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STANLEY CONJECTURE ON MONOMIAL IDEALS
OF MIXED PRODUCTS

GAETANA RESTUCCIA, ZHONGMING TANG AND ROSANNA UTANO

ABSTRACT. It is proved that the Stanley conjecture
holds for monomial ideals of mixed products, i.e., if I is
an ideal of mixed products in a polynomial ring S over
a field, then sdepthS(I) ≥ depthS(I) and sdepthS(S/I) ≥
depthS(S/I).

1. Introduction. Let S = K[x1, . . . , xn] be the polynomial ring in
n variables over a field K and M a finitely generated Zn-graded S-
module. A Stanley decomposition D of M is a finite direct sum of
K-spaces:

D : M =

r⊕
i=1

miK[Zi],

where mi ∈ M is homogeneous and Zi ⊆ {x1, . . . , xn}, i = 1, . . . , r, and
its Stanley depth, sdepthS(D), is defined as min {|Zi| | i = 1, . . . , r}.
By definition, the Stanley depth of M is the following

sdepthS(M)=max {sdepthS(D) | D is a Stanley decomposition of M}.

Stanley [13] conjectured that sdepthS(M) ≥ depthS(M). There has
been much research on this conjecture, especially when M has the form
S/I or I with I a square-free monomial ideal of S, cf., [8, 9, 10, 14]. In
this paper, we consider the case where I is an ideal of mixed products.

Let S = K[x1, . . . , xn, y1, . . . , ym], S1 = K[x1, . . . , xn] and S2 =
K[y1, . . . , ym] be polynomial rings over K. Let I ⊂ I ′ ⊂ S1 and
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J ⊂ J ′ ⊂ S2 be non zero monomial ideals. We call a generalized
mixed product of ideals the ideal defined as

L = (I ′J + IJ ′)S.

If I = Iq and I ′ = Ir are square-free Veronese monomial ideals in S1,
and J = Js and J ′ = Jt are square-free Veronese monomial ideals in S2,
i.e., they are generated by all the square-free monomials of degree q, r,
s and t, respectively, we recover the class of ideals of mixed products,
as defined in [12]. In particular, if the ideal L has the form IrJr
or IrJr−1 + Ir−1Jr, L is the generalized graph ideal of a complete
bipartite graph whose vertices are x1, . . . , xn, y1, . . . , yn ([12]). From
the geometric point of view we can look at L as the ideal I∆ where ∆ is a
simplicial complex and I∆ is its Stanley-Reisner ideal. In particular, for
L = Ir + Jr, as before, the structure of the simplicial complex ∆ is not
difficult to understand, being the join ∆1 ∗∆2 of two disjoint simplicial
complexes consisting of the (r − 1)-skeletons of two (r − 1)-simplices
on the sets of vertices {x1, . . . , xn} and {y1, . . . , yn}, respectively, with
Ir = I∆1 and Jr = I∆2 . We refer to [1, 15] for basic properties of
Stanley-Reisner ideals.

Section 2 consists of background material on depth and Stanley
depth of ideals IS + JS, IS ∩ JS, S/(IS + JS) and S/(IS ∩ JS). In
Section 3, we give lower bounds for the Stanley depth of ideals of
generalized mixed products L = (I ′J + IJ ′)S and of S/L, under some
hypotheses. These assumptions are not strong, since they are verified
for large classes of ideals (for example, in the Veronese square-free case).
In Section 4, the Stanley depth conjecture is verified for the class of
ideals of mixed products as defined in [5, 12].

2. Preliminaries. Let S = K[x1, . . . , xn, y1, . . . , ym], S1 = K[x1,
. . . , xn] and S2 = K[y1, . . . , ym]. For 1 ≤ q ≤ n (respectively,
1 ≤ p ≤ m), denote the ideal of S1 (respectively, S2) generated
by all the square-free monomials of degree q (respectively, p) by Iq
(respectively, Jp).

