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A BAER-KAPLANSKY THEOREM FOR MODULES
OVER PRINCIPAL IDEAL DOMAINS

SIMION BREAZ

ABSTRACT. We will prove that if G and H are modules
over a principal ideal domain R such that the endomorphism
rings EndR(R ⊕ G) and EndR(R ⊕ H) are isomorphic, then
G ∼= H. Conversely, if R is a Dedekind domain such that
two R-modules G and H are isomorphic whenever the rings
EndR(R ⊕G) and EndR(R ⊕H) are isomorphic, then R is a
PID.

1. Introduction. The Baer-Kaplansky theorem states that two pri-
mary abelian groups with isomorphic endomorphism rings are neces-
sarily isomorphic, [6, Theorem 108.1]. This statement was extended to
various classes of modules (abelian groups), e.g., in [8, 14, 16, 20, 21].
However, straightforward examples show that in order to obtain such
extensions we need to impose restrictions on these classes. For instance,
the endomorphism rings of the Prüfer group Z(p∞) and of the group of

p-adic integers Ẑp are both isomorphic to the ring Jp of p-adic integers.
This fact suggests that we need to restrict to some good classes of mod-
ules in order to obtain a Baer-Kaplansky type theorem. Such a result
(valid for torsion-free modules over valuation domains) was proved in
[21]. It is well known that the Baer-Kaplansky theorem cannot be ex-
tended to torsion-free groups (of rank 1) since there are infinitely many
pairwise non-isomorphic torsion-free groups of rank 1 whose endomor-
phism rings are isomorphic to Z, [1]. However, similar results to the
Baer-Kaplansky theorem hold for some special classes of torsion-free
groups, see [2]. In the setting of modules over complete valuation do-
mains, May proved a theorem, [15, Theorem 1], for reduced modules
which are neither torsion nor torsion-free and have a nice subgroup B
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such thatM/B is totally projective: ifM is such a module and N is an
arbitrary module such that they have isomorphic endomorphism rings,
then M ∼= N .

The main aim of this note is to prove a Baer-Kaplansky theorem
for arbitrarily modules over principal ideal domains (Theorem 2.1): if
R is a (commutative) principal ideal domain, then the correspondence
(from the class of R-modules to the class of rings)

Φ : G 7−→ EndR(R⊕G)

reflects isomorphisms of endomorphism rings. Moreover, this property
characterizes principal ideal domains in the class of Dedekind domains:
if R is a Dedekind domain such that the correspondence Φ reflects
isomorphisms, then R is a PID. The restriction to Dedekind domains is
motivated by the fact that these domains have the cancellation property,
i.e., the endofunctor R ⊕ − : Mod-R → Mod-R on the category of all
R-modules reflects isomorphisms:

Theorem 1.1. [12, Proposition 3.6]. Let R be a Dedekind domain. If
M and N are two R-modules such that R⊕M ∼= R⊕N , then M ∼= N .

We need this property in order to obtain that Φ reflects isomor-
phisms (cf., Remark 2.5). However, in order to obtain such a cor-
respondence which reflects isomorphisms, the cancellation property is
not enough, as is proved in Proposition 2.6 (in contrast with the similar
problem for subgroup lattices, approached in [3, Lemma 2]).

2. A Baer-Kaplansky theorem. The main result proved in this
note is the following.

Theorem 2.1. Let R be a Dedekind domain. The following are
equivalent :

(1) The ring R is a principal ideal domain:
(2) If G and H are R-modules such that G′ = R ⊕ G and H ′ =

R ⊕ H have isomorphic endomorphism rings, then G and H
are isomorphic.
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Proof. (1) ⇒ (2). Let e and f be the idempotents in EndR(G
′)

which are induced by the direct decomposition G′ = R⊕G. Using the
version for principal ideal domains of [6, Theorem 106.1], we observe
that there are isomorphisms

eEndR(G
′)f ∼= HomR(G,R)

and

fEndR(G
′)e ∼= HomR(R,G) ∼= G.

