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WHEN IS C(X) POLYNOMIALLY IDEAL?

KARIM BOULABIAR AND SAMIR SMITI

ABSTRACT. Let A be a commutative f -algebra with
unit. The sets of all ideals in A and all intersections of maxi-
mal ideals in A are denoted by I(A) and IM(A), respectively.
Whenever a ∈ I(A), we say that A is polynomially a-ideal if,
for every f ∈ A with p(f) ∈ a for some non-zero polynomial
p(x), there is an f0 ∈ a such that p(f + f0) = 0. We prove
that if A is bounded inversion closed and a ∈ IM(A), then A
is polynomially a-ideal if and only if idempotents lift modulo
a. This fact is based upon a systematic study of idempo-
tent elements of an f -algebra. As a consequence, we show
that, if X is a Tychonoff space, then C(X) is polynomially
a-ideal for all a ∈ I(C(X)) if and only if X is a P -space.
Moreover, we prove that C(X) is polynomially a-ideal for all
a ∈ IM(C(X)) if and only if X is strongly zero-dimensional.
It turns out that this extends a theorem by Miers, namely, if
X is a compact Hausdorff space, then C(X) is polynomially
a-ideal for every uniformly closed ideal a in C(X) if and only
if X is totally disconnected.

1. Introduction. Let A be a commutative and associative real
algebra with identity. The set of all ring ideals in A is denoted by
I(A) and its subset of all intersections of maximal ideals is denoted by
IM(A). Choose a ∈ I(A). Modifying slightly a definition by Miers
in [14], we say that A is polynomially a-ideal if, whenever f ∈ A and
p(f) ∈ a for some non-zero real polynomial p(x), there is g ∈ a for which
p(f + g) = 0. Now, let C(X) be the commutative real algebra with
identity of all real-valued continuous functions on a Tychonoff space X.
It was proved by Miers himself (again in [14]) that a compact Hausdorff
space K is totally disconnected if and only if C(K) is polynomially a-
ideal for every uniformly closed ideal a in C(K). The observation to
make here is that any uniformly closed ideal in C(K) is in IM(C(K)).
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Hence, a ‘little more algebraic’ version of the Miers theorem arises as
follows. A necessary and sufficient condition for a compact Hausdorff
space K to be totally disconnected is that C(K) is polynomially a-ideal
for every a ∈ IM(C(K)).

This paper is in part developed around the following natural ques-
tion. What happens if we leave the realm of compact Hausdorff spaces?
Surprisingly enough, we shall prove that, ifX is a Tychonoff space, then
C(X) is polynomially a-ideal for every a ∈ IM(C(X)) if and only if
X is strongly zero-dimensional. The Miers theorem turns out to be a
special case of our result. In spite of that, we shall get a ‘new’ char-
acterization of P -spaces. Namely, X is a P -space if and only if C(X)
is polynomially a-ideal for every a ∈ I(C(X)). Our approach relies
heavily on a study of idempotent elements in an abstracted function
algebra (also called f -algebra) in the sense of Birkhoff and Pierce [6].
More details seem to be in order.

Let A be a commutative f -algebra with identity, and let a be a (ring)
ideal in A. We shall prove that, if A is semiprime and f ∈ A, then
p(f) = 0 for some non-zero real polynomial p(x) if and only if there
exist pairwise different real numbers λ1, . . . , λn and pairwise disjoint
idempotent elements e1, . . . , en ∈ A such that f = λ1e1+· · ·+λnen. As
a consequence, we will prove that, if A is bounded inversion closed and
a ∈ IM(A), then A is polynomially a-ideal if and only if idempotents
lift modulo a, i.e., for every f ∈ A with f2 − f ∈ a, there exists
g ∈ a such that f + g is an idempotent element of A. In particular,
if a ∈ IM(C(X)), then C(X) is polynomially a-ideal if and only if, for
each function f ∈ C(X) which is idempotent modulo a (i.e., f2−f ∈ a)
there is a function g ∈ a such that f + g is a characteristic function.
As would be expected, this result is the key of our investigation in the
C(X) case.

We point out that our results and proofs are developed in the real
case. Nevertheless, taking into consideration the Theory of Complex
Vector Lattices and Complex f -Algebras as presented, e.g., in [4, 18],
the whole content of the paper can be extended quite directly to the
complex case.