Lemma 2.1. ([5, Theorems 3.4 and 3.7]). Let 1 ≤ q < s, 1 ≤ t < r.
Then

(1) depthS(S/IqS) = m+ q − 1, depth (S/JtS) = n+ t− 1;
(2) depthS(S/(IqJt)S) = q + t− 1;
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(3) depthS(S/(Iq + Jt)S) = q + t− 2;
(4) depthS(S/(IqJr + Is)S) = q + r − 1;
(5) depthS(S/(IqJr + IsJt)S) = min{q + r, s+ t} − 1.

The following lemma is a result observed in the proof of [3, Theorem
3.1].

Lemma 2.2. Let H be a multigraded S1-module and L a multigraded
S2-module. Then, as multigraded S-modules,

sdepthS(H ⊗K L) ≥ sdepthS1
(H) + sdepthS2

(L).

For the Stanley depth, we have the following

Lemma 2.3. Let I ⊂ S1 and J ⊂ S2 be monomial ideals. Then

(1) ([2, Theorem 1.3]). sdepthS(IS + JS) ≥ min{sdepthS(IS),
sdepthS2

(J) + sdepthS1
(S1/I)};

(2) ([7, Lemma 1.2]). sdepthS(IS∩JS) ≥ sdepthS1
(I)+sdepthS2

(J);
(3) ([11, Theorem 3.1]). sdepthS(S/(IS+JS)) ≥ sdepthS1

(S1/I)+
sdepthS2

(S2/J);
(4) ([2, Theorem 1.3]). sdepthS(S/(IS∩JS))≥min{sdepthS(S/IS),

sdepthS1
(I) + sdepthS2

(S2/J)};
(5) sdepthS(IS/(IS ∩ JS)) ≥ sdepthS1

(I) + sdepthS2
(S2/J).

Proof. For item (5), note that IS∩JS = (IJ)S and IS/(IS∩JS) ∼=
I ⊗K S2/J as K-spaces. Then the result follows from Lemma 2.2. �

From [4, Proposition 3.1], we have

Lemma 2.4.

(1) sdepthS1
(S1/Iq) = q − 1;

(2) Let I = (u1, . . . , ur) be a square-free monomial ideal of S1.
Then

sdepthS1
(I) ≥ min {deg (ui) | i = 1, . . . , r}.

Then, by [4, Lemma 3.6], sdepthS(S/IqS) = m + q − 1 and
sdepthS(IS) = m+ sdepthS1

(I), especially sdepthS(IqS) ≥ m+ q.



80 G. RESTUCCIA, Z. TANG AND R. UTANO

3. Stanley depths of generalized mixed products of ideals.
Let I ⊂ I ′ ⊂ S1 and J ⊂ J ′ ⊂ S2 be nonzero monomial ideals. We call
the following ideal of S as a generalized mixed product of ideals:

(I ′J + IJ ′)S.

For the generalized mixed products of ideals, the following four
propositions estimate their Stanley depths.

Proposition 3.1.

(1) sdepthS((IJ)S) ≥ sdepthS1
(I) + sdepthS2

(J);
(2) sdepthS(S/(IJ)S) ≥ sdepthS2

(S2/J) + min{sdepthS1
(I),

sdepthS1
(S1/I) + 1}.

Proof.

(1) Since (IJ)S = IS ∩ JS, it follows from Lemma 2.3 (2).
(2) Firstly, note that sdepthS2

(S2/J) ̸= m; otherwise, S2/J = uS2

for some monomial u. If u = 1, then J = 0, and if u ̸= 1, then
1 ∈ J , a contradiction. Then, by Lemma 2.3 (4), we have

sdepthS(S/(IJ)S) = sdepthS(S/(IS ∩ JS))

≥ min {sdepthS1
(S1/I) +m,

sdepthS2
(S2/J) + sdepthS1

(I)}
≥ min {sdepthS1

(S1/I) + sdepthS2
(S2/J) + 1,

sdepthS2
(S2/J) + sdepthS1

(I)}
= sdepthS2

(S2/J) + min {sdepthS1
(I),

sdepthS1
(S1/I) + 1}. �

Proposition 3.2. sdepthS((I+J)S) ≥ sdepthS2
(J)+min{sdepthS1

(I),
sdepthS1

(S1/I)}.

