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PSEUDO-CONVERGENT SEQUENCES AND PRÜFER
DOMAINS OF INTEGER-VALUED POLYNOMIALS

K. ALAN LOPER AND NICHOLAS J. WERNER

ABSTRACT. Let K be a field with rank one valuation
and V the valuation domain of K. For a subset E of V , the
ring of integer-valued polynomials on E is

Int (E, V ) = {f ∈ K[x] | f(E) ⊆ V }.
A question of interest regarding Int (E, V ) is: for which E
is Int (E, V ) a Prüfer domain? In this paper, we contribute
a partial answer to this question. We classify exactly when
Int (E, V ) is Prüfer in the case where the elements of E
comprise a pseudo-convergent sequence in V . Our work
expands on earlier results that apply when V is a discrete
valuation domain.

1. Introduction. Let D be an integral domain (not a field) with
quotient field K. We define the ring of integer-valued polynomials on
D to be

Int (D) = {f(x) ∈ K[x] | f(D) ⊆ D}.

Serious work on integer-valued polynomials began in 1919 with papers
by Ostrowski [12] and Pólya [13]. These papers both focused on
the D-module structure of Int (D). More recently, Int (D) has been
studied as a ring. It was observed by Brizolis [2] that, if D is the
ring of integers of an algebraic number field, then Int (D) is a Prüfer
domain. The question of classifying all domains D such that Int (D) is
Prüfer then became of interest. Chabert [5] and McQuillan [9] proved,
independently of one another, that when D is Noetherian, Int (D) is
Prüfer if and only if D is a Dedekind domain with all residue fields
finite. For a general domain D, the question of when Int (D) is Prüfer
was completely resolved in [8].
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domain.

Received by the editors on January 11, 2014, and in revised form on February 24,
2014.
DOI:10.1216/JCA-2016-8-3-411 Copyright c⃝2016 Rocky Mountain Mathematics Consortium

411



412 K. ALAN LOPER AND NICHOLAS J. WERNER

A construction related to that of Int (D) is the ring

Int (S,D) = {f(x) ∈ K[x] | f(S) ⊆ D},

where S ⊆ D. We call this a ring of integer-valued polynomials on a
subset. The classification of when Int (S,D) is a Prüfer domain does
not follow immediately from the classification result for Int (D). In fact,
it seems to be significantly harder. It is easy to show that a necessary
condition for Int (S,D) to be a Prüfer domain is that D be a Prüfer
domain. McQuillan [10] proved that, if S is finite, then this condition
is also sufficient.

For an infinite subset S of a valuation domain V , Cahen, Chabert
and Loper [4] examined the question of when Int (S, V ) is a Prüfer
domain. Even in this special case there is no general classification
result. If V is one-dimensional, then clearly the corresponding valuation
induces a metric on the quotient field of V . We can then consider
the completion of V with respect to this metric. We call a subset of
V precompact if its completion is compact. It is proven in [4] that
Int (S, V ) is a Prüfer domain, provided S is precompact, and that this
condition is necessary if the valuation is discrete. The question of
the necessity of the precompactness condition for a general valuation
domain was left open.

In this note, we show that precompactness is not necessary in
general. To do so, we recall Ostrowski’s notions of pseudo-convergent
sequences and pseudo-limits (both defined below). Let V be a one-
dimensional valuation domain, and let E = {α0, α1, α2, . . .} be a
sequence of elements of V . Then Int (E, V ) can be a Prüfer domain
if E is pseudo-convergent and V does not contain a pseudo-limit for
the sequence. Because E is not necessarily precompact in this case, our
work contributes new information regarding subsets E of V for which
Int (E, V ) is Prüfer.

The paper is organized as follows. Section 2 reviews the defini-
tion and basic properties of pseudo-convergent sequences. Section 3
discusses the maximal spectrum of Int (E, V ), and Sections 4 and 5
investigate the localizations of Int (E, V ) at these maximal ideals. Our
main result, Theorem 5.2, classifies, for E pseudo-convergent, exactly
when Int (E, V ) is Prüfer. We then close the paper with some examples,
ultimately demonstrating (Example 5.12) that the precompactness of
E is not necessary for Int (E, V ) to be Prüfer.
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2. Pseudo-convergent sequences. Throughout, K denotes a field
with rank one valuation v, the ring

V = {a ∈ K | v(a) ≥ 0}

is the valuation domain of K, and

m = {a ∈ K | v(a) > 0}

is the maximal ideal of V . A sequence (ai)i∈N of elements of K is called
pseudo-convergent if, for all i > j > k, we have v(ai−aj) > v(aj −ak).
An element a ∈ K is a pseudo-limit of the pseudo-convergent sequence
(ai)i∈N if, for all i > j, we have v(a− ai) > v(a− aj).

