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ON A CLASS OF SQUAREFREE
MONOMIAL IDEALS OF LINEAR TYPE

YI-HUANG SHEN

ABSTRACT. In a recent work, Fouli and Lin generalized
Villarreal’s result and showed that if each connected compo-
nent of the line graph of a squarefree monomial ideal con-
tains at most a unique odd cycle, then this ideal is of linear
type. In this short note, we reprove this result with Villar-
real’s original ideas together with a method of Conca and De
Negri. We also propose a class of squarefree monomial ideals
of linear type.

1. Introduction. Let S be a Noetherian ring and I an S-ideal. The
Rees algebra of I is the subring of the ring of polynomials S[t]

R(I) := S[It] = ⊕i≥0I
iti.

Analogously, one has Sym(I), the symmetric algebra of I which is
obtained from the tensor algebra of I by imposing the commutative
law. The symmetric algebra Sym(I) is equipped with an S-module
homomorphism π : I → Sym(I) which solves the following universal
problem. For a commutative S-algebra B and any S-module homo-
morphism φ : I → B, there exists a unique S-algebra homomorphism
Φ : Sym(I) → B such that the diagram is commutative:

I
φ //

π

��

B

Sym(I) .

Φ

;;vvvvvvvvv
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Both Rees and symmetric algebras have been studied by many
authors from different point of views. For instance, it is known that
there is a canonical surjection α : Sym(I)�R(I). When S is an integral
domain, the kernel of α is just the S-torsion submodule of Sym(I) (cf.,
[13, page 3]). The main purpose of this article is to investigate when
the canonical map α is an isomorphism; whence, I is called an ideal of
linear type.

Suppose I = ⟨f1, . . . , fs⟩, and consider the presentation ψ : S[T ] :=
S[T1, . . . , Ts] → S[It] defined by setting ψ(Ti) = fit. Since this map is
homogeneous, the kernel J =

⊕
i≥1 Ji is a graded ideal; it will be called

the defining ideal of R(I) (with respect to this presentation). Since the
linear part J1 generates the defining ideal of Sym(R) (cf., [13, page
2]), I is of linear type if and only if J = ⟨J1⟩.

From now on, we assume that S = K[x1, . . . , xn] is a polynomial
ring over the field K and I is a monomial ideal. In this case, Conca
and De Negri introduced the notion of the M -sequence (which we will
investigate in Section 2) and showed in [3, Theorem 2.4.i] that if I is
generated by an M -sequence of monomials, then I is of linear type,

If, in addition, I is squarefree, it can be realized as the facet ideal
of some simplicial complex ∆ with vertex set [n] := { 1, 2, . . . , n }. Let
F(∆) be the set of facets of ∆. Recall that a facet F ∈ F(∆) is called
a (simplicial) leaf if either F is the only facet of ∆ or there exists a
distinct G ∈ F(∆) such that H ∩ F ⊂ G ∩ F for each H ∈ F(∆) with
H ̸= F . The simplicial complex ∆ is called a (simplicial) forest if each
subcomplex of ∆ still has a leaf. And a connected forest is called a
(simplicial) tree. In this situation, Soleyman Jahan and Zheng [10,
Theorem 1.14] showed that I is generated by an M -sequence if and
only if ∆ is a forest. Thus, the forest facet ideals are of linear type.

Squarefree monomial ideals of degree 2 can also be realized as the
edge ideal of some finite simple graph G. When this G is connected,
Villarreal [14, Corollary 3.2] showed that I is of linear type if and only
if G is a tree or contains a unique odd cycle. Fouli and Lin generalized
this pattern to higher degrees. Let G = L(I) be the line graph of
I. Then the vertices vi of G correspond to the minimal monomial
generators fi of I, respectively, and { vi, vj } is an edge of G if and only
if gcd(fi, fj) ̸= 1. This G is also known as the generator graph of I.
If G is a forest or each connected component of G contains at most a
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unique odd cycle, Fouli and Lin [7, Theorem 3.4] showed that I is of
linear type. We will generalize this result and propose a new class of
monomial ideals of linear type.

This paper is organized as follows. In Section 2, we introduce the
notion of anM -element and show that the class of squarefree monomial
ideals of linear type is closed under the operation of addingM -elements.
In Section 3, we consider simplicial cycles, which are introduced by
Caboara, Faridi and Selinger [2], and study the linear type property.
In Section 4, we generalize some of Villarreal’s results and ideas. In
particular, we will reprove Fouli and Lin’s results. In Section 5, we
introduce the Villarreal class of simplicial complexes and show that
corresponding squarefree ideals are of linear type. In the final section,
we consider the notion of cycles introduced by other authors.

2. M-elements. Throughout this section, let I be a squarefree
monomial ideal in S = K[x1, . . . , xn] with the minimal monomial
generating set G(I) = { f1, . . . , fs }. We also write I ′ = ⟨f2, . . . , fs⟩.

Definition 2.1. Following the spirit of Conca and De Negri [3], we
say f1 is an M -element of I, if there exists a total order on the set of
indeterminates that appear in f1, say x1 < · · · < xr with f1 = x1 · · ·xr,
such that whenever xk | fj with 1 ≤ k ≤ r and 1 < j, then xk · · ·xr | fj .
If f1 is an M -element of I, we say I is obtained from I ′ by adding an
M -element.

