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EXAMPLES OF NON-NOETHERIAN DOMAINS
INSIDE POWER SERIES RINGS

WILLIAM HEINZER, CHRISTEL ROTTHAUS AND SYLVIA WIEGAND

ABSTRACT. Given a power series ring R∗ over a Noethe-
rian integral domain R and an intermediate field L between
R and the total quotient ring of R∗, the integral domain
A = L ∩ R∗ often (but not always) inherits nice properties
from R∗ such as the Noetherian property. For certain fields
L it is possible to approximate A using a localization B of
a particular nested union of polynomial rings over R asso-
ciated to A; if B is Noetherian, then B = A. If B is not
Noetherian, we can sometimes identify the prime ideals of B
that are not finitely generated. We have obtained in this way,
for each positive integer m, a three-dimensional local unique
factorization domain B such that the maximal ideal of B is
two-generated, B has precisely m prime ideals of height 2,
each prime ideal of B of height 2 is not finitely generated and
all the other prime ideals of B are finitely generated. We
examine the structure of the map SpecA → SpecB for this
example. We also present a generalization of this example to
dimension four. This four-dimensional, non-Noetherian local
unique factorization domain has exactly one prime ideal Q of
height three, and Q is not finitely generated.

1. Introduction. In this paper, we analyze the prime ideal
structure of particular non-Noetherian integral domains arising from
a general construction developed in our earlier papers [12 17]. With
this technique, two types of integral domains are constructed:

(1) the intersection of an ideal-adic completion R∗ of a Noetherian
integral domain R with an appropriate subfield of the total quotient
ring of R∗ yields an integral domain A as in the abstract, and

(2) an approximation of the domainA by a nested unionB of localized
polynomial rings has the second form described in the abstract.
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Recently there has been considerable interest in non-Noetherian
analogues of Noetherian notions such as the concept of a “regular”
ring. Rotthaus and Sega have shown that the rings A and B produced
in the general construction are coherent regular local rings in the sense
that every finitely generated submodule of a free module has a finite
free resolution, see [27] and Remark 4.3.

We construct in this paper rings that are not Noetherian but are very
close to being Noetherian, in that localizations at most prime ideals are
Noetherian and most prime ideals are finitely generated; sometimes
just one prime ideal is not finitely generated. If a ring has exactly one
prime ideal that is not finitely generated, that prime ideal contains all
non-finitely generated ideals of the ring.

This article expands upon previous work of the authors where we
construct non-Noetherian local domains of dimension d ≥ 3 with some
of these properties [16, 17]. In the case of dimensions three and four, we
give considerably more detail in this article about these non-Noetherian
domains. In particular, we categorize the height 1 primes of the three-
dimensional example in terms of the spectral map from A to B.

In Section 2 we describe examples of three-dimensional, non-Noether-
ian, non-catenary unique factorization domains. Another example of a
three-dimensional, non-Noetherian unique factorization domain is given
by David [5]. The examples given in Examples 2.1 are very close to
being Noetherian. We give more details about a specific case where
there is precisely one non-finitely generated prime ideal in Example 2.3.
In Section 3 we give background results that apply in a more general
setting. Our main results are in Sections 4 and 5. Section 4 contains
the verification of the properties of the three-dimensional examples.

In Example 5.1 of Section 5, we construct a four-dimensional, non-
Noetherian, non-catenary local unique factorization domain B that
again is close to being Noetherian. The ring B has exactly one prime
ideal Q of height three, and Q is not finitely generated. We leave open
the question of whether there exist any prime ideals ofB of height 2 that
are not finitely generated. Following a suggestion of the referee, we use
a “D+M” construction to obtain in Example 5.16 a four-dimensional,
non-Noetherian, non-catenary local domain C; the maximal ideal of C
is principal and is the only non-zero finitely generated prime ideal of C.
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All rings we consider are assumed to be commutative with identity.
A general reference for our notation and terminology is [22]. We
abbreviate the unique factorization domain by UFD, the regular local
ring by RLR and the discrete rank one valuation domain by DVR.

2. A family of examples in dimension 3. In this section, we
construct examples as described in Examples 2.1. In the next section
we give a diagram and more detail for a special case of the example
with exactly one nonfinitely generated prime ideal.

Examples 2.1. For each positive integerm, we construct an example
of a non-Noetherian local integral domain (B,n) such that:

(1) dimB = 3.

(2) The ring B is a UFD that is not catenary.

(3) The maximal ideal n of B is 2-generated.

(4) The n-adic completion of B is a two-dimensional regular local
domain.

(5) For every non-maximal prime ideal P of B, the ring BP is
Noetherian.

(6) The ring B has precisely m prime ideals of height 2.

(7) Each prime ideal of B of height 2 is not finitely generated; all
other prime ideals of B are finitely generated.

To establish the existence of the examples in Examples 2.1, we use
the following notation. Let k be a field, let x and y be indeterminates
over k and set

R : = k[x, y](x,y), K := k(x, y) and R∗ : = k[y](y)[[x]].

The power series ringR∗ is the xR-adic completion ofR. Let τ ∈ xk[[x]]
be transcendental over k(x). For each integer i with 1 ≤ i ≤ m,
let pi ∈ R \ xR be such that p1R

∗, . . . , pmR∗ are m prime ideals.
For example, if each pi ∈ R \ (x, y)2R, then each piR

∗ is prime in
R∗. In particular, one could take pi = y − xi. Let p := p1 · · · pm.
We set f := pτ and consider the injective R-algebra homomorphism
S := R[f ] ↪→ R[τ ] =: T . In this construction the polynomial rings S
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and T have the same field of fractions K(f) = K(τ). The intersection
domain

(2.1.0) A := R∗ ∩K(f) = R∗ ∩K(τ)

is a two-dimensional regular local domain with maximal ideal (x, y)A
and the (x, y)A-adic completion of A is k[[x, y]], [29].

Let τ := c1x+ c2x
2 + · · ·+ cix

i + · · · ∈ xk[[x]], where the ci ∈ k and,
for each non-negative integer n, define the “nth endpiece” τn of τ by

(2.1.a) τn :=
∞∑

i=n+1

cix
i−n =

τ −
∑n

i=1 cix
i

xn
.

We have the following relation between τn and τn+1 for each n:

(2.1.b) τn = cn+1x+ xτn+1.

Define fn := pτn, set Un = R[fn] = k[x, y](x,y)[fn], a three-dimensional
polynomial ring over R, and set Bn = (Un)(x,y,fn) = k[x, y, fn](x,y,fn),
a three-dimensional localized polynomial ring. Similarly, set Uτn =
R[τn] = k[x, y](x,y)[τn], a three-dimensional polynomial ring containing
Un and Bτn = k[x, y, τn](x,y,τn), a localized polynomial ring containing
Uτn and Bn. Let U,B,Uτ and Bτ be the nested union domains defined
as follows:

U :=
∞⋃

n=0

Un ⊆ Uτ :=
∞⋃

n=0

Uτn;

B :=

∞⋃
n=0

Bn ⊆ Bτ :=

∞⋃
n=0

Bτn ⊆ A.

Remark 2.2. By equation (2.1.b), k[x, y, fn+1] ⊆ k[x, y, fn][1/x] for
each n. Thus, k[x, y, f ][1/x] = k[x, y, fn][1/x] and

(2.2.0) U [1/x] = R[f ][1/x]; Uτ [1/x] = R[τ ][1/x].

Hence, for each n, the ring Bn[1/x] is a localization of S = U0 = R[f ].
It follows that B[1/x] is a localization of S and B[1/x] is a localization
of Bn. Similarly, Bτ [1/x] is a localization of T = R[τ ].
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We establish in Theorem 4.1 of Section 4 that the rings B of Exam-
ples 2.1 have properties (1) (7) and also some additional properties.

Assuming properties (1) (7) of Examples 2.1, we describe the ring B
of Examples 2.1 in the case where m = 1 and p = p1 = y.

Example 2.3. Let the notation be as in Examples 2.1. Thus,

R = k[x, y](x,y), f = yτ, fn = yτn,

Bn = R[yτn](x,y,yτn), B =

∞⋃
n=0

Bn.

As we will show in Section 4, this ring B has exactly one prime ideal
Q := (y, {yτn}∞n=0)B of height 2. Moreover, Q is not finitely generated
and is the only prime ideal of B that is not finitely generated. We also
have Q = yA ∩B and Q ∩Bn = (y, yτn)Bn for each n ≥ 0.

To identify the ring B up to isomorphism, we include the following
details: By equation (2.1.b), we have τn = cn+1x + xτn+1. Thus, we
have

(2.3.1) fn = xfn+1 + yxcn+1.

The family of equations (2.3.1) uniquely determines B as a nested union
of the three-dimensional RLRs Bn = k[x, y, fn](x,y,fn).

We recall the following terminology of [30, page 325].

Definition 2.4. If a ring C is a subring of a ring D, a prime ideal
P of C is lost in D if PD ∩ C �= P .

Discussion 2.5. Assuming properties (1) (7) of Examples 2.1, if q
is a height 1 prime of B, then B/q is Noetherian if and only if q is not
contained in Q. This is clear since q is principal and Q is the unique
prime of B that is not finitely generated and a ring is Noetherian if
each prime ideal of the ring is finitely generated; see [23, Theorem 3.4].