Proof. By virtue of Lemma 2.3 (1), one gets

sdepthS((I + J)S)≥min{sdepthS1
(I) +m, sdepthS2

(J)

+sdepthS1
(S1/I)}

≥min {sdepthS1
(I)+sdepthS2

(J), sdepthS2
(J)

+ sdepthS1
(S1/I)}
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= sdepthS2
(J)+min{sdepthS1

(I), sdepthS1
(S1/I)}. �

Proposition 3.3.

(1) Suppose that sdepthS2
(J) > sdepthS2

(S2/J). Then

sdepthS((I
′J + I)S) ≥ sdepthS2

(S2/J)

+ min {sdepthS1
(I ′) + 1, sdepthS1

(I)}.

(2) Suppose that sdepthS1
(S1/I) > sdepthS1

(S1/I
′). Then

sdepthS(S/(I
′J + I)S) ≥ sdepthS1

(S1/I
′)

+ min {sdepthS2
(J), sdepthS2

(S2/J) + 1}.

Proof.

(1) As K-spaces, we have the following decompositions

(I ′J + I)S ∼= (I ′J)S ⊕ (I ′J + I)S

(I ′J)S

∼= (I ′J)S ⊕ IS

(I ′J)S ∩ IS

= (I ′J)S ⊕ IS

IS ∩ JS ∩ I ′S

= (I ′J)S ⊕ IS

IS ∩ JS
.

It follows from Lemma 2.3 (5) that

sdepthS((I
′J + I)S)

≥ min {sdepthS((I ′J)S), sdepthS(IS/(IS ∩ JS))}
≥ min {sdepthS1

(I ′) + sdepthS2
(J), sdepthS1

(I)

+ sdepthS2
(S2/J)}.

Under the assumption that sdepthS2
(J) > sdepthS2

(S2/J), it
turns out that

sdepthS((I
′J + I)S) ≥ sdepthS2

(S2/J)

+ min{sdepthS1
(I ′) + 1, sdepthS1

(I)}.
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(2) As K-spaces, we have the following decompositions

S/(I ′J + I)S ∼=
S

(J + I)S
⊕ (J + I)S

(I ′J + I)S

=
S

(J + I)S
⊕ (J + I)S

I ′S ∩ (J + I)S

∼=
S

(J + I)S
⊕ (I ′ + J + I)S

I ′S

=
S

(J + I)S
⊕ (I ′ + J)S

I ′S

∼=
S

(J + I)S
⊕ JS

I ′S ∩ JS
.

Then, it follows from Lemma 2.3 (3) and (5) that

sdepthS(S/(I
′J + I)S)

≥ min {sdepthS(S/(J + I)S),

sdepthS(JS/(I
′S ∩ JS))}

≥ min {sdepthS1
(S1/I) + sdepthS2

(S2/J),

sdepthS2
(J) + sdepthS1

(S1/I
′)}.

If sdepthS1
(S1/I) > sdepthS1

(S1/I
′), then

sdepthS(S/(I
′J + I)S) ≥ sdepthS1

(S1/I
′)

+ min{sdepthS2
(J), sdepthS2

(S2/J) + 1}. �

Proposition 3.4.

(1) sdepthS((I
′J + IJ ′)S) ≥ min {sdepthS1

(I) + sdepthS2
(J ′),

sdepthS1
(I ′/I) + sdepthS2

(J)};
(2) Suppose that sdepthS1

(S1/I) > sdepthS1
(S1/I

′). Then

sdepthS(S/(I
′J + IJ ′)S)

≥ min {sdepthS1
(S1/I

′) + min {sdepthS2
(J),

sdepthS2
(S2/J) + 1}, sdepthS1

(I)

+ sdepthS2
(S2/J

′)}.
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Proof.

(1) As K-spaces, we have the following decompositions

(I ′J + IJ ′)S ∼= (IJ ′)S ⊕ (I ′J + IJ ′)S

(IJ ′)S

∼= (IJ ′)S ⊕ (I ′J)S

IS ∩ J ′S ∩ I ′S ∩ JS

= (IJ ′)S ⊕ (JI ′)S

(JI)S

∼= (IJ ′)S ⊕ (J ⊗K
I ′

I
)S.

