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REDUCED SYMMETRIC ALGEBRAS
AND LINEAR SYZYGIES

MARK R. JOHNSON

1. Introduction. Let M be a finitely generated module over a
Noetherian domain A. A basic condition one would often like to know
is the integrality of the symmetric algebra SA(M). A fundamental
obstruction for this to hold is a restriction on the (local) number of
generators: µ(Mp) ≤ dimAp+rankM−1 for every non-minimal prime
ideal p of A. This condition is known as the F1 condition.

Unfortunately, the F1 condition alone is usually not enough to
guarantee integrality; however, if the symmetric algebra happens to
be equidimensional, then one may conclude (at least if A has finite
Krull dimension) that its associated spectrum is irreducible [9]. Thus,
the integrality would follow if one also knew the reducedness of SA(M).
It turns out that there are other situations where reducedness ensures
the integrality.

Recently, Simis, Ulrich and Vasconcelos [7] have discovered one such
case for the Zariski tangent algebra, which is the symmetric algebra
SA(ΩA/k) of the module of differentials of an algebra A essentially of
finite type over a field k. For example, if A is a local isolated singularity
over the perfect field k, then the reducedness of the Zariski tangent
algebra of A implies its integrality–as long as A is not defined by “too
many” quadrics. They also establish a similar result for its normality,
showing that it must in such a case coincide with its reflexive closure.

In this note, these results are extended to arbitrary modules, giving
similar criteria for a reduced symmetric algebra to be integral, or a
normal symmetric algebra to be its reflexive closure. The conditions
translate into the module having sufficiently few “linear” relations.
This also serves to clarify, and somewhat simplify, this part of the
work of [7].
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After establishing the reducedness result in Section 2 and treating
normality in Section 3, we return to consider the reducedness in the
case of ideals in Section 4, applying the result to the conormal module
in a regular ambient ring, complementing the case of [7].

2. Reduced symmetric algebras. Let (A,m, k) be a Noetherian
local ring, and let M be a finitely generated A-module. We will usually
assume that M is generically free, i.e., that Mp is a free Ap-module for
every p ∈ Ass (M). This condition holds if M has a rank, for example if
A is a domain. We denote by minrankM the smallest rank of M locally
at any minimal prime of A. By µ(M), we denote the minimal number
of generators of M . By edimA, we denote the embedding dimension
of A, namely, µ(m). The embedding codimension of A, denoted by
ecodimA, is difference edimA − dimA. If A ∼= R/I is a quotient of a
regular local ring (R,m), and I ⊂ m2, then ecodimA = codim I.

We denote by S(M) = SA(M) the symmetric algebra of M . The
Rees algebra R(M) is defined to be the quotient of S(M) by its A-
torsion. If A is reduced (respectively integral) so isR(M). The analytic
spread ℓ(M) is the Krull dimension of the fiber ring R(M)⊗R k. One
has, in general, that ℓ(M) ≤ µ(M), where µ denotes the minimal
number of generators. When S(M) is A-torsionfree, or equivalently
R(M) = S(M), we say that M is of linear type. (Note that, when A
is integral, this simply means the integrality of S(M).) In this case,
µ(M) = ℓ(M). (For more information concerning these notions, one
may consult [2, 8, 9].)

We will also need the following notation.

Definition 2.1. Let (A,m) be a Noetherian local ring, and let M be
a finitely generated A-module. Let

Am ϕ−→ An −→ M −→ 0

be a minimal presentation of M . Let ϕ be an n ×m matrix represen-
tation written as

ϕ = (ϕ1 | ϕ2),

where ϕ2 is a maximal submatrix having entries in m2. We call ϕ1 the
linear part of ϕ and the corresponding columns linear syzygies of M .
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We set
α1(M) = infϕ(#columns of ϕ1),

the infimum ranging over all minimal presentation matrices ϕ of M .

The definition of α1(M) is given to make an invariant of M , inde-
pendent of the choice of presentation: α1(M) is the smallest number
of columns, with entries not all in m2, that can appear in a minimal
presentation matrix of M .

Note that we have 0 ≤ α1(M) ≤ β1(M), where β1 denotes the first
Betti number.