We let
E = {α0, α1, α2, . . .} ⊆ V

be such that the sequence (αi)i∈N is pseudo-convergent. We associate
E with the sequence (αi)i∈N so that terminology for pseudo-convergent
sequences carries over to E (e.g., we may say that E is pseudo-
convergent). Given a rational function ϕ ∈ K(x), we let vi(ϕ) =
v(ϕ(αi)) for each i ∈ N.

Our first lemma lists some fundamental properties of pseudo-
convergent sequences. These properties will be used frequently through-
out this paper.

Lemma 2.1. Let (ai)i∈N be a pseudo-convergent sequence in K, and
let f ∈ K[x].

(i) [7, Lemma 1]. Either
(a) v(ai) > v(aj), for all i > j, or
(b) there exists n ∈ N such that v(ai) = v(an) for all i ≥ n.

(ii) [7, Lemma 2]. For all i > j, we have v(ai − aj) = v(aj+1 − aj).
(iii) [11, page 371]. The sequence (f(ai))i∈N is eventually pseudo-

convergent, that is, there exists n ∈ N such that, whenever
i > j > k ≥ n, v(f(ai)−f(aj)) > v(f(aj)−f(ak)). Consequently,
either
(a) v(f(ai)) > v(f(aj)) for all i > j ≥ n, or
(b) there exists j′ ∈ N, j′ ≥ n, such that v(f(ai)) = v(f(aj′)) for

all i ≥ j′.
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The conditions in parts (i) and (ii) of Lemma 2.1 are important
enough to warrant their own terminology.

Definition 2.2. Let (ai)i∈N be a pseudo-convergent sequence in K. If
v(ai) > v(aj) for all i > j, then we say that (ai)i∈N is increasing. If
there exists n ∈ N such that v(ai) = v(an) for all i ≥ n, then we say
that (ai)i∈N stabilizes or is stable.

Let f ∈ K[x], and let n be as in Lemma 2.1 (iii). If v(f(ai)) >
v(f(aj)) for all i > j ≥ n, then we say that (f(ai))i∈N is eventually
increasing. If there exists j′ ∈ N, j′ ≥ n, such that v(f(ai)) = v(f(aj′))
for all i ≥ j′, then we say that (f(ai))i∈N eventually stabilizes or is
eventually stable.

3. The maximal spectrum of Int (E, V ). When S ⊆ V , the ring
Int (S, V ) of integer-valued polynomials on S is

Int (S, V ) = {f ∈ K[x] | f(S) ⊆ V }.

Our focus will be on the ring Int (E, V ), where E comprises a pseudo-
convergent sequence as in Section 2. The major question we investigate
is: when is Int (E, V ) a Prüfer domain? We will completely answer this
question (Theorem 5.2) and give necessary and sufficient conditions in
terms of E for Int (E, V ) to be Prüfer.

One of the many equivalent conditions for a commutative domain D
to be Prüfer is that the localization of D at each maximal ideal
is a valuation domain (see [6, Theorem 22.1]). We will use this
characterization of Prüfer domains in our work with Int (E, V ). Hence,
we require a description of all the maximal ideals of Int (E, V ). This
is the goal of the present section. The complete classification of the
maximal spectrum of Int (E, V ) is given in Corollary 3.9.

The maximal ideals of Int (E, V ) come in two types: unitary and
non-unitary. An ideal I of Int (E, V ) is unitary if I ∩ V ̸= (0) and is
non-unitary if I ∩ V = (0). When M is a maximal ideal of Int (E, V ),
M ∩ V is a prime ideal of V and, since we are assuming that V is
one-dimensional, M being unitary is equivalent to having M ∩ V = m.

When M is non-unitary, we can use established theory to prove that
Int (E, V )M is a valuation domain.
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Theorem 3.1. The nonzero non-unitary prime ideals of Int (E, V ) are
in one-to-one correspondence with the irreducible polynomials of K[x].
To each irreducible q ∈ K[x], we associate the prime ideal

Pq := q(x)K[x] ∩ Int (E, V ),

and every non-unitary prime ideal of Int (E, V ) has this form. More-
over, the localization of Int (E, V ) at a non-unitary maximal ideal is a
valuation domain.