Since sdepthS((J⊗K (I ′/I))S) ≥ sdepthS1
(I ′/I)+sdepthS2

(J)
by Lemma 2.2, it follows that

sdepthS((I
′J + IJ ′)S)

≥ min

{
sdepthS((IJ

′)S), sdepthS

((
J ⊗K

I ′

I

)
S

)}
≥ min {sdepthS1

(I) + sdepthS2
(J ′),

sdepthS1
(I ′/I) + sdepthS2

(J)}.

(2) As K-spaces, the following decompositions hold

S/(I ′J + IJ ′)S ∼=
S

(I ′J + I)S
⊕ (I ′J + I)S

(I ′J + IJ ′)S

=
S

(I ′J + I)S
⊕ (I ′J + I)S

(I ′J + I)S ∩ J ′S

∼=
S

(I ′J + I)S
⊕ (I ′J + I)S + J ′S

J ′S

=
S

(I ′J + I)S
⊕ (I + J ′)S

J ′S

∼=
S

(I ′J + I)S
⊕ IS

IS ∩ J ′S
.

By the assumption that sdepthS1
(S1/I) > sdepthS1

(S1/I
′),

from Proposition 3.3 (2), we have

sdepthS(S/(I
′J + IJ ′)S)

≥ min {sdepthS(S/(I ′J + I)S),
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sdepthS(IS/(IS ∩ J ′S))}
≥ min {sdepthS1

(S1/I
′)

+ min {sdepthS2
(J), sdepthS2

(S2/J) + 1},
sdepthS1

(I) + sdepthS2
(S2/J

′)}. �

4. Stanley conjecture on ideals of mixed products. Let S =
K[x1, . . . , xN ] be a polynomial ring over a field K and L a square-free
monomial ideal of S. We say that L is an ideal of mixed products if
there exists an integer n such that 1 ≤ n < N and

L = (IqJr + IsJt)S, 0 ≤ q < s ≤ n, 0 ≤ t < r ≤ N − n,

where Iq (respectively, Is) is the square-free monomial ideal of K[x1,
. . . , xn] generated by all the square-free monomials of degree q (respec-
tively, s), and Jr (respectively, Jt) is the square-free monomial ideal of
K[xn+1, . . . , xN ] generated by all the square-free monomials of degree r
(respectively, t). We use the convention that I0 = K[x1, . . . , xn] and
J0 = K[xn+1, . . . , xN ].

Now we can prove that the Stanley conjecture holds for ideals
of mixed products. It should be noticed that the following case
L = (IqJt)S = IqS ∩ JtS was done in [7, 10], especially [6, Corollary
1.12 and Theorem 2.1]. For the completion, we give a direct proof.

Theorem 4.1. Let L ⊂ S be a monomial ideal of mixed products.
Then

(a) sdepthS(L) ≥ depthS(L);
(b) sdepthS(S/L) ≥ depthS(S/L).

Proof. Use the notation as above, and set S1 = K[x1, . . . , xn] and
S2 = K[xn+1, . . . , xN ]. We will prove (a) and (b) according to L’s
following forms:

(1) IqS, JtS;
(2) (IqJt)S;
(3) (Iq + Jt)S;
(4) (IqJr + Is)S;
(5) (IqJr + IsJt)S,

where 1 ≤ q < s ≤ n, 1 ≤ t < r ≤ N − n.
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(1) When L = IqS or JtS, it is clear from Lemma 2.4 and Lemma
2.1 (1).

(2) By Proposition 3.1 and Lemma 2.1 (2), we have

sdepthS((IqJt)S) ≥ sdepthS1
(Iq) + sdepthS2

(Jt)

≥ q + t = depthS((IqJt)S); sdepthS(S/(IqJt)S)

≥ sdepthS2
(S2/Jt) + min {sdepthS1

(Iq), sdepthS1
(S1/Iq) + 1}

≥ t− 1 + min {q, q − 1 + 1}
= q + t− 1 = depthS(S/(IqJt)S).