Lemma 2.2. Let (A,m) be a Noetherian local ring, and let M be a
finitely generated generically free A-module such that µ(Mp) = ℓ(Mp)
for every p ̸= m, and µ(M) ̸= ℓ(M). If S(M) satisfies (R0), then
α1(M) ≥ edimA. Furthermore, if ϕ is a minimal presentation matrix
of M , then m = I1(ϕ1).

Proof. Write ϕ = (ϕ1 | ϕ2), so that I1(ϕ2) ⊂ m2. Set T =
A[T1, . . . , Tn], let Li = ([T1, . . . , Tn]ϕi) for i = 1, 2, and let J =
(L1, L2), so S(M) ∼= T/J . By [3, 3.4], mS(M) is a minimal prime
of S(M). Since S(M) satisfies (R0), it follows that mTmT = JTmT ⊂
(L1,m

2)TmT ; hence, mTmT = L1TmT by Nakayama’s lemma. There-
fore,

r = #columns of ϕ1 ≥ µ(L1) ≥ µ(L1TmT )

= µ(mTmT ) = µ(m) = edimA.

It follows that α1(M) ≥ edimA.

To verify the second statement, note that L1 ⊂ I1(ϕ1)T ⊂ mT ;
hence, mTmT = I1(ϕ1)TmT as well. Since I1(ϕ1) ⊂ m are ideals of A,
by flatness it follows that m = I1(ϕ1). �

Theorem 2.3. Let A be a reduced Noetherian ring, and let M be a
finitely generated generically free A-module satisfying

α1(Mp) < edim (Ap) for every p ∈ Spec (A) with ℓ(Mp) < µ(Mp).

If S(M) is reduced, then S(M) is A-torsionfree.
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Proof. Since S(M) is reduced, it suffices to show that the A-torsion
of S(M) is nilpotent. Equivalently, we show that µ(Mp) = ℓ(Mp)
for every prime p ([3, 3.4]). If p ∈ Ass (A), then this holds since
M is generically free. Supposing that the claim is false, we may
localize at a minimal counterexample to assume that (A,m) is local,
that µ(Mp) = ℓ(Mp) for every p ̸= m, and that µ(M) ̸= ℓ(M).
The hypothesis is now that α1(M) < edimA. But this contradicts
Lemma 2.2 and thus establishes the claim. �

Corollary 2.4. Let (A,m) be a reduced Noetherian local ring, and let
M be a finitely generated generically free A-module satisfying one of
the following conditions:

(i) Mp is of linear type for every p ̸= m, and M has a presentation
matrix ϕ with I1(ϕ) ⊂ m2;

(ii) β1(Mp) < edim (Ap) for every non-minimal p ∈ Spec (A).

If S(M) is reduced, then S(M) is A-torsionfree.

Proof. In the first case, ℓ(Mp) = µ(Mp) holds for every p ̸= m, and
α1(M) = 0. For the second, one has that α1(M) ≤ β1(M). Hence, the
result follows from Theorem 2.3. �

If A is essentially of finite type over a field k, we may apply the
result to the module of differentials ΩA/k, recovering results of [7].

Corollary 2.5. ([7, 2.1]). Let A be a reduced ring essentially of
finite type over a perfect field k, and assume that, for every non-
minimal p ∈ Spec (A), Ap

∼= R/I, where (R, n) is a regular local ring
essentially of finite type over k, and I ⊂ m2 is an R-ideal satisfying
µ(I + n3/n3) < dimR.

If S(ΩA/k) is reduced, then S(ΩA/k) is A-torsionfree.

Proof. Using the Jacobian matrix of the local presentation, it follows
that, for any non-minimal prime p, α1((ΩA/k)p) = α1(Ω(R/I)/k) ≤
µ(I + n3/n3) < dimR = edimAp. Hence, the result is a consequence
of Theorem 2.3. �

Suppose that (A,m) is a reduced Noetherian local ring and that
the symmetric algebra S(M) is reduced and not torsionfree. Then the
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basic conclusion (if there is no obstruction on the punctured spectrum)
is that α1(M) ≥ edimA. In Lemma 2.2, we also have seen that the
maximal ideal is generated by the entries of the linear part of M . It is
natural to ask if the maximal ideal m is actually generated by a set of
linear entries, one from each of its corresponding linear syzygies. With
a slightly stronger hypothesis, we are able to show this. In the following
result, we also include a routine generalization of part of [7, 2.6] for
convenience and completeness.