Proof. The characterization of the non-unitary prime ideals follows
from [3, Proposition V.1.1] and the comment preceding it. For the
statement about the localization, note first that Int (E, V ) contains
Int (V ). Let M be a non-unitary maximal ideal of Int (E, V ), and let
P = M ∩ Int (V ); then, P is a nonzero non-unitary prime of Int (V ).
By [3, Corollary V.1.2], Int (V )P is a valuation domain, and it is easy
to see that Int (V )P is contained in Int (E, V )M. Hence, Int (E, V )M
must also be a valuation domain. �

In light of Theorem 3.1, we can concentrate on the unitary maximal
ideals of Int (E, V ). This will remain our focus for the remainder of the
paper.

Definition 3.2. For each i ∈ N, let

Mi = {f ∈ Int (E, V ) | f(αi) ∈ m}.

We also let

M∞ = {f ∈ Int (E, V ) | f(αi) ∈ m for all but finitely many i ∈ N}.

It is easy to see that Mi is an ideal for each i, and that each Mi is
distinct. Moreover, the Mi are all maximal because Int (E, V )/Mi

∼=
V/m via the map f 7→ f(αi) mod m. The set M∞ is easily seen to be a
prime ideal, but it is non-trivial to verify that it is maximal. For now,
we can at least say that M∞ is distinct from all the Mi.
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Lemma 3.3. For each i ∈ N, let

Hi(x) =

[ ∏
0≤ℓ≤i+1

ℓ̸=i

(x− αℓ)

]
/

[ ∏
0≤ℓ≤i+1

ℓ̸=i

(αi − αℓ)

]
.

Then, Hi ∈ Int (E, V ) and has the following properties:

(i) vj(Hi) = ∞ for 0 ≤ j ≤ i− 1 and j = i+ 1,
(ii) vi(Hi) = 0,
(iii) there exists ρ > 0 such that vj(Hi) = ρ for all j > i+ 1.

Consequently, each Hi ∈ M∞ \Mi, and so M∞ ̸⊆ Mi.

Proof. Properties (i) and (ii) are clear, since Hi(αj) = 0 for the
values of j specified in (i), and Hi(αi) = 1.

For (iii), let ρ = vi+2(Hi). Then ρ > 0 because, for each 0 ≤ ℓ ≤ i−1,
Lemma 2.1 says that v(αi+2 − αℓ) = v(αi − αℓ), and v(αi+2 − αi+1) >
v(αi+1 − αi) because E is pseudo-convergent. Finally, when j > i+ 1,
another appeal to Lemma 2.1 gives v(αj − αℓ) = v(αi+2 − αℓ) for
0 ≤ ℓ ≤ i−1 and ℓ = i+1, so vj(Hi) = ρ. The fact that Hi ∈ M∞ \Mi

now follows. �

In Theorem 3.8 below, we will prove that M∞ is maximal and that
the Mi and M∞ comprise the full set of unitary maximal ideals of
Int (E, V ). Proving Theorem 3.8 requires several lemmas. In what
follows, we say that f ∈ Int (E, V ) is unit-valued on E if f(αj) ∈ V ×,
for each j ∈ N; equivalently, vj(f) = 0 for each j.

Lemma 3.4. Let I be an ideal of Int (E, V ) such that I ̸⊆ M∞ and
I ̸⊆ Mi for all i ∈ N. Then, I contains a polynomial that is unit-valued
on E.

Proof. Since I ̸⊆ M∞, there exists f ∈ I such that vj(f) = 0 for
infinitely many j ∈ N. By Lemma 2.1, (vj(f))j∈N either eventually
increases or is eventually stable. Since infinitely many vj(f) are 0,
(vj(f))j∈N must stabilize at 0. Thus, there exists n ∈ N such that
vj(f) = 0 for all j ≥ n.
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We would be finished if vj(f) = 0 for 0 ≤ j ≤ n−1, but this need not
occur in general. However, we can use f to produce another polynomial
that is definitely unit-valued on E.

First, for 0 ≤ i ≤ n− 1, define

Gi(x) =

[ ∏
0≤ℓ≤n
ℓ ̸=i

(x− αℓ)

]
/

[ ∏
0≤ℓ≤n
ℓ ̸=i

(αi − αℓ)

]
.