(3) By Proposition 3.2, Lemma 2.3 (3) and Lemma 2.1 (3), we have

sdepthS((Iq + Jt)S)

≥ sdepthS2
(Jt) + min {sdepthS1

(Iq), sdepthS1
(S1/Iq)}

≥ t+ {q, q − 1} = q + t− 1

= depthS((Iq + Jt)S); sdepthS(S/(Iq + Jt)S)

≥ sdepthS1
(S1/Iq) + sdepthS2

(S2/Jt)

= q − 1 + t− 1 = q + t− 2

= depthS(S/(Iq + Jt)S).

(4) Since sdepthS2
(Jr) ≥ r > r − 1 = sdepthS2

(S2/Jr), it follows
from Proposition 3.3 (1) and Lemma 2.1 (4) that

sdepthS((IqJr + Is)S)

≥ sdepthS2
(S2/Jr) + min{sdepthS1

(Iq) + 1, sdepthS1
(Is)}

≥ r − 1 + min{q + 1, s} = q + r

= depthS((IqJr + Is)S).

Since sdepthS1
(S1/Is) = s− 1 > q− 1 = sdepthS1

(S1/Iq), it
follows from Proposition 3.3 (2) and Lemma 2.1 (4) that

sdepthS(S/(IqJr + Is)S)

≥ sdepthS1
(S1/Iq)

+ min {sdepthS2
(Jr), sdepthS2

(S2/Jr) + 1}
≥ q − 1 + min {r, r − 1 + 1} = q + r − 1

= depthS(S/(IqJr + Is)S).
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(5) Note that sdepthS1
(Iq/Is) ≥ q by [4, Proposition 3.1]. Then,

from Proposition 3.4 (1) and Lemma 2.1 (5), we obtain

sdepthS((IqJr + IsJt)S)

≥ min {sdepthS1
(Is) + sdepthS2

(Jt),

sdepthS1
(Iq/Is) + sdepthS2

(Jr)}
≥ min {s+ t, q + r}
= depthS((IqJr + IsJt)S).

Since sdepthS1
(S1/Is) = s− 1 > q − 1 = sdepthS1

(S1/Iq), it follows
from Proposition 3.4 (2) and Lemma 2.1 (5) that

sdepthS(S/(IqJr + IsJt)S)

≥ min {sdepthS1
(S1/Iq)

+ min{sdepthS2
(Jr), sdepthS2

(S2/Jr)+1},
sdepthS1

(Is) + sdepthS2
(S2/Jt)}

≥ min {q−1 + min {r, r−1 + 1}, s+ t−1}
= min {q + r, s+ t} − 1

= depthS(S/(IqJr + IsJt)S). �

It is known that the above theorem holds for any monomial ideal
L with N ≤ 5 or if L is an intersection of four monomial prime ideals
(cf., [8, 9, 10, 14]). The following example demonstrates that the set
of ideals of mixed products involves more ideals on which the Stanley
conjecture holds.

Example 4.2. Let S = K[x1, . . . , x6] be a polynomial ring over a field
K and

L = (I2J1 + I1J2)S = (x1x2x4, x1x3x4, x2x3x4, x1x2x5, x1x3x5,
x2x3x5, x1x2x6, x1x3x6, x2x3x6, x1x4x5, x2x4x5, x3x4x5,
x1x4x6, x2x4x6, x3x4x6, x1x5x6, x2x5x6, x3x5x6)

an ideal of mixed products, where I2 (respectively, I1) is the square-
free monomial ideal of K[x1, x2, x3] generated by all the square-free
monomials of degree 2 (respectively, 1) and J2 (respectively, J1) is the
square-free monomial ideal of K[x4, x5, x6] generated by all the square-
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free monomials of degree 2 (respectively, 1). Note that

L = (x1, x2, x3) ∩ (x4, x5, x6) ∩ (x1, x3, x5, x6) ∩ (x2, x3, x5, x6)
∩ (x1, x3, x4, x5) ∩ (x2, x3, x4, x5) ∩ (x1, x2, x4, x5)
∩ (x1, x2, x4, x6) ∩ (x1, x2, x5, x6)
∩ (x1, x3, x4, x6) ∩ (x2, x3, x4, x6)

is an intersection of prime ideals of S such that each prime ideal is
contained in the sum of the remaining prime ideals, not satisfying [10,
Theorem 2.4].
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