We notice finally that a similar subject was investigated in [2] by
Barnes within the (completely different) framework of Banach algebras.
Also, Olsen [16] discusses the same problem for operator algebras.
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2. Results on idempotents in f-algebras. This section deals
with idempotent elements of an f -algebra. By the way, we assume
that the reader is familiar with the notion of vector lattices and
lattice-ordered algebras. In this regard, we refer to the monographs
[5, 12, 17, 19] for unexplained terminology and notation.

Beginning with the next paragraph, we shall impose the
blanket assumption that any lattice-ordered algebra un-
der consideration is real, commutative, and with iden-
tity 1.

Following Birkhoff and Pierce [6], we call a lattice-ordered algebra A a
function algebra (briefly, an f -algebra) if

f ∧ g = 0 and 0 ≤ h in A imply (fh) ∧ g = 0.

It is well known that the lattice-ordered algebra A is an f -algebra if
and only if 1 is weak order unit, that is, if f ∧ 1 = 0 in A, then f = 0
(see, e.g., [3, Corollary 1.10]). From now on, A stands for an f -algebra
and A+ denotes its positive cone.

It is readily checked that

fg = 0 whenever f, g ∈ A and f ∧ g = 0.

Hence, since
f = f+ − f− for all f ∈ A,

where
f+ = f ∨ 0 and f− = (−f) ∨ 0,

we have
f+f− = 0 for all f ∈ A.

It follows straightforwardly that A has positive squares. That is,

f2 =
(
f+
)2

+
(
f−
)2 ∈ A+ for all f ∈ A.

In particular, 1 is a positive element of A. Furthermore, if f, g ∈ A+,
then

f2 ∨ g2 = (f ∨ g)
2

and f2 ∧ g2 = (f ∧ g)
2
.

These equalities will be useful for later purposes, and their proofs can
be found in [19, Theorem 142.1]. Now, put

Idem (A) =
{
e ∈ A : e2 = e

}
.
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In other words, Idem (A) is the set of all idempotent elements of A.
Since A has positive squares, all idempotent elements of A are positive.
These elementary properties will be used throughout the paper without
further mention. Additional useful facts about idempotents elements
of the f -algebra A are given next.

Lemma 2.1. Let A be an f -algebra and u, v ∈ Idem (A). Then the
following hold.

(i) 1− u ∈ Idem (A).
(ii) uv = 0 if and only if u ∧ v = 0.
(iii) u− v ∈ Idem (A) if and only if u− v ∈ A+.

Proof.

(i) We have

(1− u)
2
= 1− 2u+ u2 = 1− 2u+ u = 1− u.

So, 1− u ∈ Idem (A), which is the desired result.
(ii) We already know that if u ∧ v = 0, then uv = 0. Conversely,

suppose that uv = 0. Hence,

0 ≤ u ∧ v = u2 ∧ v2 = (u ∧ v)
2 ≤ uv = 0.

We get u ∧ v = 0, as required.
(iii) If u−v ∈ Idem (A), then u−v ∈ A+. Conversely, from u−v ∈ A+,

it follows that u ≤ v in A and so

v = v2 ≤ uv.

Moreover, 1 − u ∈ Idem (A) (see (i)) so 1 − u ∈ A+. Hence,
0 ≤ u ≤ 1, and thus 0 ≤ uv ≤ v. This means that uv = v. We
derive that

(u− v)
2
= u2 + v2 − 2uv = u+ v − 2v = u− v.

The proof is complete. �

The following definitions play a key role in the sequel.

Definition 2.2. Let A be an f -algebra.
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(i) A subset {f1, . . . , fn} of A+ is called a disjoint system if

fi ∧ fj = 0 for all i, j ∈ {1, . . . , n} with i ̸= j.

(ii) A disjoint system {f1, . . . , fn} in A is said to be unital if
∑n

i=1 fi =
1.

We emphasize that all elements in a disjoint system in A are positive.
Handy characterizations of unital disjoint systems in Idem (A) are
provided next.