Thus, the sequence of squarefree monomials f1, . . . , fs is an M -
sequence in the sense of [3] if and only if fi is an M -element of the
ideal ⟨fi, fi+1, . . . , fs⟩ for each i with 1 ≤ i ≤ s.

Recall that a variable xi is called a free variable of I if there exists
an index u ∈ [s] such that xi|fu and xi ̸ | fj for any j ̸= u. If
k = 1 in Definition 2.1, then f1 = x1 · · ·xr | fj , which contradicts
the assumption that G(I) = { f1, . . . , fr } is the minimal monomial
generating set of I. Thus, a necessary condition for f1 to be an M -
element is that f1 contains a free variable.

Now, consider the presentation

ψ : S[T ] → R(I)
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defined by setting ψ(Ti) = fit, and denote by J the kernel of ψ.
Similarly, we consider the presentation

ψ′ : S[T ′] := S[T2, . . . , Ts] −→ R(I ′)

defined by setting ψ′(Ti) = fit, and denote by J ′ the kernel of ψ′.
Obviously, J ′S[T ] ⊆ J . Following [3], we set

mij = fi/ gcd(fi, fj) and lij = mijTj −mjiTi

for all 1 ≤ i < j ≤ s. Let τ be a monomial order on S[T ] such
that the initial term inτ (lij) = mijTj ; for instance, one can take the
lexicographic order induced by the total order Ts > · · · > T1. This τ
induces a monomial order on S[T ′], which we shall denote by τ ′.

Proposition 2.2 (Essentially [3, Theorem 2.4.i]). Suppose f1 is an
M -element, and { v1, . . . , vr } forms a Gröbner basis of J ′ with respect
to τ ′. Then

{ l1j | 2 ≤ j ≤ s } ∪ { v1, . . . , vr }

forms a Gröbner basis of J with respect to τ .

Proof. We argue by contradiction. Suppose the claim is false. Write

Q = {m1jTj | 2 ≤ j ≤ s } ∪ { inτ ′(vj) | 1 ≤ j ≤ r } .

Notice that J has a universal Gröbner basis consisting of binomial
relations by [11, Lemma 2.2]. Thus, it suffices to consider a binomial
relation f := aTα − bT β ∈ J with a, b ∈ S being monomials and the
initial monomials of f being not in Q. As a matter of fact, we may
further assume that

(1) gcd (aT α, bT β) = 1;
(2) neither aT α nor bT β is divisible by any monomial in Q.

Let i be the smallest index such that Ti appears in T α or in T β .
If i ̸= 1, then f ∈ J ′. This contradicts the choice of { v1, . . . , vt }.
If i = 1, by symmetry, we may assume that T1|Tα. Consequently,
f1|aψ(Tα) = bψ(T β). We have two cases.

(i) If f1|b, we can let Tj be any of the indeterminates in T β. Then
m1jTj |f1Tj |bT β. Since 1 < j, this contradicts assumption 2
above.
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(ii) Otherwise, f1 = x1 · · ·xr ̸ | b. Suppose the indeterminates are or-
dered as in Definition 2.1 and k ∈ [r] is the minimal index such
that xk ̸ | b. If k ≥ 2, then x1 · · ·xk−1|b. On the other hand,
since xk|f1|bψ(T β), there is some j such that Tj |T β and xk|fj .
Since 1 < j and f1 is an M -element, one has xk · · ·xr|fj . Con-
sequently, xk · · ·xr| gcd(f1, fj) and m1j |x1 · · ·xk−1|b. It follows
that m1jTj |bT β. This contradicts assumption 2 again.

If, instead, k = 1, we will find a similar j > 1 and conclude that
f1 = x1 · · ·xr|fj . This contradicts the minimality of G(I). �

According to [3], the ideal I is of Gröbner linear type if the linear
relations in the defining ideal J form a Gröbner basis of J (with respect
to some monomial order on S[T ]).

Corollary 2.3. If I ′ is of Gröbner linear type with respect to τ ′, then
I is of Gröbner linear type with respect to τ .

Corollary 2.4. If I ′ is of linear type, then so is I.

Proof. Following Proposition 2.2, each binomial relation aTα −
bT β ∈ J can be written as an S[T ]-linear combination of {l1j |2≤j≤s}
∪ { v1, . . . , vr }. If I ′ is of linear type, each vk in { v1, . . . , vr } can be
written as an S[T ′]-linear combination of { lij ∈ J ′ | 2 ≤ i < j ≤ s }.
Thus, J is generated by its linear part and I is of linear type. �

Question 2.5. If the ideal I is of linear type, is I ′ also of linear type?

Question 2.6. If Γ is a simplicial tree and K is its facet ideal, then

(1) K has sliding depth by [4, Theorem 1];
(2) K satisfies F1 by [4, Proposition 4];
(3) K is sequentially Cohen-Macaulay by [5, Corollary 5.6];
(4) the Rees algebra of K is normal and Cohen-Macaulay by [4, Corol-

lary 4].

Thus, it is a natural question to ask : if I ′ is a squarefree monomial
ideal that satisfies one of the above properties, will I (obtained from I ′

by adding M -elements) satisfy the same property as well?
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Let L be the class of squarefree monomial ideals of linear type.

Corollary 2.7. The class L is closed under the operation of adding
M -elements.

Proof. This is a paraphrase of Corollary 2.4. �

3. Simplicial cycles. The following notation and terminology re-
garding graphs and simplicial complexes will be fixed throughout this
work.