The height 1 primes q of B may be separated into several types as
follows:

Type I. The primes q �⊆ Q have the property that B/q is a one-
dimensional Noetherian local domain. These primes are contracted
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from A, i.e., they are not lost in A. To see this, consider q = gB
where g /∈ Q. Then gA is contained in a height 1 prime P of A. Hence,
g ∈ (P ∩B)\Q so P ∩B �= Q. Since mBA = mA, we have P ∩B �= mB.
Therefore, P ∩ B is a height 1 prime containing q, so q = P ∩ B and
Bq = AP .

There are infinitely many primes q of type I, because every element
of mB \ Q is contained in a prime q of type I. Thus mB ⊆ Q ∪⋃
{q of Type I}. Since mB is not the union of finitely many strictly

smaller prime ideals, there are infinitely many primes q of Type I.

Type I*. Among the primes of Type I, we label the prime ideal xB
as Type I*. The prime ideal xB is special since it is the unique height 1
prime q of B for which R∗/qR∗ is not complete. If q is a height 1 prime
of B such that x /∈ qR∗, then x /∈ q by Proposition 3.2.4. Thus, R∗/qR∗

is complete with respect to the powers of the nonzero principal ideal
generated by the image of x mod qR∗. Notice that R∗/xR∗ ∼= k[y]yk[y].

If q is a height 1 prime of B not of Type I, then B = B/q has
precisely three prime ideals. These prime ideals form a chain: (0) ⊂
Q ⊂ (x, y)B = mB.

Type II. We define the primes of Type II to be the primes q ⊂ Q
such that q has height 1 and is contracted from a prime p of A =
k(x, y, f)∩R∗, i.e., q is not lost in A. For example, the prime y(y+τ)B
is of Type II, by Lemma 4.5. For q of this type, B/q is dominated by
the one-dimensional Noetherian local domain A/p. Thus, B/q is a non-
Noetherian generalized local ring in the sense of Cohen; that is, B/q has
a unique maximal ideal n that is finitely generated and ∩∞

i=1n
i = (0),

[4].

For q of Type II, the maximal ideal of B/q is not principal. This
follows because a generalized local domain having a principal maximal
ideal is a DVR [24, (31.5)].

There are infinitely many height 1 primes of Type II, for example,
y(y+xtτ)B for each t ∈ N; see Lemma 4.4. For q of Type II, the DVR
Bq is birationally dominated by Ap. Hence, Bq = Ap and the ideal√
qA = p ∩ yA.

That each element y(y + xtτ) is irreducible, and thus generates a
height 1 prime ideal, is shown in greater generality in Lemma 4.4.
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Type III. The primes of Type III are the primes q ⊂ Q such that
q has height 1 and is not contracted from A, i.e., q is lost in A. For
example, the prime yB and the prime (y + xtyτ)B for t ∈ N are of
Type III; see Lemma 4.5. Since the elements y and y+xtyτ are in mB

and are not in m2
B and, since B is a UFD, these elements are necessarily

prime. There are infinitely many such prime ideals by Lemma 4.4. For
q of Type III, we have

√
qA = yA.

If q = yB or q = (y + xtyτ)B, then the image mB of mB in B/q is
principal. It follows that the intersection of the powers of mB is Q/q,
and soB/q is not a generalized local ring. To see that

⋂∞
i=1(mB)

i �= (0),
we argue as follows. If P is a principal prime ideal of a ring and P ′

is a prime ideal properly contained in P , then P ′ is contained in the
intersection of the powers of P ; see [20, page 7, Example 5].

The picture of Spec (B) is shown in Diagram 2.3.2.

mB := (x, y)B

Q := (y, {fi})B

xB ∈ Type I Type II yB ∈ Type III

(0)

DIAGRAM 2.3.2.

In Remarks 2.6 we examine the height 1 primes of B from a different
perspective.

Remarks 2.6. (1) Assume the notation of Example 2.3. If w is a
nonzero prime element of B such that w /∈ Q, then wA is a prime
ideal in A and is the unique prime ideal of A lying over wB. To see
this, observe that w /∈ yA since w /∈ Q = yA ∩ B. It follows that, if
p ∈ SpecA is a minimal prime of wA, then y /∈ p. Thus p ∩ B �= Q,
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and so, since we assume the properties of Examples 2.1 hold, p∩B has
height 1. Therefore, p∩B = wB. Hence, the DVR BwB is birationally
dominated by Ap, and thus BwB = Ap. This implies that p is the
unique prime of A lying over wB. We also have wBwB = pAp. Since
A is a UFD and p is the unique minimal prime of wA, it follows that
wA = p. In particular, q is not lost in A; see Definition 2.4.

If q is a height 1 prime of B that is contained in Q, then yA is a
minimal prime of q, and q is of Type II or III depending on whether or
not qA has other minimal prime divisors.

To see this, observe that if yA is the only prime divisor of qA, then
qA has radical yA and yA ∩ B = Q implies that Q is the radical of
qA ∩B. Thus, q is lost in A and q is of Type III.

On the other hand, if there is a minimal prime p ∈ SpecA of qA that
is different from yA, then y is not in p∩B, and hence p∩B �= Q. Since
Q is the only prime of B of height 2, it follows that p∩B is a height 2
prime, and thus p∩B = q. Thus, q is not lost in A and q is of Type II.

We observe that, for every Type II prime q, there are exactly two
minimal primes of qA. One of these is yA and the other is a height 3
prime p of A such that p ∩ B = q. For every height 1 prime ideal p
of A such that p ∩ B = q, we have Bq is a DVR that is birationally
dominated by Ap, and hence Bq = Ap. The uniqueness of Bq implies
that there is precisely one such prime ideal p of A.

An example of a height 1 prime ideal q of Type II is q := (y2 + yτ)B.
Then qA = (y2 + yτ)A has the two minimal primes yA and (y + τ)A.

(2) The ring B/yB is a rank 2 valuation ring. This can be seen
directly or else one may apply [19, Proposition 3.5 (iv)]. For other
prime elements g of B with g ∈ Q, it need not be true that B/gB
is a valuation ring. If g is a prime element contained in m2

B, then
the maximal ideal of B/gB is 2-generated but not principal, and thus
B/gB cannot be a valuation ring. For a specific example over the field
q, let g = x2 + y2τ .

3. Background results. We use results from a general construction
developed in our earlier papers. In particular, we use the following
theorem in establishing Examples 2.1.

Theorem 3.1 [14, Theorem 1.1], [15, Theorem 3.2], [19]. Let R
be a Noetherian integral domain with field of fractions K. Let a be a
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nonzero nonunit of R, and let R∗ be the (a)-adic completion of R. Let
h be a positive integer, and let τ1, . . . , τh ∈ aR[[a]] = aR∗, abbreviated
by τ , be algebraically independent over K. Let Uτ and Cτ be defined as
follows:

Uτ :=
∞⋃
r=0

Uτr and Cτ :=
∞⋃
r=0

Cτr,

where for each integer r ≥ 0, Uτr := R[τ1r, . . . , τhr], Cτr := (1 +
aUτr)

−1Uτr, and each τir is the rth endpiece of τi defined as in
equation (2.1.a). Then the following statements are equivalent:

(1) Aτ := K(τ) ∩R∗ is Noetherian and Aτ = Cτ .

(2) Aτ is Noetherian and is a localization of a subring of Uτ0[1/a].

(3) Aτ is Noetherian and is a localization of a subring of Uτ [1/a].

(4) Uτ is Noetherian.

(5) Cτ is Noetherian.

(6) R[τ ] → R∗[1/a] is flat.

(7) Cτ → R∗[1/a] is flat.

Propositions 3.2 and 3.4 are used for Examples 2.1.

Proposition 3.2. With the notation of Theorem 3.1, let U = Uτ ,
Un = Uτn, C = Cτ and A = Aτ . Then, for all t ∈ N, we have

(3.2.0) atC = atR∗ ∩ C and
R

atR
=

U

atU
=

C

atC
=

A

atA
=

R∗

atR∗ .

Moreover,

(1) The (a)-adic completions of U , C and A are all equal to R∗, and
a is in the Jacobson radical of C.

(2) The ring U [1/a] = R[τ ][1/a], and so C[1/a] is a localization of
R[τ ].

(3) If q is a prime ideal of R, then qU is a prime ideal of U , and
either qC = C or qC is a prime ideal of C.

(4) Let I be an ideal of C, and let t ∈ N. If at ∈ IR∗, then at ∈ I.

(5) Let P ∈ SpecC with a /∈ P . Then a is a non-zerodivisor on
R∗/PR∗. Thus, a /∈ Q for each associated prime Q of the ideal PR∗.
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Since a is in the Jacobson radical of R∗, it follows that PR∗ is contained
in a nonmaximal prime ideal of R∗.

(6) If R is local, then R∗ and C are both local, we let mR,mR∗ and
mC denote the maximal ideals of R,R∗ and C, respectively. In this
case,

• mC = mRC and each prime ideal P of C such that ht (mC/P ) = 1
is contracted from R∗.

• If an ideal I of C is such that IR∗ is primary for mR∗ , then I is
primary for mC.

Proof. The equalities in equation (3.2.0) follow from [14, Proposition
2.2.1], [15, Proposition 2.4.3], [18, Corollary 6.19], and these imply
item (1) about (a)-adic completions. For the second statement, since
Cn = (1 + aUN )−1Un, it follows that 1 + ac is a unit of Cn for each
c ∈ Cn. Therefore, a is in the Jacobson radical of Cn for each n, and
thus a is in the Jacobson radical of C.

For item (2), the relation given in equation (2.1.b) for the case of one
variable τ holds also in the case of several variables and implies that
U [1/a] = R[τ ][1/a]. Since C is a localization of U , we have C[1/a] is a
localization of R[τ ] by Remark 2.2.