Lemma 2.3. Let A be an f -algebra and e1, . . . , en ∈ A. Then the
following are equivalent :

(i) {e1, . . . , en} is a unital disjoint system in Idem (A).
(ii)

∑n
i=1 ei = 1 and eiej = 0 for all i, j ∈ {1, . . . , n} with i ̸= j.

(iii)
∑n

i=1 ei = 1 and ei ∈ Idem (A) for all i ∈ {1, . . . , n}.

Proof.

(i) ⇒ (ii). By definition, we have
∑n

i=1 ei = 1. Let i, j ∈ {1, . . . , n}
with i ̸= j. Then, ei ∧ ej = 0 and so eiej = 0.

(ii) ⇒ (iii). Let i ∈ {1, . . . , n} and observe that

ei = ei

n∑
j=1

ej =

n∑
j=1

eiej = e2i +

n∑
j=1,j ̸=i

eiej = e2i .

We derive that ei ∈ Idem (A), as desired.
(iii) ⇒ (i). Choose i, j ∈ {1, . . . , n} with i ̸= j. Then,

e2i = ei = ei

n∑
k=1

ek =

n∑
k=1

eiek = e2i +

n∑
k=1,k ̸=i

eiek.

It follows that:

0 ≤ eiej ≤
n∑

k=1,k ̸=i

eiek = 0.

This, together with Lemma 2.1 (ii) completes the proof. �

There is a way to extend a non-unital disjoint system of idempotent
elements in A by adjoining a single vector in such a way that the
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resulting set is a unital disjoint system in A. Details are given in the
following lemma.

Lemma 2.4. Let A be an f -algebra and {e1, . . . , en} a disjoint system
in Idem (A). Then {e1, . . . , en, 1−

∑n
i=1 ei} is a unital disjoint system

in A.

Proof. Let i ∈ {1, . . . , n}. Since e2i = ei, we get:(
1−

n∑
j=1

ej

)
ei = ei −

n∑
j=1

eiej = ei − e2i = 0.

We derive that the set {
e1, . . . , en, 1−

n∑
i=1

ei

}
fulfills condition Lemma 2.3 (ii). This gives the desired result. �

As usual, the symbol R is used to indicate the field of all real
numbers. Also, the principal ideal domain of all polynomials with
coefficients in R is denoted by R[x]. Our main results are also based
upon the following lemma.

Lemma 2.5. Let A be an f -algebra and {e1, . . . , en} a unital disjoint
system in A. Then

p

( n∑
i=1

λiei

)
=

n∑
i=1

p (λi) ei for all λ1, . . . , λn ∈ R and p ∈ R [x] .

Proof. Put

f =
n∑

i=1

λiei,

and notice that

f0 = 1 =
n∑

i=1

ei =
n∑

i=1

λ0
i ei.
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Moreover, let m ∈ {0, 1, 2, . . .}, and assume that

fm =
n∑

i=1

λm
i ei.

Using the equivalence (i) ⇔ (ii) in Lemma 2.3, we obtain

fm+1 = fmf =

( n∑
i=1

λm
i ei

)( n∑
i=1

λiei

)

=
n∑

i,j=1

λm
i λjeiej =

n∑
i=1

λm+1
i e2i

=

n∑
i=1

λm+1
i ei.

Thus, we have proved by induction that

(2.1) fm =
n∑

i=1

λm
i ei for all m ∈ {0, 1, 2, . . .} .

Now, pick p ∈ R[x] with

p (x) =
s∑

m=0

αmxm.

From (2.1), it follows that

p (f) =
s∑

m=0

αmfm =
s∑

m=0

αm

( n∑
i=1

λm
i ei

)

=
s∑

m=0

n∑
i=1

αmλm
i ei =

n∑
i=1

s∑
m=0

αmλm
i ei

=

n∑
i=1

( s∑
m=0

αmλm
i

)
ei =

n∑
i=1

p (λi) ei.

This finishes the proof. �

Now, recall that the f -algebra A is said to be semiprime (or, reduced)
if A contains no non-zero nilpotent elements. On the other hand, the
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zero-set of p ∈ R[x] is defined by

Z (p) = {λ ∈ R : p (λ) = 0} .

That is, Z(p) is the set of all roots of p in R (which can be empty, of
course).

We have gathered at this point all the ingredients we need for the
main result of this section.