Then, vj(Gi) = ∞ for 0 ≤ j ≤ n, j ̸= i, and vi(Gi) = 0. By Lemma
2.1 (ii), vj(Gi) = vn+1(Gi) for all j ≥ n+1, and vn+1(Gi) > 0, because

v(αn+1 − αℓ) =

{
v(αi − αℓ) 0 ≤ ℓ < i

v(αℓ+1 − αℓ) ℓ > i

and v(αℓ+1−αℓ) > v(αi−αℓ) when ℓ > i. Hence, each Gi ∈ Int (E, V ).

Next, for each i ∈ N, let fi ∈ I \Mi. Let

S = {0 ≤ s ≤ n− 1 | vs(f) > 0},

and let
F = f +

∑
s∈S

fsGs.

Then, F ∈ I, and we claim that F is unit-valued on E. Indeed, if
vj(f) = 0, then j /∈ S, so for each s ∈ S we have vj(fsGs) ≥ vj(Gs) > 0;
it follows that vj(F ) = 0. On the other hand, if vj(f) > 0, then j ∈ S,
so vj(fjGj) = 0 while vj(fsGs) = ∞ for s ̸= j. Hence, vj(F ) = 0 in
this case as well, and we conclude that F is unit-valued on E. �

Lemma 3.5. Let f ∈ Int (E, V ). Then, the set f(E) mod m is finite.

Proof. Since f ∈ Int (E, V ), we have v(f(αi) − f(αj)) ≥ 0 for
any choice of i and j. By Lemma 2.1 (iii), (f(αi))i∈N is eventually
pseudo-convergent. Hence, after a certain point, v(f(αi) − f(αj)) >
v(f(αj) − f(αk)) ≥ 0 whenever i > j > k. In other words, eventually
f(αi) − f(αj) ∈ m whenever i > j. So, the values of f on E,
reduced modulo m, eventually stabilize. Consequently, f(E) mod m
is finite. �
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Lemma 3.6. Assume f ∈ Int (E, V ) is such that vj(f) > 0 for all
j ∈ N. Then, f is in every ideal of Int (E, V ) above m and, since V is
one-dimensional, f is in every unitary prime ideal of Int (E, V ).

Proof. Since each vj(f) > 0 and the sequence (vj(f))j∈N is either
eventually increasing or eventually stable, (vj(f))j∈N attains a mini-
mum value. Let β ∈ V be such that vj(f) ≥ v(β) > 0 for all j ∈ N.
Then, f(x)/β ∈ Int (E, V ) and, since β ∈ m,

f(x) = (f(x)/β)β

is in each ideal of Int (E, V ) containing m. �

Proposition 3.7. Let P be a unitary prime ideal of Int (E, V ). Then,
either P ⊆ M∞ or P ⊆ Mi for some i ∈ N.

Proof. Suppose that P ̸⊆ M∞ and P ̸⊆ Mi for all i ∈ N. Then,
by Lemma 3.4, P contains a polynomial F that is unit-valued on E.
By Lemma 3.5, we can find finitely many units u1, u2, . . . , ut ∈ V × to
represent all the residues in F (E) mod m.

Let
f = (F − u1)(F − u2) · · · (F − ut).

Then, f(αj) ∈ m for all j ∈ N. Since P∩V = m, f ∈ P by Lemma 3.6.
But P is prime, so F − uℓ ∈ P for some 1 ≤ ℓ ≤ t, implying that
uℓ ∈ P. Consequently, P = Int (E, V ), which is a contradiction. �

Theorem 3.8. M∞ is a maximal ideal of Int (E, V ), and the unitary
maximal ideals of Int (E, V ) are exactly M∞ and Mi, for i ∈ N.

Proof. Let M be a maximal ideal of Int (E, V ) containing M∞.
Then, M is unitary and, by Lemma 3.3, M ̸= Mi for all i ∈ N. By
Proposition 3.7, we must have M = M∞, so M∞ is maximal. As
Proposition 3.7 precludes the existence of unitary maximal ideals other
than M∞ and the Mi, the theorem is proved. �

We now have a complete description of the maximal spectrum of
Int (E, V ).



INTEGER-VALUED POLYNOMIALS 419

Corollary 3.9.

(i) The non-unitary maximal ideals of Int (E, V ) all have the form
q(x)K[x] ∩ Int (E, V ) for some monic irreducible q ∈ K[x].