If φ : EndR(G
′) → EndR(H

′) is an isomorphism, then the idempo-
tents e = φ(e) and f = φ(f) induce a direct decompositionH ′ = B⊕K,
where B = e(H ′) and K = f(H ′). By [6, 106(d)], there is an isomor-
phism EndR(B) ∼= R. Moreover, as before, we have the isomorphisms
(of R-modules)

HomR(K,B) ∼= eEndR(H
′)f ∼= HomR(G,R),

and

HomR(B,K) ∼= fEndR(H
′)e ∼= HomR(R,G) ∼= G.

We claim that B ∼= R. Using this and Theorem 1.1 we obtain
H ∼= K, and we have

H ∼= HomR(R,K) ∼= HomR(B,K) ∼= HomR(R,G) ∼= G.

In order to prove our claim, suppose that B � R. Let α : B → R
be an R-homomorphism. Since R is a PID it follows that Im(α) ∼= R;
hence, Ker (α) ̸= 0. Moreover, Im(α) is a projective module; hence, we
have a direct decomposition B ∼= Ker (α) ⊕ Im (α). But End (B) ∼= R
has no non-trivial idempotents; hence, B is indecomposable. It follows
that Im (α) = 0; hence, HomR(B,R) = 0.

If we consider the direct decomposition H ′ = R ⊕ H and the
canonical projection πR : H ′ → R, it follows that B is contained in
H, the kernel of πR. From H ′ = B ⊕K, we obtain H = (H ∩K)⊕B.
Using the equalities

K ⊕B = R⊕H = R⊕ (H ∩K)⊕B,
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we deduce that K ∼= R⊕ (H ∩K) (as complements for the direct sum-
mand B); hence, K has a direct summand isomorphic to R. Therefore,
HomR(G,R) ∼= HomR(K,B) has a direct summand isomorphic to B.
Since R is commutative, HomR(G,R) is an R-module which can be em-
bedded as a submodule in the direct product RG of copies of R (here
we view RG as the set of all maps G→ R, endowed with pointwise ad-
dition and scalar multiplication; see [5, Exercise 43.1]). Therefore, we
can embed B in RG. Since B ̸= 0, it follows that we can find a projec-
tion π : RG → R such that π(B) ̸= 0. This implies HomR(B,R) ̸= 0,
a contradiction, and it follows that B ∼= R.

(2) ⇒ (1). Let I be a non-zero ideal in R. Since R is Noetherian
and integrally closed, we can apply [7, Theorem I.3.7] to conclude that
EndR(I) ∼= R. Moreover, since I is invertible, we can use the Steinitz
isomorphism formula, [7, page 165]. Therefore, for every positive
integer n, we have an isomorphism (⊕n−1

k=1R) ⊕ In ∼= ⊕n
k=1I; hence,

there are ring isomorphisms

EndR((⊕n−1
k=1R)⊕ In) ∼= EndR(⊕n

k=1I)
∼=Mn(R)

∼= EndR(⊕n
k=1R).

If n ≥ 2, we obtain, from (2) that (⊕n−2
k=1R) ⊕ In ∼= ⊕n−1

k=1R. Using
again the cancellation property of R, Theorem 1.1, we conclude that
In is principal for all n ≥ 2. If C(R) is the ideal class group associated
to R and [I] is the class of I in this group, it follows that [I]n = 1
for all n ≥ 2; hence, [I] = 1. Then I is principal and the proof is
complete. �
Remark 2.2. From the above proof, it follows that if R is a principal
ideal domain, then every ring isomorphism φ : EndR(R ⊕ G) →
EndR(R ⊕ H) induces a direct decomposition R ⊕ H = B ⊕ K with
B = φ(e)(R ⊕ H) ∼= R and (1 − φ(e))(R ⊕ H) = K ∼= G, where e
is the idempotent such that e(R ⊕ G) = R and (1 − e)(R ⊕ G) = G.
Since B ∼= R, it is not hard to see, using the same technique as in the
proof for the bounded case of [6, Theorem 108.1], that φ is induced by
an isomorphism ψ : R ⊕ G → R ⊕ H. Therefore, the above theorem
can be viewed as an improvement of [19, Theorem 2.1] for the case of
principal ideal domains.