For item (3), since each Un is a polynomial ring overR, qUn is a prime
ideal of Un, and thus qU =

⋃∞
n=0 qUn is a prime ideal of U . Since C is

a localization of U , qC is either C or a prime ideal of C.

To see item (4), observe that there exist elements b1, . . . , bs ∈ I such
that IR∗ = (b1, . . . , bs)R

∗. If at ∈ IR∗, there exist αi ∈ R∗ such that

at = α1b1 + · · ·+ αsbs.

We have αi = ai + at+1λi for each i, where ai ∈ C and λi ∈ R∗. Thus,

at[1− a(b1λ1 + · · ·+ bsλs)] = a1b1 + · · ·+ asbs ∈ C ∩ atR∗

= atC.

Therefore, γ := 1−a(b1λ1+· · ·+bsλs) ∈ C. Thus, a(b1λ1+· · ·+bsλs) ∈
C ∩ aR∗ = aC, and so b1λ1 + · · ·+ bsλs ∈ C. By item (1), the element
a is in the Jacobson radical of C. Hence, γ is invertible in C. Since
γat ∈ (b1, . . . , bs)C, it follows that at ∈ I.
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For item (5), assume that P ∈ Spec,C and a /∈ P . We have that

P ∩ aC = aP and so
P

aP
=

P

P ∩ aC
∼=

P + aC

aC
.

By equation (3.2.0), C/aC is Noetherian. Hence, the C-module
C/aC is finitely generated. Let g1, . . . , gt ∈ P be such that P =
(g1, . . . , gt)C + aP . Then also PR∗ = (g1, . . . , gt)R

∗ + aR∗ =
(g1, . . . , gt)R

∗; the first equality is by equation (3.2.0), and the last
equality is by Nakayama’s lemma.

Let f̂ ∈ R∗ be such that af̂ ∈ PR∗. We show that f̂ ∈ PR∗.

Since f̂ ∈ R∗, we have f̂ :=
∑∞

i=0 cia
i, where each ci ∈ R. For each

m > 1, let fm :=
∑m

i=0 cia
i, the first m + 1 terms of this expansion of

f̂ . Then fm ∈ R ⊆ C, and there exists an element ĥ1 ∈ R∗ so that

f̂ = fm + am+1ĥ1.

Since af̂ ∈ PR∗, we have

af̂ = â1g1 + · · ·+ âtgt,

for some âi ∈ R∗. The âi have power series expansions in a over R,
and thus there exist elements aim ∈ R such that âi − aim ∈ am+1R∗.
Thus,

af̂ = a1mg1 + · · ·+ atmgt + am+1ĥ2,

where ĥ2 ∈ R∗, and

afm = a1mg1 + · · ·+ atmgt + am+1ĥ3,

where ĥ3 = ĥ2 − aĥ1 ∈ R∗. Since the gi are in C, we have am+1ĥ3 ∈
am+1R∗∩C = am+1C, the last equality by equation (3.2.0). Therefore

ĥ3 ∈ C. Rearranging the last set-off equation above, we obtain

a(fm − amĥ3) = a1mg1 + · · ·+ atmgt ∈ P.

Since a /∈ P , we have fm − amĥ3 ∈ P . It follows that f̂ ∈ P + amR∗ ⊆
PR∗+amR∗, for eachm > 1. Hence, we have that f̂ ∈ PR∗, as desired.
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For item (6), if R is local, then C is local since C/aC = R/aR and a
is in the Jacobson radical of C. Hence, alsomC = mRC. If a /∈ P , then
item (4) implies that no power of a is in PR∗. Hence, PR∗ is contained
in a prime ideal Q of R∗ that does not meet the multiplicatively closed
set {an}∞n=1. Hence, P ⊆ Q ∩C � mC . Since ht (mC/P ) = 1, we have
P = Q ∩ C, so P is contracted from R∗. If a ∈ P , then (3.2.0) implies
that PR∗ is a prime ideal of R∗ and P = PR∗ ∩ C.

For the second part of item (6), if IR∗ is m-primary then at ∈ IR∗.
Thus, at ∈ I by item (4). By equation (3.2.0), C/atC = R∗/atR∗ and
so I/atC is primary for the maximal ideal of C/atC. Therefore I is
primary for the maximal ideal of C.

The definition of B as a directed union as given in Examples 2.1 and
later in this article is not the same as the definition of C as a directed
union given in Theorem 3.1 and Propositions 3.2 and 3.4. However, the
ring B is the same as the ring C for R as in Examples 2.1. We show
this more generally in Remark 3.3.1 for R a Noetherian local domain.

Remarks 3.3. (1) Assume the setting of Theorem 3.1 with the addi-
tional assumption that R is a Noetherian local domain with maximal
ideal m. We observe in this case that Cτ as defined in Theorem 3.1
is the directed union of the localized polynomial rings Br := (Uτr)Pr ,
where Pr := (m, τ1r, . . . , τhr)Uτr.

Proof. It is clear that Br ⊆ Br+1, and Pr ∩ (1 + aUτr) = ∅
implies that Cτr ⊆ Br. We show that Br ⊆ Cτr+1. Let u/d ∈ Br,

where u ∈ Uτr and d ∈ Uτr \ Pr. Then d = d0 +
∑h

i=1 τirbi, where
d0 ∈ R and each bi ∈ Uτr. Notice that d0 /∈ m since d /∈ Pr, and so

d−1
0 ∈ R. Thus, dd−1

0 = 1 +
∑h

i=1 τirbid
−1
0 ∈ (1 + aUτr+1) since each

τir ∈ aUτr+1 by (2.1.b). Hence u/d = (ud0)/(dd0) ∈ Cτr+1, and so
Cτ =

⋃∞
r=1Cτr =

⋃∞
r=1Br.

(2) With the notation of Examples 2.1, where R is the localized
polynomial ring k[x, y](x,y) over a field k, R∗ = k[y](y)[[x]] is the (x)-
adic completion of R and τ ∈ xR∗ is transcendental over K, the proof
in item (1) shows that Cτ =

⋃
Br, where Br = (Ur)Pr , Ur = k[x, y, τr]

and Pr = (x, y, τr)Ur. A similar remark applies to Cf with appropriate
modifications to Br, Ur and Pr.
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(3) Thus, the results of Theorem 3.1 and Propositions 3.2 and 3.4
hold for the ring B of Examples 2.1 and also the examples later in this
article.

Proposition 3.4. Assume the notation of Theorem 3.1 and set
C := Cτ .

(1) If R is a UFD and a is a prime element of R, then aC is a prime
ideal, C[1/a] is a Noetherian UFD and C is a UFD.

(2) If in addition R is regular, then C[1/a] is a regular Noetherian
UFD.

Proof. By Proposition 3.2.3, aC is a prime ideal. Since R is a
Noetherian UFD and S = R[τ1, . . . , τh] is a polynomial ring extension
of R, it follows that S is a Noetherian UFD. By Remark 2.2, the ring
C[1/a] is a localization of S, and thus a Noetherian UFD; moreover,
C[1/a] is regular if R is. The (a)-adic completion of C is R∗ by
Proposition 3.2.1. Since R∗ is Noetherian and a is in the Jacobson
radical of R∗, see [22, Theorem 8.2 (i)], it follows that

⋂∞
n=1 a

nR∗ =
(0). Thus,

⋂∞
n=1 a

nC = (0) by equation 3.2.0. It follows that CaC is
Noetherian [24, (31.5)], and hence CaC is a DVR. We use the following
fact:

Fact 3.5. If D is an integral domain and c is a nonzero element of
D such that cD is a prime ideal, then D = D[1/c] ∩DcD.

Proof. Let β ∈ D[1/c] ∩ DcD. Then β = b/cn = b1/s for some
b, b1 ∈ D, s ∈ D \ cD and integer n ≥ 0. If n > 0, we have
sb = cnb1 =⇒ b ∈ cD. Thus, we may reduce to the case where
n = 0; it follows that D = D[1/c] ∩DcD. This proves the fact.

We return to the proof of Proposition 3.4. By Fact 3.5, C =
C[1/a]∩CaC , and therefore C is a Krull domain. Since C[1/a] is a UFD
and C is a Krull domain, it follows that C is a UFD [28, page 21].

In order to examine more closely the prime ideal structure of the ring
B of Examples 2.1, we establish in Proposition 3.6 some properties of
its overring A and of the map SpecA → SpecB.

Proposition 3.6. With the notation of Examples 2.1, we have:

(1) A = Bτ and A[1/x] is a localization of R[τ ].
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(2) For P ∈ SpecA with x /∈ P , the following are equivalent:
(a) AP = BP∩B, (b) τ ∈ BP∩B, (c) p /∈ P .

Proof. For item (1), to see that A = Bτ , we first show that the map

ϕ : R[τ ] −→ R∗[1/x] = k[y](y)[[x]][1/x]

is flat. By [22, page 46], the field of fractions L of k[x](x)[τ ] is flat over
k[x](x)[τ ] since it is a localization. The field k[[x]][1/x] contains L and
is flat over L since it has a vector space basis over L. Thus, the map
ψ : k[x](x)[τ ] → k[[x]][1/x] is flat. We use the following:

Fact 3.7. Let C be a commutative ring, let D, E and F be C-
algebras, and let ψ : D → E be a flat C-algebra homomorphism;
equivalently, E is a flat D-module via the C-algebra homomorphism ψ.
Then ψ⊗C 1F : D⊗C F → E⊗C F is a flat C-algebra homomorphism.
Equivalently, E ⊗C F is a flat D ⊗C F -module via the C-algebra
homomorphism ψ ⊗C 1F .