Theorem 2.6. Let A be a semiprime f -algebra, p ∈ R[x] with p ̸= 0,
and f ∈ A. Then the following are equivalent :

(i) p(f) = 0.
(ii) There exist pairwise different λ1, . . . , λn ∈ Z(p) such that

n∏
i=1

(f − λi) = 0.

(iii) There exist pairwise different λ1, . . . , λn ∈ Z(p) and a unital
disjoint system {e1, . . . , en} in A such that

f =
n∑

i=1

λiei.

Proof. (i) ⇒ (ii). Put

I = {s ∈ R [x] : s (f) = 0} .

Obviously, I is a principal ring ideal in R[x]. From (i), it follows that
I ̸= {0}, and so I has a unique monic generator pf ∈ R[x]. Actually,
pf is the minimal polynomial of f , namely, if s ∈ R[x], then s ∈ I if
and only if pf divides s. In particular, p is a multiple of pf in R[x]. We
claim that there is no quadratic polynomial in the factorization of pf
into irreducible elements of R[x]. Otherwise, there would exist α, β ∈ R
with β − α2 > 0 and q ∈ R[x] with q ̸= 0 such that

pf (x) =
(
x2 + 2αx+ β

)
q (x) .

Observe that the inequalities

0 < β − α2 ≤ β − α2 + (f + α)
2
= f2 + 2αf + β
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hold in A. It would follow that:

0 <
(
β − α2

)
|q (f)|

≤
(
f2 + 2αf + β

)
|q (f)|

=
∣∣(f2 + 2αf + β

)
q (f)

∣∣ = 0.

We conclude that q(f) = 0, which contradicts the minimality of
pf (x). Thus, pf (x) has no quadratic polynomial in its factorization into
irreducible elements in R[x]. Notice now that R[x] has no irreducible
elements other than quadratic polynomials with negative discriminants
and linear polynomials. It follows, in particular, that Z(pf ) is non
empty. Put

Z (pf ) = {λ1, . . . , λn}

(in particular, λi ̸= λj whenever i ̸= j in {1, . . . , n}). As noticed above,
pf divides p, and so

λ1, . . . , λn ∈ Z (p) .

Moreover, there exist ω1, . . . , ωn ∈ {1, 2, . . .} such that

pf (x) =
n∏

i=1

(x− λi)
ωi .

Put ω = max{ωi : i ∈ {1, . . . , n}}, and observe that( n∏
i=1

(x− λi)

)ω

= pf (x)
n∏

i=1

(x− λi)
ω−ωi .

Hence, ( n∏
i=1

(f − λi)

)ω

= pf (f)
n∏

i=1

(f − λi)
ω−ωi = 0.

Since A is semiprime, we obtain

n∏
i=1

(f − λi) = 0

and (ii) follows.
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(ii) ⇒ (iii). Define

p (x) =
n∏

i=1

(x− λi) ,

and

pi (x) =
p (x)

x− λi
∈ R [x] for all i ∈ {1, . . . , n} .

Clearly, 1 is the greatest common divisor of p1, . . . , pn. Hence, there
exist q1, . . . , qn ∈ R[x] such that

n∑
i=1

piqi = 1

(where we use the classical Bezout’s theorem in R[x]). Therefore, the
equality

n∑
i=1

pi (f) qi (f) = 1

holds in A. Put

ei = pi (f) qi (f) for all i ∈ {1, . . . , n} .

Thus,

(2.2)
n∑

i=1

ei = 1.

Furthermore, choose i, j ∈ {1, . . . , n} with i ̸= j. Clearly, pf divides
pipj , and so

pi (f) pj (f) = 0.

Hence,

(2.3) eiej = pi (f) qi (f) pj (f) qj (f) = 0.

Combining Lemma 2.3, (2.2) and (2.3), we get

e2i = ei for all i ∈ {1, . . . , n} .

Consequently, if i ∈ {1, . . . , n}, then

(f − λi) ei = (f − λi) pi (f) qi (f) = p (f) qi (f) = 0,
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and so fei = λiei. Whence,

f = f
n∑

i=1

ei =
n∑

i=1

fei =
n∑

i=1

λiei,

which leads to the desired assertion.