Let G be a simple graph. Following [14], a walk of length k in G is an
alternating sequence of vertices and edges w = {v1, z1, v2, . . . , vk−1, zk, vk},
where zi = { vi−1, vi } is the edge joining vi−1 and vi. The walk w is
closed if v0 = vk. A cycle of length k is a closed walk, in which the
vertices are distinct. A closed walk of even length is called a monomial
walk.

Let ∆ be a simplicial complex with vertex set [n] and the set of facets
F(∆) = { F1, . . . , Fs }. For each facet F ∈ F(∆), let xF =

∏
i∈F xi.

The ideal I(∆) = ⟨xF1 , . . . ,xFs⟩ is the facet ideal of ∆. The facet
set can also be treated as a clutter C, namely, a hypergraph such that
no edge of C is properly contained in any other edge of C. In this
situation, the facet ideal is also known as the edge ideal or circuit ideal
of C. Throughout this paper, when the facet ideal (respectively, edge
ideal) is of linear type, we shall say that the original simplicial complex
(respectively, clutter) is of linear type.

Following [2], two facets F and G of ∆ are strong neighbors, written
F ∼∆ G, if F ̸= G and for all facets H ∈ ∆, F ∩ G ⊂ H implies that
H = F or H = G. The simplicial complex ∆ is called a simplicial
cycle or simply a cycle if ∆ has no leaf but every nonempty proper
subcomplex of ∆ has a leaf. This definition is more restrictive than
the classic definition of (hyper)cycles of hypergraphs due to Berge [1,
page 155]. Simplicial cycles are minimal hypercycles in the sense that,
once a facet is removed, what remains is not a cycle anymore, and does
not contain one. The following theorem characterizes the structure of
simplicial cycles.

Lemma 3.1 ([2, Theorem 3.16]). Let ∆ be a simplicial complex. Then
∆ is a simplicial cycle if and only if the facets of ∆ can be written as a
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sequence of strong neighbors F1 ∼∆ F2 ∼∆ · · · ∼∆ Fs ∼∆ F1 such that
s ≥ 3 and, for all i, j,

Fi ∩ Fj =
s∩

k=1

Fk if j ̸≡ i− 1, i, i+ 1 mod n.

Let ∆ be a simplicial complex. The line graph L(∆) := L(I(∆))
is a finite graph, whose vertices vi correspond to the facets Fi of ∆
respectively, and { vi, vj } is an edge of G if and only if Fi ∩ Fj ̸= ∅. If
L(∆) is a cycle graph, we will call ∆ a linear cycle.

Remark 3.2. The previous lemma implies that simplicial cycles are
either linear cycles or cones over such a structure. If the intersection
∩Fk is indeed not empty in the previous lemma, we may assume that
∆ = conev(∆

′), where ∆′ is a simplicial complex with vertex set
[n] \ { v }. The ∆′ is a simplicial cycle and the corresponding facet
ideals satisfy I(∆) = xvI(∆

′)S. Thus, I(∆) is of linear type if and
only if I(∆′) is so.

Construction 3.3. Let ∆ be a linear cycle and I = I(∆) ⊂ S =
K[x1, . . . , xn] its facet ideal. When the length is 3, we additionally
assume that the GCD of the monomial generators of I is trivial, i.e.,
∆ is not a cone. Now each indeterminate of the polynomial ring shows
in at most two monomial generators of I. Consider a subset D (for
deletion) of these indeterminates defined as follows.

(i) If xi is a free variable, then xi ∈ D;
(ii) For each pair of monomial generators with a non-trivial common

factor f , keep one indeterminate (say, xi) of f and take all
remaining indeterminates dividing f to be in D. In this case,
the remaining indeterminates shall be called the shadows of xi.

Now, write Dc = { x1, . . . , xn }\D for the complement set and consider
the ring homomorphism χ : S → K[Dc] ⊂ S such that χ(xi) = 1 for
xi ∈ D and χ(xi) = xi for xi ∈ Dc.

Remark 3.4. Suppose R1 and R2 are affine algebras over a field K,
and let I1 ⊂ R1 and I2 ⊂ R2 be ideals. Let

I = (I1, I2) ⊂ R = R1 ⊗K R2.
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Suppose that

0 −→ L1 −→ R1[T1, . . . , Tm] −→ R1[f1t, . . . , fmt] −→ 0,

and

0 −→ L2 −→ R2[U1, . . . , Un] −→ R2[g1t, . . . , gnt] −→ 0

are algebra presentations of the Rees algebras. Then in the following
presentation of R(I),

0 −→ (L1, L2, J) −→ R[T ,U ] −→ R(I) −→ 0,

the additional generators J can be generated by the obvious Koszul
elements: giTj − fjUi; see [13, page 133]. Thus, to show that a
simplicial complex is of linear type, it suffices to show that each of
its connected components has this property.

The following work of Fouli and Lin is a partial generalization of
Villarreal’s result [14, Corollary 3.2]:

Proposition 3.5 ([7, Proposition 3.3]). Let S be a polynomial ring
over a field, and let I be a squarefree monomial ideal in S. If the line
graph L(I) of I is a disjoint union of graphs with a unique odd cycle,
then I is an ideal of linear type.

Corollary 3.6. Let ∆ be a simplicial cycle of odd length s ≥ 3. Then
the facet ideal I = I(∆) is of linear type.