Proof. Since E is a flat D-module, E⊗D (D⊗C F ) is a flat (D⊗C F )-
module by [22, page 46, Change of coefficient ring]. The fact follows
because E ⊗D (D ⊗C F ) = E ⊗C F .

We return to the proof of Proposition 3.6. We have R = k[x, y](x,y).
Consider the following composition:

R[τ ] = k[x](x)[τ ]⊗k[x](x)
R

α−→ k[[x]][1/x]⊗k[x](x)
R

γ
↪→ k[[x]][y](x,y)[1/x].

By Fact 3.7, the map α is flat. The map γ is a localization. Hence,
the composition γ ◦ α is flat. The extension k[[x]][y](x,y) → k[y](y)[[x]]
is flat since it is the map taking a Noetherian ring to an ideal-adic
completion [23, Corollary 1, page 170]. Therefore, the localization
map β : k[[x]][y](x,y)[1/x] → k[y](y)[[x]][1/x] is flat. Thus, the map
ϕ = β ◦ γ ◦α : R[τ ] → k[y](y)[[x]][1/x] is flat. Theorem 3.1 implies that
A = Bτ . By Remark 2.2, the ring A[1/x] is a localization of R[τ ].

For item (2), since τ ∈ A, (a) =⇒ (b) is clear.

For (b) =⇒ (c), we show that p ∈ P =⇒ τ /∈ BP∩B. By Remark 2.2,
B[1/x] is a localization of R[f ]. Since x /∈ P , the ring BP∩B is a
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localization of R[f ], and thus BP∩B = R[f ]P∩R[f ]. The assumption
that p ∈ P implies that some pi ∈ P , and so R[f ]P∩R[f ] is contained
in the DVR V := R[f ]piR[f ]. Since R[f ] is a polynomial ring over R,
f is a unit in V . Hence, τ = f/p /∈ V , and thus τ /∈ R[f ]P∩R[f ]. This
shows that (b) =⇒ (c).

For (c) =⇒ (a), notice that f = pτ implies that R[f ][1/xp] =
R[τ ][1/xp]. By item (1), A[1/x] is a localization of R[τ ][1/x] and so
A[1/xp] is a localization of R[τ ][1/xp] = R[f ][1/xp]. Thus, A[1/xp] is
a localization of R[f ]. By Remark 2.2, B[1/x] is a localization of R[f ].
Since xp /∈ P and x /∈ P ∩ B, we have that AP and BP∩B are both
localizations of R[f ]. Thus, we have

AP = R[f ]PAP∩R[f ] = R[f ](P∩B)BP∩B∩R[f ] = BP∩B.

This completes the proof of Proposition 3.6.

We observe in Proposition 3.8 that, over a perfect field k of char-
acteristic p > 0 (so that k = k1/p), a one-dimensional form of the
construction yields a DVR that is not a Nagata ring, and thus not
excellent; see [22, page 264], [23, Theorem 78, Definition 34.8].

Proposition 3.8. Let k be a perfect field of characteristic p > 0, and
let τ ∈ xk[[x]] be such that x and τ are algebraically independent over
k. Let V := k(x, τ) ∩ k[[x]]. Then V is a DVR for which the integral
closure V of V in the purely inseparable field extension k(x1/p, τ1/p) is
not a finitely generated V -module. Hence, V is not a Nagata ring.

Proof. It is clear that V is a DVR with maximal ideal xV . Since x and
τ are algebraically independent over k, [k(x1/p, τ1/p) : k(x, τ)] = p2.
Let W denote the integral closure of V in the field extension k(x1/p, τ)
of degree p over k(x, τ). Notice that

W = k(x1/p, τ) ∩ k[[x1/p]] and V = k(x1/p, τ1/p) ∩ k[[x1/p]]

are both DVRs having residue field k and maximal ideal generated by
x1/p. Thus, V = W +x1/pV . If V were a finitely generated W -module,
then by Nakayama’s lemma, it would follow that W = V . This is
impossible because V is not birational over W . It follows that V is not
a finitely generated V -module, and hence V is not a Nagata ring.
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4. Verification of the three-dimensional examples. In Theo-
rem 4.2, we record and establish the properties asserted in Examples
2.1 and other properties of the ring B.

Theorem 4.1. With the notation of Example 2.1, let Qi := piR
∗∩B,

for each i with 1 ≤ i ≤ m. We have:

(1) The ring B is a three-dimensional, non-Noetherian local UFD
with maximal ideal n = (x, y)B, and the n-adic completion of B is the
two-dimensional regular local ring k[[x, y]].

(2) The rings B[1/x] and BP , for each nonmaximal prime ideal P of
B, are regular Noetherian UFDs, and the ring B/xB is a DVR.

(3) The ring A is a two-dimensional regular local domain with max-
imal ideal mA := (x, y)A, and A = Bτ . The ring A is excellent if the
field k has characteristic zero. If k is a perfect field of characteristic p,
then A is not excellent.

(4) The ideal mA is the only prime ideal of A lying over n.

(5) The ideals Qi are the only height 2 prime ideals of B.

(6) The ideals Qi are not finitely generated and they are the only
nonfinitely generated prime ideals of B.

(7) The ring B has saturated chains of prime ideals from (0) to n of
length two and of length three, and hence is not catenary.

Proof. For item (1), since B is a directed union of three-dimensional
regular local domains, dimB ≤ 3. By Proposition 3.2, B is local with
maximal ideal (x, y)B, xB and piB are prime ideals and the (x)-adic
completion of B is equal to R∗, the (x)-adic completion of R. Thus,
the n-adic completion of B is k[[x, y]]. Since each Qi =

⋃∞
i=1 Qin,

where Qin = piR
∗ ∩Bn, we see that each Qi is a prime ideal of B with

pi, f ∈ Qi and x /∈ Qi. Since piB =
⋃
piBn, we have f /∈ piB. Thus,

(0) � piB � Qi � (x, y)B.

This chain of prime ideals of length at least three yields that dimB = 3
and that the height of each Qi is 2.

The map S = R[f ] → R∗[1/x] is not flat since flat extensions satisfy
the going-down property [22, Theorem 9.5, page 68], and piR

∗[1/x] is
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a height 1 prime whereas piR
∗[1/x] ∩ S = (pi, f)S is a height 2 prime.

Therefore, Theorem 3.1 implies that the ring B is not Noetherian. By
Proposition 3.4, B is a UFD, and so item (1) holds.

For item (2), by equation (3.2.0), B/xB is a DVR. By Proposition 3.4,
B[1/x] is a regular Noetherian UFD. If x ∈ P and P is nonmaximal,
then, again by equation (3.2.0), P = xB. If x /∈ P , the ring BP is a
localization of B[1/x] and so is a regular Noetherian UFD. Thus, item
(2) holds.

The statement in item (3) that A is a two-dimensional regular local
domain with maximal ideal mA = (x, y)A follows by a result of
Valabrega [29], see equation (2.1.0). By Proposition 3.6.1, we have
A = Bτ . The ring V := k[[x]] ∩ k(x, τ) is a DVR by [24, (33.7)]. If the
field k has characteristic zero, then V is excellent by [10, Chapter IV],
[26, Folgerung 3]. Since A is a localization of V [y], it follows that A is
also excellent if k has characteristic zero.

Assume the field k is perfect with characteristic p > 0. By Propo-
sition 3.8, the ring V is not excellent. Since A = V [y](x,y), the ring
V is a homomorphic image of A. Since excellence is preserved under
homomorphic image, the ring A is not excellent. This completes the
proof of item (3).

By equation (3.2.0), B/xB = A/xA = R∗/xR∗. Hence, mA =
(x, y)A is the unique prime of A lying over n = (x, y)B. Thus, item (4)
holds and for item (5) we see that x is not in any height 2 prime ideal
of B.

To complete the proof of item (5), it remains to consider P ∈ SpecB
with x /∈ P and htP > 1. By Proposition 3.2.4, we have xn /∈ PR∗

for each n ∈ N. Thus, ht (PR∗) ≤ 1. Since A ↪→ R∗ is faithfully flat,
ht (PA) ≤ 1. Let P ′ be a height 1 prime ideal of A containing PA.
Since dimB = 3, htP > 1 and x /∈ P ′ ∩B, it follows that P = P ′ ∩B.
If p /∈ P , then Proposition 3.6 implies that AP ′ = BP . Since P ′ is a
height 1 prime ideal of A, it follows that P is a height 1 prime ideal of
B.

Now suppose that pi ∈ P for some i. Then piR
∗ is a height 1 prime

ideal contained in PR∗ and so piR
∗ = PR∗. Hence, P is squeezed

between piB and Qi = piR
∗ ∩ B �= (x, y)B. Since dimB = 3, either

P has height 1 or P = Qi for some i. This completes the proof of
item (5).
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For item (6), we show that each Qi is not finitely generated by
showing for each n ≥ 0, that fn+1 /∈ (pi, fn)B. By equation (2.1.b), we
have τn = cn+1x + xτn+1, and hence fn = xfn+1 + pxcn+1. Assume
that fn+1 ∈ (pi, fn)B. Then

(pi, fn)B = (pi, xfn+1+pxcn+1)B =⇒ fn+1 = api+b(xfn+1+pxcn+1),

for some a, b ∈ B. Thus, fn+1(1− xb) ∈ piB. Since 1− xb is a unit of
B, it follows that fn+1 ∈ piB, and thus fn+1 ∈ piBn+r, for some r ≥ 1.
The relations ft = xft+1 + pxct+1, for each t ∈ N, imply that

fn+1 = xfn+2 + pxcn+2 = x2fn+3 + px2cn+3 + pxcn+2 = · · ·
= xr−1fn+r + pα,

where α ∈ R. Thus, xr−1fn+r ∈ (p, fn+1)Bn+r. Since fn+1 ∈
piBn+r, we have xr−1fn+r ∈ piBn+r. This implies fn+r ∈ piBn+r,
a contradiction because the ideal (pi, fn+r)Bn+r has height 2. We
conclude that Qi is not finitely generated.