Remark 2.3. A class C of modules is called Baer-Kaplansly if any two
of its modules are isomorphic whenever their endomorphism rings are
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isomorphic as rings, [9, p. 1489]. Therefore, Theorem 2.1 says that
the class of modules over a Dedekind domain R which have a direct
summand isomorphic to R is a Baer-Kaplansky class if and only if R
is a principal ideal domain. Similar results for other kinds of rings
were obtained in [8, Theorem 8] for a similar class, respectively, in [9,
Theorem 4] for a particular class of modules over FGC-rings.

As a consequence of Theorem 2.1, we obtain that locally free modules
over principal ideal domains are determined by their endomorphism
rings. This is also a consequence of [21, Theorem A].

Corollary 2.4. If two locally free modules over a principal ideal do-
main have isomorphic endomorphism rings, then they are isomorphic.

Remark 2.5. In the proof of Theorem 2.1 we used the cancellation
property of the regular module R. If R does not have this property (e.g.,
there are Dedekind-like domains without the cancellation property,
[10]) then there are two R-modules G � H such that R⊕G ∼= R⊕H;
hence, EndR(R⊕G) ∼= EndR(R⊕H). If we write these endomorphism
rings as matrix rings,

EndR(R⊕G) =
(

EndR(R) HomR(G,R)
HomR(R,G) EndR(G)

)
∼=

(
R HomR(G,R)
G EndR(G)

)
,

respectively,

EndR(R⊕H) ∼=
(
R HomR(H,R)
H EndR(H)

)
,

we observe that the (2, 1)-blocks in these representations are isomorphic
to G, respectively, to H. These two blocks are not isomorphic even
when the corresponding matrix rings are isomorphic. It is obvious
that, in this case, Theorem 2.1 is not valid.

We will prove that we cannot replace in the implication (1) ⇒ (2)
of Theorem 2.1 the direct summand R by an arbitrary module which
has the cancellation property. The following proposition shows that
the property of the regular module R stated in Theorem 2.1 is stronger
than the usual cancellation property (see [18, Theorem B]).
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Proposition 2.6. The following are equivalent for an indecomposable
torsion-free abelian group F ̸= 0 of finite rank :

(1) If G and H are abelian groups such that End(F ⊕ G) ∼=
End(F ⊕H), then G ∼= H;

(2) F ∼= Z.

Proof. (1) ⇒ (2). If F is not isomorphic to Z, then F ∼= Q or F is
a reduced abelian group which has no free direct summands.

For the case F ∼= Q, we can choose G and H as two non-isomorphic
subgroups of Q such that End(G) = End(H) = Z. It is not hard
to see that both endomorphism rings End(F ⊕ G) and End(F ⊕ H)

are isomorphic to the matrix ring

(
Q 0
Q Z

)
, so F does not verify

condition (1).

If F is a reduced abelian group which has no free direct summands,
then we can construct, using [18], two (reduced) finite rank torsion-free
groups G and H of the same rank such that

Hom(F,G) = Hom(F,H) = Hom(G,F ) = Hom(H,F ) = 0

and
End(G) = End(H) = Z.

In this case, both endomorphism rings End(F⊕G) and End(F⊕H) are
isomorphic to the ring End(F )×Z, so F does not verify condition (1).

(2) ⇒ (1). This is a consequence of Theorem 2.1. �

Remark 2.7. There are also versions for the Baer-Kaplansky theorem
proved for automorphism groups, Jacobson radicals or for ring anti-
isomorphisms, [4, 11, 13, 17]. It would be nice to know if Theorem 2.1
is still true if we consider only automorphism groups or Jacobson
radicals.
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