Proof. This follows from Proposition 3.5 and Remark 3.2. �

Let Ik be the set of non-decreasing sequence of integers in {1, 2, . . . , s}
of length k. If α = (i1, i2, . . . , ik) ∈ Ik, set fα = fi1 · · · fik and
Tα = Ti1 · · ·Tik . For every α,β ∈ Ik, set

Tα,β =
fβ

gcd (fα,fβ)
Tα − fα

gcd (fα,fβ)
Tβ.

It is well known that the defining ideal J is generated by these Tα,β’s
with α,β ∈ Ik and k ≥ 1 (cf., [12]). Notice that, when k = 1, α = i
and β = j, then Tα,β = −lj,i which is defined before Proposition 2.2.
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Proposition 3.7 (Unwrapping local cones preserves linear-type prop-

erty). Let Ĩ be a squarefree monomial ideal in S̃ = S[xn+1] with min-

imal monomial generators G(Ĩ) = {f̃1, . . . , f̃s}. Substitute every xn+1

with 1:
fi = f̃i

∣∣∣
xn+1→1

for 1 ≤ i ≤ s,

and consider the corresponding ideal I=⟨f1, . . . , fs⟩ in S=K[x1, . . . , xn].

If Ĩ is of linear type, so is I.

Proof. Consider the presentation

ψ : S[T ] −→ R(I)

defined by setting ψ(Ti) = fit and denote by J the kernel of ψ.
Similarly, we consider the presentation

ψ̃ : S̃[T ] −→ R(Ĩ)

defined by setting ψ̃(Ti) = fit and denote by J̃ the kernel of ψ̃.

Corresponding to Ĩ, we can similarly define f̃α and T̃α,β. Now,

take any Tα,β ∈ J and consider the corresponding T̃α,β in J̃ . Notice

that f̃α is the multiplication of fα with some power of xn+1. Thus,

fα = f̃α

∣∣∣
xn+1→1

. Consequently,

T̃α,β

∣∣∣
xn+1→1

=
f̃β

gcd(f̃α, f̃β)

∣∣∣∣
xn+1→1

Tα − f̃α

gcd(f̃α, f̃β)

∣∣∣∣
xn+1→1

Tβ

=
fβ

gcd(fα,fβ)
Tα − fα

gcd(fα,fβ)
Tβ = Tα,β.

On the other hand, since T̃α,β ∈ J̃ , it can be generated in S̃[T ] by

the linear parts of J̃ :

T̃α,β =
∑

1≤i<j≤s

gi,jT̃i,j with gi,j ∈ S̃[T ].
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Now substitute xn+1 with 1, and we have

Tα,β = T̃α,β

∣∣∣
xn+1→1

=
∑

1≤i<j≤s

gi,j |xn+1→1 T̃i,j

∣∣∣
xn+1→1

=
∑

1≤i<j≤s

gi,j |xn+1→1 Ti,j with gi,j |xn+1→1 ∈ S[T ].

Thus, Tα,β can be generated in S[T ] by the linear parts of J . This
shows that I is of linear type. �

Remark 3.8. The following partial converse of Proposition 3.7 regard-
ing inserting a free variable is incorrect.

If I is a squarefree monomial ideal in S = K[x1, . . . , xn] of linear
type with minimal monomial generators G(I) = { f1, . . . , fs }, then
the ideal Ĩ = ⟨f1, . . . , fs−1, fs xn+1 ⟩ in S′ = S[xn+1] is also of

linear type.

For a counterexample, one can compare the ideals I and Ĩ in Exam-
ple 6.4.

Proposition 3.9. Let ∆ be a simplicial cycle of even length s ≥ 4.
Then the facet ideal I = I(∆) is not of linear type.

Proof. After Remark 3.2, we may assume that the line graph G of I
is a cycle of length s. Now, apply Proposition 3.7 inductively and use
the map χ in Construction 3.3 to substitute the variables in D with 1.
We are reduced to the case where the squarefree monomial ideal is the
edge ideal of a cycle graph Cs. This ideal is not of linear type by [14,
Corollary 3.2]. Thus, Proposition 3.7 implies that I is not of linear
type. �

4. Revisiting Villarreal’s results. In this section, we generalize
some of Villarreal’s results and ideas to squarefree monomial ideals of
higher degrees. In particular, we will reprove Proposition 3.5 of Fouli
and Lin.

Proposition 4.1 (Essentially Villarreal [14, Theorem 3.1]). Suppose
the line graph L(I) of the squarefree monomial ideal I is a cycle graph.
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Take the variable set D and the map χ in Construction 3.3. Then the
defining ideal J of R(I) satisfies

J = S[T ]J1 + S[T ] ·
( ∞∪

k=2

Pk

)
,

where

Pk = { Tα,β | χ(fα) = χ(fβ), for some α,β ∈ Ik } .

Proof. When the length of the cycle is 3, namely the line graph
is a triangle, we may assume that the GCD of the three monomial
generators is trivial. Now, it suffices to consider Tα,β, where α =
(i1, . . . , ik),β = (j1, . . . , jk) ∈ Ik and k ≥ 2. We only need to show
that

Tα,β ∈ S[T ]1Jk−1 + S[T ]k−1J1 + SPk.