(ii) The unitary maximal ideals of Int (E, V ) are precisely M∞ and
Mi, for i ∈ N.

Having classified all the maximal ideals of Int (E, V ), we next de-
termine when the localization of Int (E, V ) at a maximal ideal is a
valuation domain. By Theorem 3.1, Int (E, V )M is a valuation domain
for any non-unitary maximal ideal M. In Sections 4 and 5, we will
consider localizations at Mi and M∞. As we shall see (Corollary 4.4),
Int (E, V )Mi

is always a valuation domain. Thus, the determining fac-
tor in whether Int (E, V ) is Prüfer comes from the maximal ideal M∞.

4. Localizations at Mi. Our goal in this section is to prove that
Int (E, V )Mi is a valuation domain for each i ∈ N. In fact, we will prove
that Int (E, V )Mi equals the valuation domain given in the following
definition.

Definition 4.1. For each i ∈ N, define

Vi = {ϕ ∈ K(x) | ϕ(αi) ∈ V } = {ϕ | vi(ϕ) ≥ 0}.

Lemma 4.2. For each i ∈ N, Vi is a valuation domain, and
Int (E, V )Mi ⊆ Vi.

Proof. The set Vi is clearly a subring ofK(x) and, for each ϕ ∈ K(x),
either vi(ϕ) ≥ 0 or vi(1/ϕ) ≥ 0. Thus, for each ϕ ∈ K(x), either ϕ ∈ Vi

or ϕ−1 ∈ Vi. By [6, Theorem 16.3], Vi is a valuation domain. Also,
Int (E, V )Mi ⊆ Vi because, if f ∈ Int (E, V ) and g /∈ Mi, then

vi(f/g) = vi(f)− vi(g) = vi(f)− 0 ≥ 0. �

To show that Int (E, V )Mi equals Vi, it will suffice to demonstrate
that

Vi ⊆ Int (E, V )Mi .

We prove this in the next theorem by utilizing the polynomials Hi

defined in Lemma 3.3.
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Theorem 4.3. Let i ∈ N. Then, Vi ⊆ Int (E, V )Mi .

Proof. Let ϕ ∈ Vi, and write ϕ = f/g, where f, g ∈ V [x] with no
common factors. Then, f, g ∈ Int (E, V ). If vi(g) = 0, then g /∈ Mi,
and hence, ϕ ∈ Int (E, V )Mi . So, assume that vi(g) > 0.

Let β = g(αi). Then, β ̸= 0 because ϕ ∈ Vi. Let Hi be as in
Lemma 3.3. By construction, there exists ρ > 0 such that

vj(Hi) ≥ ρ for j ̸= i.

Since the value group of K has rank one, we can choose n ∈ N such
that vj(H

n
i ) > v(β) for all j ̸= i. Decompose ϕ as follows:

ϕ = ((fHn
i )/β)

/
((gHn

i )/β).

To show that ϕ ∈ Int (E, V )Mi , it suffices to show that fHn
i /β ∈

Int (E, V ) and gHn
i /β ∈ Int (E, V ) \Mi.

When j ̸= i,

vj(fH
n
i /β) = vj(f) + vj(H

n
i )− v(β),

and this is non-negative because f ∈ V [x] and

vj(H
n
i ) > v(β).

Furthermore,
vi(fH

n
i /β) = vi(ϕ) ≥ 0,

because vi(Hi) = 0 and ϕ ∈ Vi. So, fHn
i /β is a polynomial in K[x]

and vj(fH
n
i /β) ≥ 0 for all j ∈ N. Hence,

fHn
i /β ∈ Int (E, V ).

Applying a similar argument to gHn
i /β shows that vj(gH

n
i /β) ≥ 0

for j ̸= i and vi(gH
n
i /β) = 0. Thus,

gHn
i /β ∈ Int (E, V ) \Mi. �

Corollary 4.4. For each i ∈ N, Int (E, V )Mi is a valuation domain.

Given Theorem 3.1 and Corollary 4.4, we see that Int (E, V ) being
Prüfer depends entirely on the localization at M∞.
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Corollary 4.5. Int (E, V ) is a Prüfer domain if and only if the
localization Int (E, V )M∞ is a valuation domain.

The examination of Int (E, V )M∞ is the topic of the next section.

5. Localization at M∞. In contrast to the situation with Mi,
Int (E, V )M∞ is not always a valuation domain; it depends on E. We
borrow the following definitions from Kaplansky [7].