Since B is a UFD, the height 1 primes of B are principal, and since
the maximal ideal of B is two-generated, every nonfinitely generated
prime ideal of B has height 2 and thus is in the set {Q1, . . . , Qm}. This
completes the proof of item (6).

For item (7), the chain (0) ⊂ xB ⊂ (x, y)B = mB is saturated and
has length two, while the chain (0) ⊂ p1B ⊂ Q1 ⊂ mB is saturated
and has length three.

Remark 4.2. With the notation of Examples 2.1 and Theorem 4.1,
we obtain the following additional details about the prime ideals of B.

(1) If P ∈ SpecB is nonzero and nonmaximal, then ht (PR∗) = 1
and ht (PA) = 1. Thus, every nonmaximal prime of B is contained in
a nonmaximal prime of A.

(2) If P ∈ SpecB is such that P ∩R = (0), then ht (P ) ≤ 1 and P is
principal.

(3) If P ∈ SpecB, htP = 1 and P ∩R �= 0, then P = (P ∩R)B.

(4) Let pi be one of the prime factors of p. Then piB is prime in B.
Moreover, the ideals piB and Qi := piA∩B = (pi, f1, f2, . . . )B are the
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only nonmaximal prime ideals of B that contain pi. Thus, they are the
only prime ideals of B that lie over piR in R.

(5) The constructed ring B has Noetherian spectrum.

Proof. For the proof of item (1), if P = Qi for some i, then
PR∗ ⊆ piR

∗ and htPR∗ = 1. If P is not one of the Qi, then by
Theorem 4.1, P is a principal height 1 prime and htPR∗ = 1. Since A is
Noetherian and local, R∗ is faithfully flat over A, and hence htPA = 1.

The proof of item (1) is contained in the proof of item (5) of
Theorem 4.1.

For item (2), htP ≤ 1, because the field of fractions K(f) of B has
transcendence degree one over the field of fractions K of R. Since B is
a UFD, P is principal.

For item (3), if x ∈ P , then P = xB and the statement is clear.
Assume x /∈ P . By Remark 2.2, B[1/x] is a localization of Bn, and so
ht (P ∩Bn) = 1 for all integers n ≥ 0. Thus, (P ∩R)Bn = P ∩Bn, for
each n, and so P = (P ∩R)B.

For item (4), each piB is prime by Proposition 3.2.3. By Theorem 4.1,
dimB = 3 and the Qi are the only height 2 primes of B. Since for
i �= j, the ideal piR + pjR is mR-primary, it follows that piB + pjB
is n-primary, and hence piB and Qi are the only nonmaximal prime
ideals of B that contain pi.

Item (5) follows from Theorem 4.1, since the prime spectrum is
Noetherian if it satisfies the ascending chain condition and if, for each
finite set in the spectrum, there are only finitely many points minimal
with respect to containing all of them. Thus, the proof is complete.

Remark 4.3. Rotthaus and Sega proved that the rings B of Theorems
3.1, 4.1 and 5.8 are coherent and regular in the sense that every finitely
generated submodule of a free module has a finite free resolution [27].
For the ring B =

⋃∞
n=1 Bn of these constructions, it is stated in [27]

that Bn[1/x] = Bn+k[1/x] = B[1/x] and that Bn+k is generated over
Bn by a single element for all positive integers n and k. This is
not correct for the local rings Bn. However, if, instead of using the
localized polynomial rings Bn and their union B of the construction for
these theorems, one uses the underlying polynomial rings Un and their
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union U defined in Theorem 3.1, then one does have that Un[1/x] =
Un+k[1/x] = U [1/x] and that Un+k is generated over Un by a single
element for all positive integers n and k.

We use the following lemma.

Lemma 4.4. Let the notation be as in Examples 2.1 and Theorem
4.1.

(1) For every element c ∈ mR \ xR and every t ∈ N, the element
c+ xtf is a prime element of the UFD B.

(2) For every fixed element c ∈ mR\xR, the set {c+xtf}t∈N consists
of infinitely many nonassociate prime elements of B, and so there exist
infinitely many distinct height 1 primes of B of the form (c+ xtf)B.

Proof. For the first item, since f = pτ , equation (2.1.b) implies that

fr = pcr+1x+ xfr+1.

In B0 = k[x, y, f ](x,y,f), the polynomial c+ xtf is linear in the variable
f = f0, and the coefficient xt of f is relatively prime to the constant
term c. Thus, c+ xtf is irreducible in B0. Since f = f0 = pc1x + xf1
in B1 = k[x, y, f1](x,y,f1), the polynomial c+xtf = c+xtpc1x+xt+1f1
is linear in the variable f1 and the coefficient xt+1 of f1 is relatively
prime to the constant term c. Thus, c + xtf is irreducible in B1. To
see that this pattern continues, observe that, in B2, we have

f = pc1x+ xf1 = pc1x+ pc2x
2 + x2f2

=⇒ c+ xtf = c+ pc1x
t+1 + pc2x

t+2 + xt+2f2,

a linear polynomial in the variable f2. Thus, c + xtf is irreducible in
B2 and a similar argument shows that c + xtf is irreducible in Br for
each positive integer r. Therefore, for each t ∈ N, the element c+ xtf
is prime in B.

For item (2), observe that (c + xtf)B �= (c + xmf)B, for positive
integers t > m. If (c + xtf)B = (c + xmf)B := q, a height 1 prime
ideal of B, then

(xt − xm)f = xm(xt−m − 1)f ∈ q.
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Since c /∈ xB, we have q �= xB. Thus, xm /∈ q. Also xt−m − 1 is a unit
of B. It follows that f ∈ q, and thus (c, f)B ⊆ q.

By Remark 2.2, B[1/x] is a localization of R[f ] = S, and x /∈ q
implies that Bq = Sq∩S . This is a contradiction since the ideal (c, f)S
has height 2. Thus, there exist infinitely many distinct height 1 primes
of the form (c+ xtf)B.

Lemma 4.5 is useful for giving a more precise description of SpecB
for B as in Examples 2.1. For each nonempty finite subset H of
{Q1, . . . , Qm}, we show there exist infinitely many height 1 prime ideals
contained in each Qi ∈ H , but not contained in Qj if Qj /∈ H .

Lemma 4.5. Let the notation be as in Theorem 4.1. Let G be
a nonempty subset of {1, . . . ,m}, and let H = {Qi | i ∈ G}. Let
pG =

∏
{pi | i ∈ G}. Then, for each t ∈ N, we have

(1) (pG + xtf)B is a prime ideal of B that is lost in A.

(2) (p2G + xtf)B is a prime ideal of B that is not lost in A.

The sets {(pG + xtf)B}t∈N and {(p2G + xtf)B}t∈N are both infinite.
Moreover, the prime ideals in both items (1) and (2) are contained in
each Qi such that Qi ∈ H, but are not contained in Qj if Qj /∈ H.

Proof. For item (1), we have

(4.5.1)

(pG + xtf)A ∩B = pG

(
1 + xtτ

∏
j /∈G

pj

)
A ∩B = pGA ∩B

=
⋂
i∈G

Qi.

Thus, each prime ideal of B of the form (pG+xtf)B is lost in A and R∗.
By the second item of Lemma 4.4, there exist infinitely many height 1
primes (pG + xtf)B of B that are lost in A and R∗.

For item (2), we have

(p2G + xtf)A ∩B =

(
p2G + xtpG

( ∏
j /∈G

pj

)
τ

)
A ∩B

(4.5.2)
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= pG

(
pG + xt

( ∏
j /∈G

pj

)
τ

)
A ∩B

� pGA ∩B =
⋂
i∈G

Qi.

The strict inclusion is because pG + xt(
∏

j /∈G pj)τ ∈ mA. This implies

that prime ideals of B of form (p2G+xtf)B are not lost. By Lemma 4.4,
there are infinitely many distinct prime ideals of that form.

The “moreover” statement for the prime ideals in item (1) follows
from equation (4.5.1). Equation (4.5.2) implies that the prime ideals in
item (2) are contained in eachQi ∈ H . For j /∈ G, if p2G+xtf ∈ Qj , then
pj+xtf ∈ Qj implies that p2G−pj ∈ Qj by subtraction. Since pj ∈ Qj ,
this would imply that p2G ∈ Qj , a contradiction. This completes the
proof of Lemma 4.5.

Remark 4.6. With the notation of Examples 2.1 consider the bira-
tional inclusion B ↪→ A and the faithfully flat map A ↪→ R∗. The
following statements hold concerning the inclusion maps R ↪→ B ↪→
A ↪→ R∗, and the associated maps in the opposite direction of their
spectra.

(1) The map SpecR∗ → SpecA is surjective, while the maps
SpecR∗ → SpecB and SpecA → SpecB are not surjective. All the
induced maps to SpecR are surjective since the map SpecR∗ → SpecR
is surjective.