Since the case when χ(fα) = χ(fβ) is trivial, we may assume that
χ(fα) ̸= χ(fβ). Thus, we may further assume that there is an x ∈ Dc

such that xa||fα and xb||fβ for b > a ≥ 0. Say, for instance, x|fjm .
Then χ(fjm) = xy for another y ∈ Dc. The variable y belongs
to exactly two monomial generators, one of which is fjm . If the
other generator belongs to { fi1 , . . . , fik }, we may assume that it is
fil . Otherwise, we take l = 1. Now χ(lcm(fα,fβ)) is a multiple of

χ(fjmfα\l) where fα\l := fi1 · · · f̂il · · · fik = fα/fil . We will similarly
define Tα\l.

It follows that, for each z ∈ Dc,

(‡) degz lcm(fα,fβ) ≥ degz(fjmfα\l).

Notice that, if z ∈ Dc and z′ ∈ D is one of its shadows, then
degz′ fα = degz fα. Thus, condition (‡) also holds for shadows.
Clearly, condition (‡) holds for free variables as well.

Thus, lcm(fα,fβ) is a multiple of fjmfα\l, and we may write
lcm(fα,fβ) = Afjmfα\l for some A ∈ S. Now

Tα,β=
lcm(fα,fβ)

fα
Tα−

lcm(fα,fβ)

fβ
Tβ

=

(
lcm(fα,fβ)

fα
Til−ATjm

)
Tα\l+

(
ATα\l −

lcm(fα,fβ)

fβ
Tβ\m

)
Tjm
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= µ

(
lcm(fil , fjm)

fil
Til −

lcm(fil , fjm)

fjm
Tjm

)
Tα\l

+ λ

(
lcm(fα\l,fβ\m)

fα\l
Tα\l −

lcm(fα\l,fβ\m)

fβ\m
Tβ\m

)
Tjm

= µTil,jmTα\l + λTα\l,β\mTjm ∈ S[T ]k−1J1 + S[T ]1Jk−1

for suitable µ, λ ∈ S. To justify the existence of µ, we observe that

lcm(fα,fβ)/fα

lcm(fil , fjm)/fil
=

A

lcm(fil , fjm)/fjm
.

Thus, (lcm(fα,fβ)/fα)Til − ATjm ∈J . However, (lcm(fil , fjm)/fil)Til
− (lcm(fil , fjm)/fjm)Tjm corresponds to the minimal relation between
filt and fjmt. This guarantees the existence of µ. The situation for λ
is similar. �

Example 4.2. Villarreal [14, Example 3.1] considered the ideal I
generated by f1 = x1x2x3, f2 = x2x4x5, f3 = x5x6x7 and f4 = x3x6x7
in S = K[x1, . . . , x7]. The defining ideal is generated by

x3T3 − x5T4, x6x7T1 − x1x2T4, x6x7T2 − x2x4T3,

x4x5T1 − x1x3T2, x4T1T3 − x1T2T4.

The line graph L(I) of I is a square. We can take D = { x1, x4, x6 }
and Dc = { x2, x3, x5, x7 } and define the corresponding map χ. The
variable x6 is a shadow of x7 ∈ Dc. As for the generator x4T1T3 −
x1T2T4 ∈ P2, we notice that χ(f1f3) = χ(f2f4) = x2x3x5x7.

Remark 4.3. If f ∈ G(I) corresponds to a leaf in the line graph L(I)
of I, then f is an M -element of I. Thus, when L(I) is a forest, the
ideal I is of linear type by Corollary 2.4.

Proof of Proposition 3.5. By Remarks 3.4 and 4.3, we may assume
that the line graph L(I) is a cycle. When this cycle is a triangle, we may
additionally assume that the GCD of the three monomial generators
of I is trivial. Now, take a Tα,β ∈ Pk for k ≥ 2 in Proposition 4.1.
Say α = (i1, . . . , ik) and β(j1, . . . , jk). We may further assume that
{ i1, . . . , ik } ∩ { j1, . . . , jk } = ∅.

We first consider the case that I ′ = ⟨fi1 , . . . , fik , fj1 , . . . , fjk⟩ = I
and the line graph L(I ′) is the whole cycle. We may write that
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{ fi1 , . . . , fik } = { g1, . . . , gl }, where the gp ̸= gq for p ̸= q. Suppose,
for contradiction, that gcd(gp, gq) ̸= 1 for some p ̸= q. Then x |
gcd(gp, gq) for some x ∈ Dc. Since x divides up to two monomial
generators of I, x divides none of the fjr , r = 1, . . . , k. This contradicts
the assumption that χ(fα) = χ(fβ). Hence, gcd(gp, gq) = 1 for p ̸= q.

Since the line graph L(I) is the whole cycle, we must have χ(g1 · · · gl)
=

∏
x∈Dc x. But deg(χ(g1 · · · gl)) = 2l is an even number, while #Dc

is the length of the cycle which is an odd number. This is impossible.

Thus, I ′ ̸= I and the line graph L(I ′) of I ′ must be a forest. Now I ′

is of linear type and Tα,β is a linear combination of the linear forms.
This shows that I is of linear type. �

The following result is a partial generalization of Villarreal’s [14,
Proposition 3.1].

Proposition 4.4. Let I be a squarefree monomial ideal, such that the
line graph L(I) of I is an even cycle of length s = 2k ≥ 4. Suppose that
the generators f1, . . . , f2k are ordered such that they induce a monomial
walk in L(I). Then the defining ideal J is generated by J1 and Tw :=
Tw1,w2 where w1 = (1, 3, . . . , 2k − 1) and w2 = (2, 4, . . . , 2k) ∈ Ik.