Theorem 2.6. Let (A,m, k) be a reduced Noetherian local ring of
dimension d, and let M be a finitely generated A-module of rank e
satisfying ℓ(Mp) = µ(Mp) for every prime ideal p ̸= m. Let ϕ1 be
the linear part of M with respect to some minimal presentation matrix.
Suppose that S(M) is reduced but not A-torsionfree.

(i) Then m is generated by the entries of the first d+ e rows of ϕ1.
(ii) If k is algebraically closed, a general row of ϕ1 generates m.

Proof. We first show the second statement. Since the symmetric
algebra is reduced, but not A-torsionfree, we conclude as usual that
mS(M) must be a minimal prime. Let T be the A-torsion of S(M).
Since T is not contained in mS, its image is a nonzero homogeneous
ideal in the polynomial ring S(M) ⊗A k. Choose a closed point
x ∈ Pn−1 = Proj (S(M) ⊗A k) not lying on the projective algebraic
subset defined by the image of T . Then if P is the preimage in S(M)
of the ideal of x, it follows that T is not contained in the prime
(mS(M), P ) = Q. Since S(M)Q is again reduced, we conclude that
mS(M)Q = 0. In particular, m(S(M)/P )(m) = 0.

Let ϕ be a minimal presentation matrix with linear part ϕ1, let
T = A[T1, . . . , Tn], so that S(M) ∼= T/J , where J = ([T1, . . . , Tn]ϕ).
Now, after a possible change of coordinates, we may assume that
P = (T2 − a2T1, . . . , Tn − anT1)S(M), where ai ∈ A are a lifting of the
coordinates of x. Let ϕ′ be the matrix obtained from ϕ by successively
performing the elementary row operation of adding to the first row the
scalar multiple of the ith row by ai, for i = 2, . . . , n.

It follows that the ring S(M)/P ∼= A[T1]/T1K, where K is the ideal
of A generated by the first row of ϕ′. Therefore, it follows that
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0 = m(S(M)/P )(m) = mA[T1]mA[T1]/(T1K)mA[T1]

= mA[T1]mA[T1]/KmA[T1],

from which we conclude by flatness that m = K. If K1 denotes
the ideal generated by the linear part of ϕ′, then we also have that
m = K ⊂ K1 +m2; hence, by Nakayama’s lemma, m = K1. Since the
choice of the point x ∈ Pn−1 is general, this is a general row ideal of
the linear part of M .

Now the second statement follows as in the first part of the
proof of [7, 2.6], using instead the (d + e)-dimensional prime P =
(mS(M), Td+e+1, . . . , Tn)S(M). One uses the basic fact that ℓ(M) ≤
d+ e− 1 ([8, 2.3]). �

Example 2.7. Let (A,m) be a reduced Noetherian local ring with
residue field k. Then S(k) is reduced, but not A-torsionfree, as long as
A ̸= k. In this case, β1(k) = α1(k) = edimA and m is generated by
the (sole) row of any minimal presentation matrix of k.

Remark 2.8. In [7, 2.6], it is shown that a one-dimensional complete
local domain A, with algebraically closed residue field k ⊂ A, can have
S(ΩA/k) reduced only if A is regular. (Here ΩA/k is the universally
finite module of differentials.) Since in dimension 1, only a free module
can be of linear type (for modules with a rank), by Theorem 2.6, this
will follow once one shows that the maximal ideal cannot be generated
by every two (e = d = 1 in this case) rows of a (transposed) Jacobian
matrix. They verify this, under the additional hypotheses; this part is
more elementary. Interestingly, we cannot deduce this theorem from
using statement (ii) of the theorem; in this situation, the general row
can in fact generate m.