(iii) ⇒ (i). We have

p (λi) = 0 for all i ∈ {1, . . . , n} .

According to Lemma 2.5, we obtain

p (f) =
n∑

i=1

p (λi) ei = 0,

which finishes the proof of the theorem. �

A version of Theorem 2.6 was obtained in [7] for the special case of
orthomorphisms on archimedean vector lattices. Moreover, the above
proof has to be slightly modified in the complex case. Indeed, we do
not have to prove that pf has no irreducible quadratic divisors. By the
way, this is the only place where we have to be a little careful moving
from the real case to the complex case.

3. Polynomially a-ideal f-algebras. The main objective of the
present section is to give a convenient necessary and sufficient condition
for an f -algebra A to be polynomially a-ideal, where a is a semiprime
ℓ-ideal in A. Let us discuss some of the relevant notions.

First, we label the definition around which this paper is developed.

Definition 3.1. Let a be a ring ideal in an f -algebra A. Then A is
said to be polynomially a-ideal if for every f ∈ A for which p(f) ∈ a for
some p ∈ R[x] with p ̸= 0 there exists f0 ∈ a such that p(f0 + f) = 0.

Now, recall that A is an f -algebra. A ring ideal a in A is said to
be convex if a contains with any f all g such that |g| ≤ |f |. We call
an ℓ-ideal in A any convex ring ideal in A. Clearly, any ℓ-ideal a in A
is a sublattice of the underlying lattice of A. In particular, the ℓ-ideal
a is closed under finite suprema. The next lines deal with quotient
f -algebras.
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Let a be an ℓ-ideal in A. The residue class of any f ∈ A in
the quotient real algebra A/a is denoted by a(f). Of course, A/a is
again commutative with a(1) as the identity. The canonical surjection,
denoted again by a, from A onto A/a is an algebra homomorphism.
That is,

a (λf + gh) = λa (f) + a (g) a (h) for all λ ∈ R and f, g, h ∈ A.

As a is an ℓ-ideal, the algebra A/a can be endowed with an ordering
by putting

a (f) ≤ a (g) if and only if h ≤ g − f for some h ∈ a.

Actually, A/a is an f -algebra with respect to this ordering. Further-
more, a is a lattice homomorphism from A onto A/a, which means
that

a (f ∨ g) = a (f) ∨ a (g) for all f, g ∈ A

(more information can be found in [5, 12]). An ℓ-ideal a in A is said to
be semiprime if f ∈ A and fn ∈ a for some n ∈ {1, 2, . . .} imply f ∈ a.
Obviously, the ℓ-ideal a is semiprime if and only if the f -algebra A/a
is semiprime.

Now, let a be an ideal in the commutative ring A. We say that
idempotents lift modulo a if, given f ∈ A with f2 − f ∈ a, there exists
f0 ∈ a such that f0+f ∈ Idem (A). We are thus in position to prove one
of the main results of this paper, which gives a necessary and sufficient
condition for the f -algebra A to be polynomially a-ideal, where a is a
semiprime ℓ-ideal in A.

Theorem 3.2. Let a be a semiprime ℓ-ideal in an f -algebra A. Then
A is polynomially a-ideal if and only if idempotents lift modulo a.

Proof. Suppose that A is polynomially a-ideal. Let f ∈ A, and
assume that f2 − f ∈ a. Put

p (x) = x2 − x ∈ R [x] ,

and notice that p(f) ∈ a. Therefore, there exists f0 ∈ a such that
p(f0 + f) = 0. That is, f0 + f ∈ Idem (A), as required.

Conversely, assume that, for every f ∈ A with f2 − f ∈ a, there
exists f0 ∈ a such that f0 + f ∈ Idem (A). Since a is a semiprime
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ℓ-ideal, the f -algebra A/a is semiprime. Let f ∈ A, and assume that
p(f) ∈ a for some non-zero polynomial p ∈ R[x]. It follows quickly that

p (a (f)) = 0 in A/a.

By Theorem 2.6, there exist λ1, . . . , λn ∈ Z(p) and e1, . . . , en ∈ A such
that

(3.1) {a (e1) , . . . , a (en)} is a unital disjoint system in A/a

and

(3.2) a (f) =

n∑
i=1

λia (ei) .