Proof. As in our (re)proof for Proposition 3.5, we may consider the
relation Tα,β ∈ Pr for α = (i1, . . . , ir) and β = (j1, . . . , jr) ∈ Is
with { i1, . . . , ir } ∩ { j1, . . . , jr } = ∅. We may as well assume that
{ fi1 , . . . , fir } = { g1, . . . , gl } with gcd(gp, gq) = 1 for p ̸= q and
χ(g1 · · · gl) =

∏
x∈Dc x. Thus, l = k and { g1, . . . , gk } equals either

{ f1, f3, . . . , f2k−1 } or { f2, f4, . . . , f2k }. Without loss of generality, we
assume that it is { f1, f3, . . . , f2k−1 }.

Notice that gcd(f1, f2) ̸= 1. Take x := χ(gcd(f1, f2)) ∈ Dc. Since x
divides only f1 and f2,

# { p | ip = 1 for 1 ≤ p ≤ r } = degx χ(Tα) = degx χ(Tβ)

= # { q | jq = 2 for 1 ≤ q ≤ r } .

Denote the above multiplicity by γ. Then one can easily show that
# { p | ip = o for 1 ≤ p ≤ r } = γ for all odd indices o in [2k]. Thus, r =
kγ and fα = (f1f3 · · · f2k−1)

γ . Similarly, we know fβ = (f2f4 · · · f2k)γ .
It is clear that Tα,β is divisible by Tw. �
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Definition 4.5. Let ∆ be a simplicial complex and F1 and F2 two
adjacent facets in ∆. A patch that covers F1 and F2 is a new facet G
to ∆ (G is not comparable with any of the existing facets of ∆), such
that

G ⊂ (F1 ∪ F2)
\ ∪

F∈F(∆)\{ F1,F2 }

F.

In Example 6.4, face G of ∆ corresponds to a patch that covers F2

and F3 in ∆′. But G̃ of ∆̃ does not.

Theorem 4.6. Suppose the simplicial complex ∆′ is a linear cycle of
even length 2k ≥ 4. Let G be a patch that covers F1 and F2 of F(∆′).
Then the simplicial complex ∆ := ⟨∆′, G⟩ is of linear type.

Proof. We may assume that the sequence F1, F2, . . . , F2k, F1 corre-
sponds to a closed walk in L(∆′). We will also write F2k+1 = G. Sup-
pose each Fi corresponds to the squarefree monomial fi in S and G cor-
responds to the squarefree monomial f2k+1 = g. Now I ′ = ⟨f1, . . . , f2k⟩
and I = ⟨I, g⟩ are the facet ideals of ∆′ and ∆, respectively.

To show I is of linear type, it suffices to check a relation Tα,β with
α = (i1, . . . , il) and β = (j1, . . . , jl) ∈ Il for l ≥ 2. We may assume
that Iα := { i1, . . . , il } ∩ Iβ := { j1, . . . , jl } = ∅ and deal with the
following cases.

(a) 2k + 1 /∈ (Iα ∪ Iβ). In this case, Tα,β deals with relations for
generators of I ′. By Proposition 4.4, we may assume that l = k
and

Tα,β = Tw =
lcm(fw1

,fw2
)

fw1

Tw1
− lcm(fw1

,fw2
)

fw2

Tw2
.

Notice that in

T2,2k+1 =
lcm(f2, f2k+1)

f2
T2 −

lcm(f2, f2k+1)

f2k+1
T2k+1,

lcm(f2, f2k+1)/f2 is a product of some free variables of f1. Thus,

lcm(f2, f2k+1)

f2
T2

∣∣∣∣ lcm(fw1 ,fw2)

fw2

Tw2 ,

and we are reduced to considering the next case.
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(b) 2k + 1 ∈ (Iα ∪ Iβ). By symmetry, we have the following several
subcases.
(i) { 1, 2 } ̸⊂ Iα ∪ Iβ. In this case, the underlying line graph of

Tα,β is a forest. Hence, Tα,β is a linear combination of linear
forms.

(ii) { 1, 2, 2k + 1 } ∩ Iα = { 1, 2k + 1 } and { 1, 2, 2k + 1 } ∩ Iβ =
{ 2 }. As in case a, we can make use of T2,2k+1. Since

lcm(fα,fβ)/fβ = Alcm(f2, f2k+1)/f2

for some A ∈ S, we have

Tα,β = −ATβ\2T2,2k+1

+

(
lcm(fα,fβ)

fα
Tα\2k+1 −

lcm(f2, f2k+1)

f2k+1
ATβ\2

)
T2k+1.

The first summand is divisible by the linear form T2,2k+1

while the second summand is divisible by T2k+1. Thus, we
can decrease the degree l and prove by induction.

(iii) { 1, 2, 2k + 1 } ∩ Iα = { 1, 2 } and { 1, 2, 2k + 1 } ∩ Iβ =
{ 2k + 1 }. Notice that

lcm(fα,fβ)/fβ = A lcm(f2, f2k+1)/f2

for some A ∈ S. Thus,

Tα,β = −ATβ\2k+1T2,2k+1

+

(
lcm(fα,fβ)

fα
Tα\2 −

lcm(f2, f2k+1)

f2
ATβ\2k+1

)
T2.

The first summand is divisible by the linear form T2,2k+1 while
the second summand is divisible by T2. Thus, we can decrease
the degree l and prove by induction.