Definition 5.1. The pseudo-convergent sequence E = (αi)i∈N is said
to be of transcendental type if (vj(f))j∈N eventually stabilizes for every
f ∈ K[x]. If (vj(f))j∈N is eventually strictly increasing for at least one
f ∈ K[x], then we say that E is of algebraic type.

The breadth of E, denoted by Br (E), is defined to be

Br (E) = {b ∈ V | v(b) > v(αi+1 − αi) for all i ∈ N}.

The breadth of E always forms an ideal of V . Given a pseudo-limit
α of E in K, all other pseudo-limits of E in K have the form α+ b for
some b ∈ Br (E) [7, Lemma 3]. In particular, if a pseudo-limit of E
exists and Br (E) = (0), then the pseudo-limit is unique.

We can use the breadth and the type of E to classify exactly when
Int (E, V )M∞ is a valuation domain.

Theorem 5.2. Let E be a pseudo-convergent sequence in V . Then,
Int (E, V )M∞ is a valuation domain if and only if E is of transcendental
type or Br (E) = (0). Consequently, Int (E, V ) is a Prüfer domain if
and only if E is of transcendental type or Br (E) = (0).

The proof of Theorem 5.2 is more complicated than our work in
earlier sections and relies on some theorems from [4]. We will prove
the theorem via a number of intermediary results. We begin with the
following lemma about the values of rational functions in Int (E, V )M∞ .

Lemma 5.3.

(i) If g ∈ Int (E, V ) \M∞, then vj(g) = 0 for all sufficiently large j.
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(ii) If f/g ∈ Int (E, V )M∞ , then vj(f/g) ≥ 0 for all sufficiently
large j.

Proof.

(i) Since
g ∈ Int (E, V ), vj(g) ≥ 0 for all j ∈ N.

But, since g /∈ M∞, vj(g) = 0 for infinitely many j. So, (vj(g))j∈N
eventually stabilizes at 0.

(ii) With f ∈ Int (E, V ) and g ∈ Int (E, V ) \M∞, we have vj(f) ≥ 0
for all j, and vj(g) = 0 for sufficiently large j. Hence, vj(f/g) is
eventually non-negative. �

Next, we will show that, if E is of transcendental type, then
Int (E, V )M∞ is a valuation domain. Our approach is similar to our
work in Section 4.

Definition 5.4. We define

V∞ = {ϕ ∈ K(x) | ϕ(αi) ∈ V for all but finitely many i ∈ N}.

It is straightforward to prove that V∞ is a subring of K(x). Whether
it is a valuation domain depends on E.

Proposition 5.5. Assume that E is of transcendental type. Then, V∞
is a valuation domain.

Proof. Let ϕ ∈ K(x). Since E is of transcendental type, both
the numerator and denominator of ϕ are eventually stable; hence,
(vj(ϕ))j∈N also eventually stabilizes, say at ε. If ε ≥ 0, then ϕ ∈ V∞
and, if ε < 0, then 1/ϕ ∈ V∞. �

Theorem 5.6. Assume that E is of transcendental type. Then,

Int (E, V )M∞ = V∞.

Proof. The containment Int (E, V )M∞ ⊆ V∞ follows from Lemma
5.3 (ii). So, it suffices to prove that V∞ ⊆ Int (E, V )M∞ . Let f/g ∈ V∞,
where f, g ∈ V [x], and find n ∈ N such that vj(f) and vj(g) are stable
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for all j ≥ n. Then, vj(f/g) is also stable for j ≥ n. Since f/g ∈ V∞,
we must have vj(f/g) ≥ 0 for such j, and hence vj(f)− vj(g) ≥ 0.

Let
H(x) =

∏
0≤ℓ≤n

(x− αℓ),

and let
β = g(αn+1)H(αn+1);

note that v(β) = vn+1(g) + vn+1(H). Decompose f/g as

f/g = (fH/β)
/
(gH/β).

We claim that

fH/β ∈ Int (E, V )

and

gH/β ∈ Int (E, V ) \M∞.

By Lemma 2.1 (ii),

vj(H) = vn+1(H) for all j ≥ n+ 1.

From this, we get that

vj(gH/β) = 0 for all j ≥ n+ 1,

and clearly, vj(gH/β) = ∞ when 0 ≤ j ≤ n. So,

gH/β ∈ Int (E, V ) \M∞.