Lemma 2.3 and (3.1) show that

a (ei) ∈ Idem (A) for all i ∈ {1, . . . , n} .

Thanks to the hypothesis, we may assume, without loss of generality,
that

(3.3) ei ∈ Idem (A) for all i ∈ {1, . . . , n} .

Combining (3.1) and Lemma 2.3, we immediately get

(3.4) eiej ∈ a for all i, j ∈ {1, . . . , n} with i ̸= j.

Now, define

ui = ei ∧
n∨

j=1
j ̸=i

ej for all i ∈ {1, . . . , n} .

Let i ∈ {1, . . . , n}. Then observe that

0 ≤ u2
i ≤ ei

n∨
j=1
j ̸=i

ej =
n∨

j=1
j ̸=i

uiej ∈ a

(where we use (3.4)). It follows that u2
i ∈ a because a is an ℓ-ideal in
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A and then ui ∈ a since a is semi-prime. Furthermore,

u2
i =

(
ei ∧

n∨
j=1
j ̸=i

ej

)2

= e2i ∧
n∨

j=1
j ̸=i

e2j

= ei ∧
n∨

j=1
j ̸=i

ej = ui.

This yields that ui ∈ Idem (A). Also, from

0 ≤ ui = ei ∧
n∨

j=1
j ̸=i

ej ≤ ei

and Lemma 2.1 (iii), it follows that

(3.5) vi = ei − ui ∈ Idem (A) .

Notice here that, if i ∈ {1, . . . , n}, then

(3.6) a (vi) = a (ei)− a (ui) = a (ei)

(since ui ∈ a). On the other hand, if i ̸= j in {1, . . . , n}, then

0 ≤ vi ∧ vj = (ei − ui) ∧ (ej − uj)

=

(
ei −

(
ei ∧

n∨
k=1
k ̸=i

ek

))
∧

(
ej −

(
ej ∧

n∨
k=1
k ̸=j

ek

))

=

(
ei −

n∨
k=1
k ̸=i

ek

)+

∧

(
ej −

n∨
k=1
k ̸=j

ek

)+

=

(
n∧

k=1
k ̸=i

(ei − ek)

)+

∧

(
n∧

k=1
k ̸=j

(ej − ek)

)+

≤ (ei − ej)
+ ∧ (ej − ei)

+
= 0.

Accordingly,

(3.7) vi ∧ vj = 0.
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Denote

vn+1 = 1−
n∑

i=1

vi.

Combining (3.5), (3.7) and Lemma 2.4, we derive that {v1, . . . , vn+1}
is a unital disjoint system in A. Putting λn+1 = λn, we obtain, by
Lemma 2.5, that

(3.8) p

( n+1∑
i=1

λivi

)
=

n+1∑
i=1

p

(
λi

)
vi = 0.

Moreover, (3.1) and (3.6) imply that vn+1 ∈ a. Indeed,

a (vn+1) = a

(
1−

n∑
i=1

vi

)
= a (1)−

n∑
i=1

a (vi)

= a (1)−
n∑

i=1

a (ei) = 0 in A/a.

Furthermore, from (3.2), it follows that there exists g ∈ a such that

f = g +
n∑

i=1

λiei = g +
n∑

i=1

λivi +
n∑

i=1

λiui.

Put

f0 = −g −
n∑

i=1

λiui + λn+1vn+1

(recall that λn+1 = λn). Clearly, f0 ∈ a because g, vn+1, ui ∈ a for all
i ∈ {1, . . . , n}. Finally,

f0 + f = −g −
n∑

i=1

λiui + λn+1vn+1 + g +
n∑

i=1

λiei =
n+1∑
i=1

λivi,

and so

p (f0 + f) = p

( n+1∑
i=1

λivi

)
= 0

(where we use (3.8)). This finishes the proof of the theorem. �

In what follows, we shall discuss a particular case of Theorem 3.2.
First, recall that the f -algebra A is said to be bounded inversion closed
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if

1 ≤ f in A implies that f is a unit (i.e., has an inverse) in A.

It was proved by Henriksen, Isbell and Johnson in [10, Lemma 1.1] that
a Φ-algebra (i.e., an archimedean f -algebra with identity) is bounded
inversion closed if and only if any maximal ring ideal is convex (and
thus an ℓ-ideal). Actually, nowhere in the proof is it used that the
f -algebra under consideration is archimedean or has an identity. It
follows that it goes over any f -algebra.