(2) By Lemma 4.5, each of the prime ideals Qi of B contains infinitely
many height 1 primes of B that are the contraction of prime ideals of
A and infinitely many that are not.

Since an ideal contained in a finite union of prime ideals is contained
in one of the prime ideals by [2, page 8, Proposition 1.11], there are
infinitely many non-associate prime elements of the UFD B that are
not contained in the union

⋃m
i=1 Qi. We observe that, for each prime

element q of B with q /∈
⋃m

i=1 Qi, the ideal qA is contained in a height 1
prime q of A, and q ∩ B is properly contained in mB since mA is the
unique prime ideal of A lying over mB. Hence q∩B = qB. Thus, each
qB is contracted from A and R∗.

In the four-dimensional example B of Theorem 5.8, each height 1
prime of B is contracted from R∗, but there are infinitely many height 2
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mB := (x, y)B

Q1 Q2

xB ∈ NOT Lost NL L NL L NL L

(0)

DIAGRAM 4.6.0.

primes of B that are lost in R∗, i.e., are not contracted from R∗; see
Section 5.

(3) Among the prime ideals of the domain B of Example 2.1 that
are not contracted from A are the piB. Since piA ∩ B = Qi properly
contains piB, the prime ideal piB is lost in A.

(4) Since x and y generate the maximal ideals ofB and A, and since B
is integrally closed, a version of Zariski’s main theorem [6, 25], implies
that A is not essentially finitely generated as a B-algebra.

Using the information above, we display below a picture of Spec (B)
in the case m = 2.

Comments on Diagram 4.6.0. Here we have Q1 = p1R
∗ ∩B and

Q2 = p2R
∗ ∩ B, and each box represents an infinite set of height 1

prime ideals. We label a box “NL” for “not lost” and “L” for “lost.”
An argument similar to that given for the Type I primes in Example 2.3
shows that the height 1 primes q such that q /∈ Q1 ∪ Q2 are not lost.
That the other boxes are infinite follows from Lemma 4.5.

5. A four-dimensional prime spectrum. In Example 5.1, we
present a four-dimensional example analogous to Example 2.3.

Example 5.1. Let k be a field, let x, y and z indeterminates over
k. Set

R := k[x, y, z](x,y,z) and R∗ := k[y, z](y,z)[[x]],

and let mR and mR∗ denote the maximal ideals of R and R∗, re-
spectively. The power series ring R∗ is the xR-adic completion of R.
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Consider τ and σ in xk[[x]]

τ :=

∞∑
n=1

cnx
n and σ :=

∞∑
n=1

dnx
n,

where the cn and dn are in k and τ and σ are algebraically independent
over k(x). Define

f := yτ + zσ and A := Af = R∗ ∩ k(x, y, z, f),

that is, A is the intersection domain associated with f . For each
integer n ≥ 0, let τn and σn be the nth endpieces of τ and σ as in
equation (2.1.a). Then the nth endpiece of f is fn = yτn + zσn. As in
equation (2.1.b), we have

τn = xτn+1 + xcn+1 and σn = xσn+1 + xdn+1,

where cn+1 and dn+1 are in the field k. Therefore,

(5.1.1)
fn = yτn + zσn = yxτn+1 + yxcn+1 + zxσn+1 + zxdn+1

= xfn+1 + yxcn+1 + zxdn+1.

The approximation domains Un, Bn, U and B for A are as follows: for
n ≥ 0,

Un := k[x, y, z, fn] Bn := k[x, y, z, fn](x,y,z,fn)

U :=

∞⋃
n=0

Un and B := Bf =

∞⋃
n=0

Bn.

Thus, B is the directed union of four-dimensional localized polynomial
rings. It follows that dimB ≤ 4.

The rings A and B are constructed inside the intersection domain
Aτ,σ := R∗ ∩ k(x, y, z, τ, σ). By [15, Proposition 4.1] or [18, Theo-
rem 9.2], the domain Aτ,σ is Noetherian and equals its approximation
domain Bτ,σ. Here Bτ,σ is the nested union of the regular local do-
mains Bτ,σ,n = k[x, y, z, τn, σn](x,y,z,τn,σn). By Theorem 3.1, the ex-
tension T := R[τ, σ] ↪→ R∗[1/x] is flat. It follows that Aτ,σ is a three-
dimensional RLR that is a directed union of five-dimensional RLRs.



EXAMPLES OF NON-NOETHERIAN DOMAINS 77

Before we list and establish the other properties of Example 5.1 in
Theorem 5.8, we discuss the Jacobian ideal of a map and its relation
to flatness.

Discussion 5.2. Let R be a Noetherian ring, let m and n be positive
integers, let z1, . . . , zn be indeterminates over R and let f1, . . . , fm be
polynomials in R[z1, . . . , zn] that are algebraically independent over R.
Let

(5.2.0) S := R[f1, . . . , fm]
ϕ
↪→ R[z1, . . . , zn] =: T

be the inclusion map.

We define the Jacobian ideal J of the extension S ↪→ T to be the ideal
of T generated by the m×m minors of the m× n matrix J defined as
follows:

J :=

(
∂fi
∂zj

)
1≤i≤m
1≤j≤n

.

For the extension ϕ : S ↪→ T , the non-flat locus of ϕ is the set F ,
where

F := {Q ∈ Spec (T ) | the map ϕQ : S → TQ is not flat}.

The non-flat locus of ϕ is a closed subset of SpecT , [20, Theorem 24.3].
We say that an ideal F of T defines the non-flat locus of ϕ if F is
such that, for every Q ∈ Spec (T ), we have F ⊆ Q if and only if the
associated map ϕQ : SQ∩S → TQ is not flat.

Proposition 5.3 [12, Propositions 2.4.2, 2.7.2]. With notation as in
Discussion 5.2, let Q ∈ SpecT and consider ϕQ : S → TQ. Then

(1) ϕQ is flat if and only if, for each prime ideal P ⊆ Q of T , we
have ht (P ) ≥ ht (P ∩ S).

(2) If Q does not contain J , then ϕQ is flat. Thus, J ⊆ F .

We use the following proposition concerning flatness to justify Exam-
ple 5.1.

Proposition 5.4. With the notation of Example 5.1, we have

(1) for the extension ϕ : S = R[f ] ↪→ T = R[τ, σ], the Jacobian ideal
J is the ideal (y, z)T . Thus, the non-flat locus F of ϕ contains J .
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(2) For every P ∈ Spec (R∗[1/x]), the ideal (y, z)R∗[1/x] � P if
and only if the map BP∩B ↪→ (R∗[1/x])P is flat. Thus, the ideal
(y, z)R∗[1/x] defines the non-flat locus of the map B ↪→ R∗[1/x].

(3) For every height 1 prime ideal p of R∗, we have ht (p ∩B) ≤ 1.

(4) For every prime element w of B, wR∗ ∩B = wB.

Proof. For item (1), the Jacobian ideal is the ideal of T generated
by the 1 × 1 minors of the matrix (y z) by Discussion 5.2, and so
J = (y, z)T . By Proposition 5.3.2, (y, z)T ⊆ F .

The two statements of item (2) are equivalent by the definition of
non-flat locus in Discussion 5.2. To compute the non-flat locus of
B ↪→ R∗[1/x], we use that T := R[τ, σ] ↪→ R∗[1/x] is flat as noted
in Example 5.1. Let P ∈ Spec (R∗[1/x]), and let Q := P ∩T . The map
B ↪→ R∗[1/x]P is flat if and only if the composition

k[x, y, z, f ] ↪→ k[x, y, z, τ, σ] ↪→ R∗[1/x]P is flat ⇐⇒

S := k[x, y, z, f ]
ϕ
↪→ TQ = k[x, y, z, τ, σ]Q is flat.

From item (1), the Jacobian ideal of the extension S ↪→ T is the ideal
J = (y, z)T . Since (y, z)T ∩ S = (y, z, f)S has height 3, ϕQ is not flat
for every Q ∈ Spec (T ) such that (y, z)T ⊆ Q. Thus the non-flat locus
of B ↪→ R∗[1/x] is (y, z)R∗[1/x] as stated in item (2).

For item (3), let p be a height 1 prime of R∗. Since p does not contain
(y, z)R∗, the map Bp∩B ↪→ (R∗)p is faithfully flat. Thus ht (p∩B) ≤ 1.
This establishes item (3).

Item (4) is clear if wB = xB. Assume that wB �= xB, and
let p be a height 1 prime ideal of R∗ that contains wR∗. Then
pR∗[1/x]∩R∗ = p, and by item (3), p∩B has height at most one. We
have p ∩B ⊇ wR∗ ∩B ⊇ wB. Thus, item (4) follows.

Next we prove a proposition about homomorphic images of the
constructed ring B. This result enables us in Corollary 5.6 to relate
ring B of Example 5.1 to ring B of Example 2.3.

Proposition 5.5. Assume the notation of Example 5.1, and let w
be a prime element of R = k[x, y, z](x,y,z) with wR �= xR. Let π :
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R∗ → R∗/wR∗ be the natural homomorphism, and let denote image
in R∗/wR∗. Let B′ be the approximation domain formed by considering
R and the endpieces fn of f , defined analogously to equation (2.1.a).
That is, B′ is defined by setting

U ′
n = R[fn], B′

n = (U ′
n)n′

n
,

U ′ =
∞⋃
n=1

U ′
n, and B′ =

∞⋃
n=1

B′sn,

where n′
n is the maximal ideal of U ′

n that contains fn and the image of
mR. Then B′ = B.