(iv) { 1, 2, 2k + 1 } ⊂ Iα. We can argue as in the proof for
Proposition 4.1 by noticing that lcm(fα,fβ) = Af1fβ\p for
some p ∈ Iβ. �

Definition 4.7. Let P = {pji,ki

i }qi=1 be a finite set of patches of

a simplicial complex ∆ such that pji,ki

i covers Fji and Fki . P is
called a system of compatible patches if { ji1 , ki1 } ̸= { ji2 , ki2 } and

p
ji1 ,ki1
i1

∩ pji2 ,ki2
i2

= ∅ for i1 ̸= i2.
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Conjecture 4.8. Let ∆ be a simplicial complex whose line graph is a

cycle of length l and P = {pji,ki

i }qi=1 is a system of compatible patches.
If l + q is odd, then ⟨∆,P⟩ is of linear type.

5. Villarreal class. According to Zheng [15], a facet F of ∆ is
called a good leaf if this F is a leaf of each subcomplex Γ of ∆ to which
F belongs. An order F1, . . . , Fs of facets is called a good leaf order if
Fi is a good leaf of ⟨F1, . . . , Fi⟩ for each i = 1, . . . , s. It is known that
a simplicial complex is a forest if and only if it has a good leaf order,
see [10, Corollary 1.11] or [6].

Lemma 5.1. The following two conditions are equivalent :

(a) The facet F1 is a good leaf of ∆.
(b) The squarefree monomial xF1 is an M -element of I(∆).

Proof. This result follows from the proofs of [15, Proposition 3.11]
and [10, Proposition 1.12]. �

We will take simplexes as simplicial cycles of length 1.

Definition 5.2. Let V be the class of simplicial complexes minimal
with respect to the following properties:

• Disjoint simplicial cycles of odd lengths are in V.
• V is closed under the operation of attaching good leaves.

We shall call V the Villarreal class. When a simplicial complex ∆ is in
V, we say ∆ and its facet ideal I(∆) are of Villarreal type.

According to Villarreal [14, Corollary 3.2], a connected simple graph
G belongs to V if and only if its edge ideal I(G) is of linear type.

Theorem 5.3. Squarefree monomial ideals of Villarreal type are of
linear type.

Proof. It follows from Corollaries 2.7 and 3.6, Remark 3.4 as well as
Lemma 5.1. �
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Remark 5.4. If I is a squarefree monomial ideal such that the line
graph L(I) is a disjoint union of graphs with a unique odd cycle, then
I is of Villarreal type. This fact follows from Remark 3.2, our proof of
Proposition 3.5 in Section 4, together with Lemma 5.1.

Remark 5.5. The class of monomial ideals of Villarreal type V is a
proper subclass of the class of squarefree monomial ideals of linear type
L. See, for instance, Example 6.4 below.

Remark 5.6. Simplicial forests are obviously of Villarreal type. Thus,
their facet ideals are of linear type. This fact is already known, e.g.,
after combining [10, Theorem 1.14] with [3, Theorem 2.4.i]. On
the other hand, the facet ideals of quasi-forests are not necessarily of
linear type. Recall that a connected simplicial complex ∆ is called a
quasi-tree, if there exists an order F1, . . . , Fs of the facets, such that
Fi is a leaf of ⟨F1, . . . , Fi⟩ for each i = 1, . . . , s. Such an order is
called a leaf order. A simplicial complex ∆ with the property that
every connected component is a quasi-tree is called a quasi-forest. The
following simplicial complex Γ, which was originally given in [10], is an
example of a quasi-tree.

Γ =

3

4

6

51

2

8

7

Using Macaulay2 [8], we know its facets’ ideal

I(Γ) = ⟨x1x2x3x4, x1x4x5, x1x2x8, x2x3x7, x3x4x6⟩

is not of linear type.

6. Other cycles and examples. Recall that an alternating se-
quence of distinct vertices and facets

(†) v1, F1, . . . , vs, Fs, vs+1 = v1

in a simplicial complex ∆ is called a (hyper)cycle or a Berge cycle if
vi, vi+1 ∈ Fi for all i. When ∆ is one-dimensional, we can treat it as
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a graph. Then a Berge cycle is exactly a cycle or walk in the classic
sense.

According to [9], a Berge cycle is called special if no facets contain
more than two connecting vertices of this sequence. Special cycles
of length 2 correspond to facets whose intersection is at least one-
dimensional. And, by [9, Theorem 3.2], a simplicial complex is a forest
if and only if it contains no special cycle of length ≥ 3.

Notice that classic cycle graphs are always special. Thus, with
the help of Lemma 3.1, Remark 3.2 and Construction 3.3, we can
always carefully pick up the connecting vertices and construct a special
cycle from a given simplicial cycle. On the other hand, the converse
is false, i.e., the underlying simplicial complex of a special cycle is
not necessarily a simplicial cycle, as illustrated by the ideal I ′ in
Example 6.3. Nevertheless, we have the following result.

Proposition 6.1. Let ∆ be a connected simplicial complex which is
not a cone. Suppose s = #F(∆) ≥ 4. Then the following statements
are equivalent.

(a) ∆ is a simplicial cycle.
(b) ∆ is a linear cycle.
(c) ∆ induces a special cycle of length s, but cannot induce any smaller

special cycles of length k with s− 1 ≥ k ≥ 3.
(d) ∆ induces a Berge cycle of length s, but cannot induce any smaller

Berge cycles of length k with s− 1 ≥ k ≥ 3.