Proposition 3.3. An f -algebra A is bounded inversion closed if and
only if every maximal ring ideal in A is an ℓ-ideal.

The following consequence of Theorem 3.2 and Proposition 3.3 is the
last result of this section. It will be extremely useful for the concrete
situation discussed in the final section of this work.

Corollary 3.4. Let A be a bounded inversion closed f -algebra and
a ∈ IM(A). Then A is polynomially a-ideal if and only if idempotents
lift modulo a.

Proof. Taking into account Theorem 3.2, it suffices to observe that a
is a semiprime ℓ-ideal in A. Since any maximal ring ideal in A is prime, a
turns out to be an intersection of prime ring ideals and then semiprime.
Moreover, from Proposition 3.3, it follows that any maximal ring ideal
in A is an ℓ-ideal. But then a is again an ℓ-ideal (as an intersection of
ℓ-ideals) and the corollary follows. �

4. Polynomially ideal C(X)-type f-algebras. In this section, we
shall use by and large the great text [9] by Gillman and Jerison as the
main reference on C(X)-type f -algebras, unless it conflicts with the by
now standard notation and terminology. For instance, strongly zero-
dimensional spaces are called in [9] just zero-dimensional spaces. We
use the term zero-dimensional for a space with a base of clopen sets.

Let C(X) indicate the commutative f -algebra of all continuous
real-valued functions on a Tychonoff space (i.e., a completely regular
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Hausdorff space) X. The constant function 1 ∈ C(X) defined by

1 (x) = 1 for all x ∈ X

is the identity of C(X). Moreover, the characteristic function of a
subset Y of X is denoted by 1Y . Hence, e ∈ C(X) is idempotent if
and only if e = 1V for some clopen set V in X. Recall that IM(C(X))
denotes the set of all intersections of maximal ring ideals in C(X).
Hence, a ring ideal a in C(X) is in IM(C(X)) if and only if there exists
a family {mi}i∈I of maximal ring ideals in C(X) such that a = ∩

i∈I
mi.

Let us give the C(X)-version of Corollary 3.4.

Lemma 4.1. Let X be a Tychonoff space and a ∈ IM(C(X)). Then
C(X) is polynomially a-ideal if and only if idempotents lift modulo a.

Proof. This follows directly from Corollary 3.4 because C(X) is a
bounded inversion closed f -algebra. �

In other words, if a ∈ IM(C(X)), then C(X) is polynomially a-ideal
if and only if, for every f ∈ C(X) with f2 − f ∈ a, there exists f0 ∈ a
such that f0 + f is a characteristic function in C(X).

Recall that an element in a ring is said to be clean if it may be
written as a sum of a unit and idempotent. The ring itself is called
clean if every element is clean. Moreover, let IM0(C(X)) denote the
set of all intersections of fixed maximal ideals in C(X). Of course,
IM0(C(X)) is a subset of IM(C(X)).

We arrive at this point to the main result of this paper (the second
and fourth assertions were added after a recommendation by the
referee).

Theorem 4.2. Let X be a Tychonoff space. Then the following are
equivalent :

(i) C(X) is polynomially a-ideal for all a ∈ IM(C(X)).
(ii) C(X) is polynomially a-ideal for all a ∈ IM0(C(X)).
(iii) X is strongly zero-dimensional.
(iv) C(X) is a clean ring.
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Proof.

(i) ⇒ (ii). Trivial.

(ii) ⇒ (iii). Let f, g ∈ C(X) such that Z(f) and Z(g) are two
disjoint zero-sets in X. We claim that Z(f) and Z(g) are separated by
a partition of X (for partitions, see [9, Section 16.12]). To this end,
observe that the function |f | + |g| does not vanish and so a function
e ∈ C(X) can be defined by

e =
|f |

|f |+ |g|
.

Obviously,
e [Z (f)] = {0} and e [Z (g)] = {1} .

Define

a = {f ∈ C (X) : f (x) = 0 for all x ∈ Z (f) ∪ Z (g)} .