Proof. By Proposition 3.2.3, wB is a prime ideal of B. By Proposi-
tion 5.4.3, wR∗ ∩ B = wB. Hence, B = B/(wR∗ ∩ B) = B/wB. We
have

R/xR = B/xB = R∗/xR∗,

and the ring R∗ is the (x)-adic completion of R. Since the ideal (y, z)R
has height 2 and the kernel of π has height 1, at least one of y and z is
non-zero. Since τ and σ are algebraically independent over k(x, y, z),
the element f = y · τ + z · σ of the integral domain B is transcendental
over R. Similarly the endpieces fn are transcendental over R. The fact

that R
∗
may fail to be an integral domain does not affect the algebraic

independence of these elements that are inside the integral domain B.

By Proposition 3.2.2 and Remarks 3.3.2, we have Un[1/x] = U [1/x],
and thus wU ∩ Un = wUn for each n ∈ N. Since Bn is a localization
of Un, we also have wB ∩Bn = wBn. Since wR∗ ∩B = wB, it follows
that wR∗ ∩Bn = wBn. Thus, we have

R ⊆ Bn = Bn/wBn ⊆ B = B/wB ⊆ R∗ = R∗/wR∗.

We conclude that B =
⋃∞

n=0 Bn. Since B′
n = Bn, we have B′ = B.

Corollary 5.6. The homomorphic image B/zB of the ring B of
Example 5.1 is isomorphic to the three-dimensional ring B of Exam-
ple 2.3.

Proof. Assume the notation of Example 5.1 and Proposition 5.5, and
let w = z. We show that the ring B/zB ∼= C, where C is the ring called
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B in Example 2.3. By Proposition 5.5, we have B′ = B/zB, where B′

is the approximation domain over R = R/zR using the element f ,
transcendental over R. Let RC denote the base ring k[x, y](x,y) for

C in Example 2.3, and let ψ0 : R → RC denote the k-isomorphism
defined by x �→ x and y �→ y. Then ψ0 extends to an isomorphism
ψ : (R)∗ → (RC)

∗ that agrees with ψ0 on R and such that ψ(τ ) = τ .
Furthermore, ψ(f) = ψ(y · τ + z · σ) = yτ , which is the transcendental
element f used in the construction of C. Thus, ψ is an isomorphism
from B = B/zB to C, the ring constructed in Example 2.3.

In the proof of Theorem 5.8, we use the following proposition regard-
ing a birational extension of a Krull domain.

Proposition 5.7. Let S ↪→ T be a birational extension of commuta-
tive rings, where S is a Krull domain and each height 1 prime ideal of
S is contracted from T . Then S = T .

Proof. Recall that S is Krull implies that S = ∩{Sp | p is a height 1
prime ideal of S}. We show that T ⊆ Sp, for each height 1 prime ideal
of S. Since p is contracted from T , there exists a prime ideal q of T
such that q∩S = p. Then Sp ⊆ Tq and Tq birationally dominates Sp.
Since Sp is a DVR, we have Sp = Tp. Therefore, T ⊆ Sp, for each p.
It follows that T = S.

We record in Theorem 5.8 properties of the ring B and its prime
spectrum.

Theorem 5.8. As in Example 5.1, let R := k[x, y, z](x,y,z) with k a
field, let x, y and z be indeterminates, and let R∗ := k[y, z](y,z)[[x]] be
the xR-adic completion of R. Let τ and σ ∈ xk[[x]] be algebraically
independent over k(x). Set f := yτ + zσ, A := R∗ ∩ k(x, y, z, f)
and B :=

⋃∞
n=0 Bn =

⋃∞
n=0 k[x, y, z, fn](x,y,z,fn) as in (5.1.2). Let

Q := (y, z)R∗ ∩B. Then:

(1) The rings A and B are equal.

(2) The ring B is a four-dimensional, non-Noetherian local UFD with
maximal ideal mB = (x, y, z)B, and the mB-adic completion of B is
the three-dimensional RLR k[[x, y, z]].
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(3) The ring B[1/x] is a Noetherian regular UFD, the ring B/xB is
a two-dimensional RLR and, for every non-maximal prime ideal P of
B, the ring BP is an RLR.

(4) The ideal Q is the unique prime ideal of B of height 3.

(5) The ideal Q equals
⋃∞

n=0 Qn where Qn := (y, z, fn)Bn, Q is a
non-finitely generated prime ideal and QBQ = (y, z, f)BQ.

(6) There exist infinitely many height 2 prime ideals of B not con-
tained in Q, and each of these prime ideals is contracted from R∗.

(7) For certain height 1 primes p contained in Q, there exist infinitely
many height 2 primes between p and Q that are contracted from R∗,
and infinitely many that are not contracted from R∗. Hence, the map
SpecR∗ → SpecB is not surjective.

(8) Every saturated chain of prime ideals of B has length either 3 or
4, and there exist saturated chains of prime ideals of lengths both 3 and
4. Thus, B is not catenary.

(9) Each height 1 prime ideal of B is the contraction of a height 1
prime ideal of R∗.

(10) B has Noetherian spectrum.

We prove Theorem 5.8 below. Assuming Theorem 5.8, we display a
picture of Spec (B) in Diagram 5.8.0 and make some remarks.

mB := (x, y, z)B

Q := (y, z, {fi})B

(x, y − δz)B ∈ ht. 2, �⊂ Q

xB ∈ ht. 1, �⊂ Q

ht. 2, contr. R∗ (y, z)B ∈ ht. 2, Not contr. R∗

yB, zB ∈ ht. 1, ⊂ Q

(0)

DIAGRAM 5.8.0.
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Comments on Diagram 5.8.0. A line going from a box at one
level to a box at a higher level indicates that every prime ideal in the
lower level box is contained in at least one prime ideal in the higher
level box. Thus, as indicated in the diagram, every height 1 prime
gB of B is contained in a height 2 prime of B that contains x and so
is not contained in Q. This is obvious if gB = xB and can be seen
by considering minimal primes of (g, x)B otherwise. Thus, B has no
maximal saturated chain of length 2. We have not drawn any lines
from the lower level righthand box to higher boxes that are contained
in Q because we are uncertain about what inclusion relations exist for
these primes. We discuss this situation in Remarks 5.15.

Proof of Theorem 5.8. For convenience, we prove item (2) first.

Since B is a directed union of four-dimensional RLRs, we have
dimB ≤ 4. By Corollary 5.6 and Theorem 4.1, dim (B/zB) = 3,
and so dimB ≥ 4. Thus, dimB = 4. By Proposition 3.2, B is local
with maximal ideal mB = (x, y, z)B, and the (x)-adic completion of
B is R∗. Thus, the mB-adic completion of B is k[[x, y, z]]. By Krull’s
altitude theorem, the ring B is not Noetherian [22, Theorem 13.5]. The
ring B is a UFD by Proposition 3.4.

For item (1), the ring B is a UFD by item (2), and hence a Krull
domain, and the extension B ↪→ A is birational. Thus, it suffices to
show that each height 1 prime P of B is the contraction of a prime
ideal of A by Proposition 5.7.

Let p be a height 1 prime ideal of B. Then pR∗ ∩ B = p by
Proposition 5.4.4. Also, B \p is a multiplicatively closed subset of R∗,
and so, if P is an ideal of R∗ maximal with respect to P ∩ (B \p) = ∅,
then P is a prime ideal of R∗ and P ∩ B = p. Then also P ∩ A is a
prime ideal of A with (P ∩A)∩B = p, and so p is contracted from A.
Thus A = B as desired for item (1).

For item (3), the ring B[1/x] is a Noetherian regular UFD by
Proposition 3.4.1. By equation (3.2.0), we have R/xR = B/xB. Thus,
B/xB is a two-dimensional RLR.

For the last part of item (3) if x /∈ P , then BP is a localization
of B[1/x], which is Noetherian and regular, and so BP is a regular
local ring. In particular, this proves that BQ is a regular local ring.
If x ∈ P and htP = 1, then P = (x) and BxB is a DVR. If x ∈ P
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and ht (P ) = 2, the ideal P is finitely generated since B/xB is an
RLR. Since B is a UFD from item (2), it follows that BP is a local
UFD of dimension 2 with finitely generated maximal ideal. Thus, BP

is Noetherian by Cohen’s theorem [22, Theorem 3.4]. This, combined
with B/xB a regular local ring, implies that BP is a regular local ring.
Since htP ≤ 2 for every non-maximal prime ideal P of R with x ∈ P ,
this completes the proof of item (3).

For item (4), since (y, z)R∗ is a prime ideal of R∗, the ideal Q =
(y, z)R∗ ∩ B is prime. By Proposition 3.2, the ideals yB and (y, z)B
are prime. Consider the chain of prime ideals

(0) ⊂ yB ⊂ (y, z)B ⊂ Q ⊂ mB.

The list y, z, f, x shows that each of the inclusions is strict; for example,
we have f ∈ Q\(y, z)B, since f /∈ (y, z)Bn for every n ∈ N. By item (2)
we have htmB = 4. Thus, htQ = 3. This also implies that (y, z)B is
a height 2 prime ideal of B.

For the uniqueness in item (4) let P be a non-maximal prime ideal of
B. We first consider the case that x /∈ P . Then, by Proposition 3.2.4,
xn /∈ PR∗ for each positive integer n. Hence, PR∗[1/x] �= R∗[1/x].
Let P1 be a prime ideal of R∗[1/x] such that P ⊆ P1. If both y and z
are in P1, then (y, z)R∗[1/x] ⊆ P1. Since (y, z)R∗[1/x] is maximal, we
have (y, z)R∗[1/x] = P1. Therefore, P ⊆ (y, z)R∗[1/x] ∩ B = Q, and
so either ht (P ) ≤ 2 or P = Q.