Finally, for fH/β, we have

vj(fH/β) = ∞

when 0 ≤ j ≤ n and

vj(fH/β) = vj(f)− vj(g) ≥ 0

when j ≥ n. So, fH/β ∈ Int (E, V ), completing the proof. �

Corollary 5.7. If E is of transcendental type, then Int (E, V ) is a
Prüfer domain.
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This handles the situation when E is of transcendental type. When
E is of algebraic type, we rely on the next theorem. For an (eventually)
pseudo-convergent sequence (ai)i∈N, we use the notation (v(ai))i∈N →
∞ to mean that the pseudo-convergent sequence (ai)i∈N is eventually
increasing and the values v(ai) are unbounded.

Theorem 5.8. Consider the following four conditions.

(i) There exists q ∈ K[x] such that (vj(q))j∈N → ∞.
(ii) Br (E) = (0).
(iii) Int (E, V )M∞ is a valuation domain.
(iv) If q ∈ K[x] and (vj(q))j∈N is eventually increasing, then (vj(q))j∈N

→ ∞.

For any pseudo-convergent E, we have (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). When
E is of algebraic type, (iv) ⇒ (i), and hence all four conditions are
equivalent.

When E is of algebraic type, it is clear that (iv) ⇒ (i). We prove
the other implications without any assumption on the type of E.

(i) ⇒ (ii). Let q ∈ K[x] be such that (vj(q))j∈N → ∞. Following
[7, Theorem 3], we may assume q is irreducible. Indeed, if q = q1q2
for some q1, q2 ∈ K[x], then either (vj(q1)) → ∞ or (vj(q2)) → ∞. So,
without loss of generality, assume that q is irreducible.

Let L be the splitting field of q over K, and let w be an extension
of v to L. Factor q as

q(x) = (x− β1)(x− β2) · · · (x− βt)

for some (not necessarily distinct) βℓ ∈ L. Then, for at least one ℓ,
(w(αj − βℓ)) → ∞ as j → ∞. Thus, for sufficiently large j,

v(αj+1 − αj) = w(αj+1 − αj)

= w((αj+1 − βℓ) + (βℓ − αj))

= w(βℓ − αj),

so (v(αj+1 − αj)) → ∞. Hence, Br (E) = (0). �

Before proving (ii) ⇒ (iii), we recall a topological definition. A
topological space X is precompact when its completion is compact [1,
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Section 4, Definition 2]. Now, [4, Theorem 4.1] asserts that Int (E, V )
is a Prüfer domain when E is precompact with respect to the topology
on K induced by v. So, we will prove that, if Br (E) = (0), then E is
precompact.

(ii) ⇒ (iii). Assume that Br (E) = (0), which implies that (v(αi+1−
αi)) → ∞. Also, from [1, Section 3, Proposition 1], it follows that K is

metrizable. Let K̂ be the completion of K with respect to v, and let Ê
be the corresponding completion of E (that is, the topological closure

of E in K̂).

The condition (v(αi+1 −αi)) → ∞ implies that (αi)i∈N is a Cauchy

sequence in K, so E comprises a convergent sequence in K̂. Hence,

every sequence in Ê has a subsequence converging to a limit point in

Ê. Thus, Ê is compact, Int (E, V ) is a Prüfer domain by [4, Theorem
4.1], and so Int (E, V )M∞ is a valuation domain. �

(iii) ⇒ (iv). Here, we prove the contrapositive. Assume q ∈ K[x]
is such that (vj(q))j∈N is eventually increasing, but is bounded above.
Let β ∈ V be such that vj(q) < v(β) for all j ∈ N. Let ϕ = β/q. We
claim that neither ϕ nor 1/ϕ is an element of Int (E, V )M∞ .

By construction, vj(1/ϕ) < 0 for all j. This violates the conclusion
of Lemma 5.3 (ii), so

1

ϕ
/∈ Int (E, V )M∞ .

Suppose now that ϕ ∈ Int (E, V )M∞ , and write ϕ = f/g, where
f ∈ Int (E, V ) and

g ∈ Int (E, V ) \M∞.

By Lemma 5.3, (vj(g))j∈N eventually stabilizes at 0. Hence, for
sufficiently large j, we have

vj(f) = vj(ϕ) = v(β)− vj(q).