3. Normal symmetric algebras. In this section, we consider the
case that the symmetric algebra is normal. Again, there must be
sufficiently many linear relations on the module, the exact bound now
depending on the number of generators and the embedding codimension
of A.
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Proposition 3.1. Let (A,m) be a Noetherian local ring, and let
M be a finitely generated generically free A-module with minrank e.
Suppose that S(M) is equidimensional and S(M)mS(M) is regular.
Then α1(M) ≥ ecodimA+ µ(M)− e.

Proof. As usual, let ϕ be a minimal presentation matrix with n
rows, with linear part ϕ1 having r columns, set T = A[T1, . . . , Tn],
let L = ([T1, . . . , Tn]ϕ) and L1 = ([T1, . . . , Tn]ϕ1). Then S(M)mS(M)

∼=
(T/J)mT is regular. Let ρ be its dimension. Let x1, . . . , xρ be elements
of mT whose images form a regular system of parameters. Then

mTmT = JmT + (x1, . . . , xρ)TmT ⊂ (L1, x1, . . . , xρ)TmT +m2TmT ;

hence, mTmT = (L1, x1, . . . , xρ)TmT by Nakayama’s lemma. Hence,

edimA = µ(m) = µ(mTmT ) ≤ µ(L1TmT ) + ρ ≤ r + ρ.

It follows that α1(M) ≥ edimA− ρ.

It remains to identify ρ. Since the symmetric algebra is equidimen-
sional its dimension formula ([3, 9]) implies that dimS(M) = dimA+e.
Therefore,

ρ = dimS(M)mS(M) ≤ dimS(M)− dimS(M)/mS(M)

= dimA+ e− µ(M).

(Equality holds if A is universally catenary.) Hence, the result follows.
�

The next result now follows from Proposition 3.1 as in [7, 2.10]. We
give a proof for completeness.

Theorem 3.2. Let A be a universally catenary normal domain, and
let M be a finitely generated A-module of rank e satisfying

α1(Mp) < ecodimAp + µ(Mp)− e

for every p ∈ SpecA with µ(Mp) = dimAp + e− 1 > e.

If S(M) is normal, then Si(M) is reflexive for every i ≥ 1.

Proof. Since S(M) is normal, it suffices to check the equality of the
algebras S(M) ⊂ ⊕i≥0Si(M)∗∗ locally at the height one primes of the
symmetric algebra. Localizing at such a prime P , and at its contraction
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to A, changing notation, we may assume that the prime contracts to
the maximal ideal m of a local ring A. If dim A = 0, then M is free and
the result is clear. If dim A > 0, then P = mS(M), so S(M)mS(M) is
regular. Therefore, by Proposition 3.1, α1(M) ≥ ecodimA+µ(M)− e.
But

1 = htP = dimS(M)− dimS(M)/P = dimA+ e− µ(M).

By our hypothesis, we conclude that µ(M) = e. Hence, M is free and
again the equality of algebras follows. �

The last two results recover [7, 2.9 (a), 2.10 (i)], as applied to
the module of differentials. We refer the reader to this paper for
the corresponding statements, as well as some sharper statements in
characteristic zero.

Corollary 3.3. Let A be a universally catenary normal domain, and
let M be a finitely generated A-module of rank e that is free locally in
codimension 2 and satisfies µ(Mp) ≤ dimAp + e − 2 for all primes
p ̸= m with dimAp ≥ 3.

If α1(M) < ecodimA+ µ(M)− e and S(M) is normal, then Si(M)
is reflexive for every i ≥ 1.

4. Ideal case. We now wish to apply the results to the ideal case.
In particular, we would like to consider the situation for the conormal
module I/I2 of an ideal I. This closely parallels [7] again; as for A
essentially of finite type over a field k, one has ΩA/k

∼= D/D2, where
D is the diagonal ideal. However, here we would like to focus on the
case of ideals in a regular ambient ring. This will allow us to use [4]
to obtain a slightly stronger result than would follow by applying the
theorem directly. This result of [4] asserts that, for a prime ideal I
in a regular local ring, the reducedness of the associated graded ring
grI(R) always implies its integrality. In the latter case, we say that the
prime ideal is normally torsionfree; this is equivalent to the equality
I(n) = I(n) between the powers and symbolic powers, for all n.