Proof. It follows easily from Lemma 3.1 and the above comments
that (a) ⇔ (b) ⇒ (c) and (b) ⇒ (d). Now, we first show (c) ⇒ (b).

Let V (∆) be the vertex set of ∆, and assume that (†) gives a special
cycle in ∆. Observe that this special cycle naturally induces a cycle Cs

in the line graph L(∆) of ∆.

Suppose for contradiction that ∆ is not a linear cycle. Then there
is some vertex

v ∈ V (∆) \ { v1 = vs+1, v2, . . . , vs }

that induces a complete subgraph Kr in L(∆), which is not contained
in the previous Cs. Let r be maximal with respect to this vertex v.
Since ∆ is not a cone, L(∆) properly contains this Kr. Thus, L(∆)
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contains an arc of length k− 1 (≥ 2) from this Cs, which intersects Kr

at exactly two vertices. Without loss of generality, we may assume that
this arc corresponds to the subsequence of facets F1, F2, . . . , Fk from
the special cycle (†) and v ∈ F1 ∩ Fk. Thus, we have a special cycle

(⋆) v, F1, v2, F2, . . . , vk, Fk, v

of shorter length, which leads to a contradiction.

The proof for (d) ⇒ (b) is almost identical. We only need to choose
v ∈ V (∆) without requiring that v /∈ { v1, . . . , vs }. Nevertheless, v is
necessarily distinct from v2, . . . , vk in (⋆). Thus, it is a Berge cycle of
shorter length. �

Example 6.2. Let
S = K[x1, . . . , x10],

I = ⟨x1x2, x2x3, x3x4x8, x4x5x6x7, x1x5x9⟩

and
f = x9x10.

For the underlying simplicial complex ∆, the facets form a special cycle
of length 5:

1, { 1, 2 } , 2, { 2, 3 } , 3, { 3, 4, 8 } , 4, { 4, 5, 6, 7 } , 5, { 1, 5, 9 } , 1.

Actually, ∆ is a simplicial cycle, although it is not a forest. Thus,
we still have ∆ ∈ V. In particular, I = I(∆) is still of linear type.
Notice that { 9, 10 } is a good leaf that can be attached to ∆. The
corresponding new ideal I + (f) is also of linear type.

The next example is a modification of the previous one.

Example 6.3. Let
S = K[x1, . . . , x10],

I ′ = ⟨x1x2, x2x3 x7 , x3x4x8, x4x5x6x7, x1x5x9⟩

and
f = x9x10.
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For the underlying simplicial complex ∆′, the facets form a special cycle
of length 5:

1, { 1, 2 } , 2,
{
2, 3, 7

}
, 3, { 3, 4, 8 } , 4, { 4, 5, 6, 7 } , 5, { 1, 5, 9 } , 1.

This is not a simplicial cycle, since ∆′ also contains a special cycle of
length 3:

7, { 2, 3, 7 } , 3, { 3, 4, 8 } , 4, { 4, 5, 6, 7 } , 7,

as well as a special cycle of length 4:

1, { 1, 2 } , 2, { 2, 3, 7 } , 7, { 4, 5, 6, 7 } , 5, { 1, 5, 9 } , 1.

Although we can still find { 9, 10 } as a good leaf to attach to ∆′, neither
I ′ nor I ′ + ⟨f⟩ is of linear type.

Example 6.4. This example comes from [2, 3.12].

∆ =
3

7

6 9

10

8

5

12 11

2

1 4
F3

F4

F2 G

F1 ∆′ =
3

7

6 9

10

8

5

12 11

2

1 4
F3

F4

F2

F1

∆̃ =

87

6 9

105

12 11

2

1 4

3

13

F3

F4

F2

F1

G̃

∆ is not a simplicial cycle and has no leaves. Corresponding to ∆, we
consider the ideal

I = ⟨x1x2x5x6, x2x3x7x8, x3x4x9x10, x1x4x11x12, x3x8x9⟩
⊂ K[x1, . . . , x12].

The simplicial complex ∆ is not of Villarreal type. Using Macaulay2
[8], we know I is still of linear type, as expected in Theorem 4.6.
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Notice that the subcomplex ∆′ is a simplicial cycle of length 4. The
existence of this even-length cycle in ∆ does not prevent I from being
of linear type.

On the other hand, the ideal

Ĩ = ⟨x1x2x5x6, x2x3x7x8, x3x4x9x10, x1x4x11x12, x3x8x9 x13 ⟩
⊂ K[x1, . . . , x12, x13],

which is modified from I by inserting a free variable, is not of linear
type.

Example 6.5. To illustrate the proof of Proposition 6.1, we consider
the simplicial complex ∆ and ∆′ in Example 6.4.

L(∆) =

F1

F2

G

F3

F4

K3 =
F2

G

F3

C5 =

G

F2F3

F4 F1

It is clear that
1, F1, 2, F2, 8, G, 9, F3, 4, F4, 1

gives a special cycle of length 5. Its line graph is L(∆), and the previous
special cycle corresponds to the cycle C5 in L(∆). Now the vertex 3
contributes to the complete subgraph K3 in L(∆). We will take the arc
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F2F1F4F3 which intersects K3 at the vertices F2 and F3. From this,
we get the special cycle of length 4 in ∆:

3, F2, 2, F1, 1, F4, 4, F3, 3.

It corresponds to the subcomplex ∆′.
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