But, (vj(q))j∈N is increasing, so (vj(f))j∈N is decreasing. This contra-
dicts Lemma 2.1 (iii). Thus,
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ϕ /∈ Int (E, V )M∞ ,

and so Int (E, V )M∞ is not a valuation domain. �

This completes the proof of Theorem 5.8. The equivalence of (ii)
and (iii) when E is algebraic gives us:

Corollary 5.9. Assume that E is of algebraic type. Then, Int (E, V )
is Prüfer if and only if Br (E) = (0).

At this point, we have a complete proof of Theorem 5.2. To sum-
marize the argument: if E is of transcendental type, then Int (E, V )
is Prüfer by Theorem 5.6 and Corollary 5.7. If Br (E) = (0), then
Int (E, V ) is Prüfer by Theorem 5.8. Finally, if E is not of transcen-
dental type and Br (E) ̸= (0), then E must be of algebraic type, and
we see that Int (E, V ) is not Prüfer by Corollary 5.9.

It remains to demonstrate that the two conditions in Theorem 5.2,
E being of transcendental type and Br (E) = (0), are, in general,
independent of one another. We give two examples to illustrate this.

Example 5.10. Let Q+ denote the positive rational numbers. Let y
be an indeterminate, let R = Q[{ye}e∈Q+ ], let m be the maximal ideal
of R generated by {ye}e∈Q+ , and let V = Rm. The fraction field K of
V is then a valued field with valuation group isomorphic to the additive
group of the rational numbers, and V is a non discrete one-dimensional
valuation domain.

Let E = {y, y2, y3, . . .}. Then, E is pseudo-convergent, the breadth
of E is (0) and E is of algebraic type because (vj(x)) → ∞ as j → ∞.
Note that an alternate example, where the values of E stabilize instead
of increasing, is given by

E = {y + y2, y + y3, y + y4, . . .}.

For this latter choice of E, the breadth is still (0), and we have
(vj(x− y)) → ∞.

Example 5.11. Let V and K be as in Example 5.10. We demonstrate
the existence of pseudo-convergent sequences of transcendental type
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and nonzero breadth. (The existence of these sequences was not in
doubt prior to this paper, but neither an example nor a proof of
existence was found in the available literature.)

It follows from Kaplansky’s work in [7] that a pseudo-convergent
sequence with a transcendental pseudo-limit is of transcendental type
(hence the terminology). So, it suffices to show that there exists a
pseudo-convergent sequence in V with a transcendental pseudo-limit
and nonzero breadth.

Consider a real number d = 0.d1d2d3 . . ., where each dℓ is either 1
or 2. Given such a real number, for each ℓ > 0 let eℓ = 0.d1d2 . . . dℓ.
For each i > 0, let

αi =
i∑

ℓ=1

yeℓ .

Take Ed = {α1, α2, . . .}. Then,

v(αi+1 − αi) = ei+1,

and the sequence (ei)i>0 is increasing, so Ed is pseudo-convergent.
Also, (ei)i>0 is bounded above, so Br (Ed) ̸= (0). A pseudo-limit of

Ed in K̂ is given by

Ld :=
∞∑
ℓ=1

yeℓ .

Now, for real numbers d and d′ of the above form, Ld′ is a pseudo-
limit of Ed if and only if d = d′. Indeed, if d ̸= d′, then (v(Ld′ −αi))i>0

will stabilize as soon as the decimal expansions of d and d′ are different.
Since there are uncountably many such d, there are uncountably
many Ld. However, K and its algebraic closure are both countable.
Hence, there exists a d such that Ld is transcendental over K, and
the corresponding pseudo-convergent sequence Ed provides the needed
example.

We close with an example, mentioned in the introduction, of an
infinite subset E of V that is not precompact, but for which Int (E, V )
is Prüfer.
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Example 5.12. Let V and K be as in the previous two examples.

Then, K is metrizable, and we let K̂ be the completion of K with
respect to v.

Let the Ed be as in Example 5.11. Choose d such that Ed is of
transcendental type; then, Int (Ed, V ) is Prüfer. Note that, for i > j,
we have

v(αi − αj) = ej+1,

and the sequence (ej)j>0 is bounded above. Because of this, the only
Cauchy sequences in Ed are those which are eventually constant; hence,

Êd = Ed. Moreover, the sequence (α1, α2, . . .) has no convergent

subsequence, so Êd is not compact, and thus Ed is not precompact.

Acknowledgments. The authors wish to thank Roswitha Rissner
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