We shall focus on the question of reducedness. (For the conormal
module in a regular ambient ring, the normality of its symmetric
algebra is a strong enough condition by itself, roughly like the situation
[4].) We would like to give some examples showing the sharpness of
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the result in this case. The work [7] already clearly demonstrated the
sharpness in the case for the module of differentials, but here again we
would like to give examples of ideals in a regular ring that shows the
optimality.

One slightly different form of the main result for the conormal
module is as follows.

Theorem 4.1. Let (R,m) be a regular local ring, and let I be a prime
ideal that is of linear type locally on the punctured spectrum. Suppose
that β1(I) < dimR. If SR/I(I/I

2) is reduced, then I is normally
torsionfree and of linear type.

Proof. We first note that the conclusion is equivalent to the inte-
grality of SR/I(I/I

2). Indeed, with the hypothesis on I, factoring out

the A-torsion factors through the natural map SR/I(I/I
2) → grI(R),

which, in general, is an isomorphism precisely when I is of linear type
[9]. Since a presentation matrix of the conormal module is obtained by
base change from one for I, this will follow from Theorem 2.3 once we
show that the conormal is of linear type on the punctured spectrum,
i.e., that the conclusion holds for I locally on the punctured spectrum.
But, at such a localization, by assumption, the symmetric algebra is iso-
morphic to the associated graded ring. Since the former is reduced, so
is the latter, and therefore the ideal is normally torsionfree by [4]. �

In summary, we obtain several constraints for a counterexample for
the conormal module.

Corollary 4.2. Let (R,m) be a regular local ring of dimension d, and
let I be a prime ideal that is of linear type locally on the punctured
spectrum. Suppose that SR/I(I/I

2) is reduced but not integral. Then
the following hold :

(i) I is not of linear type;
(ii) β1(I) ≥ d;
(iii) If the fiber ring R(I)⊗R k is reduced, then I is normally torsion-

free.

Proof. The first statement follows from [4] and the second immedi-
ately from Theorem 4.1.
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For the third, suppose this is not the case. Then, by [4], G = grI(R)
is not reduced. But, since R(I) ⊗R k = dimG/mG, mG is reduced.
Thus, mG must intersect the torsion of G nontrivially. But, then
mSR/I(I/I

2), being the only other minimal prime, meets the torsion

of SR/I(I/I
2) nontrivially, contradicting its reducedness. �

We may obtain a class of examples by using the following technical
result, which follows from the results of [5].

Remark 4.3. Let (R,m, k) be a regular local ring of dimension d with
k infinite, and let I be a prime ideal that is of linear type and normally
torsion free, both locally on the punctured spectrum of R. Suppose that
I has analytic spread ℓ and µ(I) = ℓ+ 1 ≤ d, that depth R/I ≥ d− ℓ,
that I satisfies the Artin-Nagata condition ANℓ−2 and that I1(ϕ) = m
for a minimal presentation matrix ϕ of I. Then SR(I) and SR/I(I/I

2)
are reduced but not integral.

The following are probably the simplest examples of this type.

Example 4.4. Let I ⊂ k[x, y, z, w] = R be the homogeneous ideal
defining the twisted quartic curve x = s4, y = s3t, z = st3, w = t4 in
P3. Then, SR(I) and SR/I(I/I

2) are reduced but not integral.

Indeed, in this case, it is well known that β1(I) = µ(I) = 4 = dimR,
and the symmetric algebra of I is reduced but not integral [6].

Example 4.5. Let I = I2(X) ⊂ k[X] = R where X is a generic 2× 4
matrix over a field k. Then SR(I) and SR/I(I/I

2) are reduced but not
integral.

It is well known [1] that I is a perfect ideal of codimension 3, is
not of linear type, but, having a linear presentation, µ(I) = 6 and
β1(I) = 8 = dimR.

In both examples, the ideal is homogeneous, so the condition on the
reducedness of the fiber cone of Corollary 4.2 (iv) holds.

We remark that in Corollary 4.2 (ii) the stronger statement would
involve α1 rather than simply β1. Thus, one may obtain further
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examples that are optimal, or close it, by taking into account the
nonlinear syzygies of I. (See also [5] for some examples, at least after
deformation.)
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