ∈ X(1)(D), then, for any 0 ̸= d ∈ P ,
we have dDP = P (n)DP = PnDP = (PDP )

n for some integer n ≥ 1.
Hence, PDP is invertible, and so principal. Thus, DP is a DVR. �

It was shown in [12, Theorem 3.2] that an integral domain D with
t-dim(D) = 1 is a GWFD if and only if D is t-compactly packed. Note
that it was shown in [31, Lemma 17] that, for a Noetherian domain D,
if every P ∈ X(1)(D) contains a nonzero primary element, then D
satisfies (S2). The next result is a variant of these results.

Lemma 2.4. The following statements are equivalent for an SM do-
main D.

(1) D is a GWFD.
(2) D is t-compactly packed.
(3) Every P ∈ X(1)(D) contains a nonzero primary element.

Proof.

(1) ⇒ (3). Clear.

(3) ⇒ (2). Let Q be a prime t-ideal of D. Since D is an SM domain,
Q contains a prime ideal P ∈ X(1)(D). By assumption, P contains

a nonzero primary element x, and since
√
xD is a maximal t-ideal [8,

Lemma 2.1], Q = P =
√
xD. Thus, D is t-compactly packed.

(2) ⇒ (1). Let P be a maximal t-ideal of D such that P =
√
aD for

some a ∈ D. Then P is minimal over aD, and hence ht(P ) = 1 [33,

Corollary 1.11]. Thus, t-dim(D) = 1. Also, since
√
aD is a maximal

t-ideal, aD is primary [8, Lemma 2.1], and thus, P contains a primary
element a. Thus, D is a GWFD. �

The next lemma is due to Storch [20, page 34] under the hypothesis
that D is Noetherian. The proof works also for SM domains along with
Lemma 2.4.
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Lemma 2.5. Let D be an SM domain. Assume that, for each P ∈
X(1)(D), P (n) (:= PnDP ∩D) is principal for some n ∈ N. Then D is
integrally closed and so an almost factorial domain.

An almost factorial domain D is exactly a Krull domain with Cl(D)
torsion. In [31, Proposition 7] and [8, Proposition 3.1], it is shown that
a Krull domain D is almost factorial if and only if every P ∈ X(1)(D) is
radically perfect, if and only if every P ∈ X(1)(D) contains a nonzero
primary element, if and only if D is a GWFD. An overring R of an
integral domain D is said to be t-linked over D if I−1 = D for I ∈ f(D)
implies (IR)v = R. Recall that D is a tQR domain if each t-linked
overring of D is a quotient ring of D.

Corollary 2.6. The following statements are equivalent for an SM
domain D.

(1) D is almost factorial.
(2) For every P ∈ X(1)(D), P (n) is principal for some n ∈ N.
(3) For each P ∈ X(1)(D), any P -primary w-ideal is a symbolic power,

and P contains a nonzero primary element in D.
(4) D is integrally closed and any P ∈ X(1)(D) is radically perfect.
(5) D is a tQR domain.

Proof.

(1) ⇒ (3). Let P ∈ X(1)(D). Then, since an almost factorial domain
is a Krull domain, by Theorem 2.3, any P -primary w-ideal is of a form
P (n) for some integer n ≥ 1. Also, since Cl(D) is torsion, there is an
integer k ≥ 1 such that (P k)t = xD for some x ∈ P . Note that P is a
maximal t-ideal; so xD is primary [8, Lemma 2.1]. Thus, P contains
a nonzero primary element.

(3) ⇒ (2). Clear.

(2) ⇒ (1). Lemma 2.5.

(1) ⇔ (4). This follows from [31, Proposition 7] because an
integrally closed SM domain is a Krull domain.

(1) ⇔ (5). [27, Theorem 3.1]. �
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