It is not hard to see that a ∈ IM0(C(X)). Furthermore, a simple
calculation reveals that e2 − e ∈ a. Since C(X) is polynomially a-ideal
and a ∈ IM (C(X)), Lemma 4.1 shows that there exists e0 ∈ a such
that e0+ e is a characteristic function in C(X). Put V = (e0+ e)←(1),
and observe that V is a clopen set in X (actually, e0 + e = 1V ). If
x ∈ Z(f), then e0(x) = e(x) = 0, and so

(e0 + e) (x) = e0 (x) + e (x) = 0.

Hence, Z(f) ⊂ W = X − V. Analogously, if x ∈ Z(g), then e0(x) = 0
and e(x) = 1. Thus,

(e0 + e) (x) = e0 (x) + e (x) = 1.

This yields that Z(g) ⊂ V . Consequently, Z(f) and Z(g) are separated
by a partition of X, as required. But then [9, Theorem 16.17] implies
that X is strongly zero-dimensional.

(iii) ⇒ (iv). See [1, Theorem 2.5] or [13, Theorem 13].

(iv) ⇒ (i). Combining Corollary 1.3 and Proposition 1.8 in [15],
we derive that idempotents lift modulo any ideal a in C(X). Thus,
idempotents lift modulo any a in IM(C(X)). This, together with
Lemma 4.1 leads directly to (i) and completes the proof. �
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Recall that a compact Hausdorff space is strongly zero-dimensional
if and only if it is zero-dimensional. We get the following result, which
was suggested to us by the referee.

Corollary 4.3. Let X be a Tychonoff space. Then C(X) is polynomi-
ally a-ideal for all a ∈ IM(C(X)) if and only if C∗(X) is polynomially
a-ideal for all a ∈ IM(C∗(X)).

Proof. Applying Theorem 4.2 to the Stone-Čech compactification
βX of X, we derive that C∗(X) = C(βX) is polynomially a-ideal for
all a ∈ IM(C∗(X)) if and only if βX is (strongly) zero-dimensional.
Thus, C∗(X) is polynomially a-ideal for all a ∈ IM(C∗(X)) if and only
ifX is strongly zero-dimensional. Theorem 4.2 completes the proof. �

The result by Miers mentioned in the introduction becomes a special
case of Theorem 4.2.

Corollary 4.4. (Miers [14, Theorem 1]). Let X be a compact Haus-
dorff space. Then C(X) is polynomially a-ideal for every uniformly
closed ideal if and only if X is totally disconnected.

Proof. Since X is compact, from [9, Problem 7Q] it follows that
IM(C(X)) is the set uniformly closed ideals in C(X). Moreover, by
[9, Theorem 16.17], the space X is totally disconnected if and only
if X is strongly zero-dimensional. The rest follows directly from the
previous theorem. �

Recall that I(C(X)) is the set of all ring ideals in C(X). As noticed
earlier, it is natural to ask when C(X) is polynomially a-ideal for all
a ∈ I(C(X)). The last result of this paper answers this question.

Corollary 4.5. Let X be a Tychonoff space. Then C(X) is polynomi-
ally a-ideal for all a ∈ I(C(X)) if and only if X is a P -space.

Proof. Suppose that C(X) is polynomially a-ideal for every a ∈
I(C(X)). Let f ∈ C(X) and a denote the principal ideal in C(X)
generated by f2. In particular, p(f) ∈ a, where p(x) = x2. Since C(X)
is polynomially a-ideal, there is f0 ∈ a with

(f + f0)
2
= p (f + f0) = 0.



492 KARIM BOULABIAR AND SAMIR SMITI

Hence, f = −f0 ∈ a and so f = f2g for some g ∈ C(X). This, together
with [9, Problem 4J] yields that X is a P -space, indeed.

Conversely, suppose that X is a P -space. Hence, X is strongly zero-
dimensional (see [9, Problems 4K, 16O]). By Theorem 4.2, we infer
that C(X) is polynomially a-ideal for all a ∈ IM(C(X)). Moreover,
the equality I(C(X)) = IM(C(X)) holds because X is a P -space (see
again [9, Problem 4J]). It follows that C(X) is polynomially a-ideal
for all a ∈ I(C(X)), and the proof is complete. �
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