Next suppose that x /∈ P and y or z is not in P1. By Propositions 5.4.1
and 5.3.2, the map ψ : B → R∗[1/x]P1 is flat. Since dimR∗[1/x] = 2,
we have ht (P1) ≤ 2. Flatness of ψ implies ht (P1 ∩ B) ≤ 2; see [22,
Theorem 9.5]. Hence, htP ≤ 2.

To complete the proof of item (4) we consider the case that x ∈ P .
We have htP ≤ 3, since dimB = 4 and P is not maximal. If htP ≥ 3,
there exists a chain of primes of the form

(5.8.1) (0) � P1 � P2 � P � (x, y, z)B.

By equation (3.2.0), B/xB ∼= R/xR, and so dim (B/xB) = 2. If
x ∈ P2, then htP2 ≥ 2 implies that (0) � xB � P2 � P � (x, y, z)B, a
contradiction to dim (B/xB) = 2. Thus, x /∈ P2. Since x ∈ P and P is
non-maximal, we have that y or z is not in P . Hence, y or z is not in
P2.
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By equation (3.2.0), P corresponds to a non-maximal prime ideal P ′

of R∗ containing PR∗. Let P ′
2 be a prime ideal of R∗ inside P ′ that is

minimal over P2R
∗. If both y and z are in P ′

2, then, (x, y, z)R
∗ ⊆ P ′,

a contradiction to P ′ non-maximal. By Proposition 3.2.5, P ′
2 does not

contain x. Thus, P ′
2 � P ′ � (x, y, z)R∗. Also P ′

2 = P ′′
2 ∩R∗, where P ′′

2

is a prime ideal of R∗[1/x], and one of y and z is not an element of P ′′
2 .

By Proposition 5.4.2, the map ψ : B → R∗[1/x]P ′′
2

is flat. This
implies ht (P ′′

2 ) ≥ ht (P ′′
2 ∩ B) ≥ htP2 ≥ 2, that is, ht (P ′′

2 ) ≥ 2. Also,
P ′′
2 intersects R∗ in P ′

2, and so htP ′
2 ≥ 2. Thus, in R∗, we have a chain

of primes P ′
2 � P ′ � (x, y, z)R∗, where htP ′

2 ≥ 2, a contradiction, since
R∗, a localization of k[y, z][[x]], has dimension 3. This proves item (4).

For item (5), let Q′ =
⋃∞

n=0 Qn, where each Qn = (y, z, fn)Bn.
Each Qn is a prime ideal of height 3 in the four-dimensional RLR
Bn. Therefore, Q

′ is a prime ideal of B of height ≤ 3 that is contained
in Q. The ideal (y, z)B is a prime ideal of height 2 by the proof of
item (3). Hence, ht (Q′) = 3, and we have Q′ = Q.

To show the ideal Q is not finitely generated, we show for each
positive integer n that fn+1 /∈ (y, z, fn)B. By equation (5.1.1), fn =
xfn+1+ yxcn+1+ zxdn+1. If fn+1 ∈ (y, z, fn)B, then fn+1 = ay+ bz+
c(xfn+1+yxcn+1+zxdn+1), where a, b, c ∈ B. This implies fn+1(1−cx)
is in the ideal (y, z)B. By Proposition 3.2.1, x ∈ J (B), and so 1 − cx
is a unit of B. This implies fn+1 ∈ (y, z)B ∩Bn+1.

For each positive integer j we show that (y, z)B ∩ Bj = (y, z)Bj. It
is clear that (y, z)Bj ⊆ (y, z)B ∩Bj . To show the reverse inclusion, it
suffices to show for each integer j ≥ 0 that (y, z)Bj+1 ∩Bj ⊆ (y, z)Bj.
We have Bj [fj+1] ⊆ (Bj)(y,z)Bj

since fj+1 = (fj/x)+ ycj+1+ zdj+1 by
(5.1.1). The center of the two-dimensional RLR (Bj)(y,z)Bj

on Bj [fj+1]
is the prime ideal (y, z)Bj[fj+1]. This prime ideal is contained in the
maximal ideal (x, y, z, fj+1)Bj [fj+1]; it follows that Bj+1 ⊆ (Bj)(y,z)Bj

and so (y, z)Bj+1 ∩Bj ⊆ (y, z)Bj.

Thus, (y, z)B ∩ Bn+1 = (y, z)Bn+1, and fn+1 ∈ (y, z)Bn+1. Since
x, y, z and fn+1 are algebraically independent variables over k, and
Bn+1 = k[x, y, z, fn+1](x,y,z,fn+1), this is a contradiction. We conclude
that Q is not finitely generated.

By item (3), the ring BQ is a three-dimensional regular local ring.
Since x is a unit of BQ and since Q = (y, z, f, f1, f2, . . . )B, it follows
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from Proposition 3.2.2 (a = x and C = B) that QBQ = (y, z, f)BQ.
This establishes item (5).

For item (6), since x /∈ Q and B/xB ∼= R/xR, there are infinitely
many height 2 primes of B containing xB. This proves there are
infinitely many height 2 primes of B not contained in Q. If P is a
height 2 prime of B not contained in Q, then ht (mB/P ) = 1, by
item (4) above, and so, by Proposition 3.2.5, P is contracted from R∗.
This completes item (6).

For item (7), we show that p = zB has the stated properties. By
Corollary 5.6, the ring B/zB is isomorphic to the ring called B in
Example 2.3. For convenience, we relabel the ring of Example 2.3 as
B′. By Theorem 4.1, B′ has exactly one non-finitely generated prime
ideal, which we label Q′ and htQ′ = 2. It follows that Q/zB = Q′. By
Discussion 2.5, there are infinitely many height 1 primes contained in
Q′ of Type II (that is, primes that are contracted from R∗/zR∗) and
infinitely many height 1 primes contained in Q′ of Type III (that is,
primes that are not contracted from R∗/zR∗). The preimages in R∗

of these primes are height 2 primes of B that are contained in Q and
contain zB. It follows that there are infinitely many contracted from
R∗ and there are infinitely many not contracted from R∗, as desired
for item (7).

For item (8), we have a saturated chain of prime ideals

(0) ⊂ xB ⊂ (x, y)B ⊂ (x, y, z)B = mB

of length 3 by equation (3.2.0). We have a saturated chain of prime
ideals

(0) ⊂ yB ⊂ (y, z)B ⊂ Q ⊂ mB

of length 4 from the proof of item (4). Hence, B is not catenary. By
item (2), dimB = 4, so there is no saturated chain of prime ideals of
B of length greater than 4. By Comments 5.8.0, no saturated chain of
prime ideals of B has length less than 3.

For item (9), since R∗ is a Krull domain and B = A = Q(B) ∩ R∗,
it follows that B is a Krull domain, and each height 1 prime of B is
the contraction of a height 1 prime of R∗. Since B/xB and B[1/x] are
Noetherian, item (10) follows from [11, Corollary 1.3].

Remarks 5.9. Let the notation be as in Theorem 5.8.
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(1) It follows from Theorem 5.8 that the localization B[1/x] has a
unique maximal ideal QB[1/x] = (y, z, f)B[1/x] of height 3 and has
infinitely many maximal ideals of height 2. We observe that B[1/x] has
no maximal ideal of height 1. To show this last statement it suffices
to show for each irreducible element p of B with pB �= xB that there
exists P ∈ SpecB with pB � P and x /∈ P . Assume there does not
exist such a prime ideal P . Consider the ideal (p, x)B. This ideal
has height 2 and has only finitely many minimal primes since B/xB is
Noetherian. Let g be an element of mB not contained in any of the
minimal primes of (p, x)B. Every prime ideal of B that contains (g, p)B
also contains x and hence has height > 2. Since x /∈ Q, it follows that
(g, p)B is mB-primary, and hence that (g, p)R∗ is mR∗ -primary. Since
R∗ is Noetherian and htmR∗ = 3, this contradicts the altitude theorem
of Krull [24, Theorem 9.3].

(2) Every ideal I of B such that IR∗ is mR∗ -primary is mB-primary
by Proposition 3.2.5.

(3) Define

Cn :=
Bn

(y, z)Bn
and C :=

B

(y, z)B
.

We have C =
⋃∞

n=0 Cn by item (1). We show that C is a rank 2
valuation domain with principal maximal ideal generated by the image
of x. For each positive integer n, let gn ∈ Cn denote the image of the
element fn, and let x denote the image of x. Then Cn = k[x, gn](x,gn)
is a two-dimensional RLR. By (5.1.1), fn = xfn+1 + x(cny + dnz). It
follows that gn = xgn+1 for each n ∈ N. Thus, C is an infinite directed
union of quadratric transformations of two-dimensional regular local
rings. Thus, C is a valuation domain of dimension at most 2 by [1].
By items (2) and (4) of Theorem 5.8, dimC ≥ 2, and therefore C is a
valuation domain of rank 2. The maximal ideal of C is xC.

By Corollary 5.6, B/zB ∼= D, where D is the ring B of Example 2.3.
By an argument similar to that of Proposition 5.5 and Corollary 5.6,
we see that the above ring C is isomorphic to D/yD.

Question 5.10. For the ring B constructed as in Example 5.1, we
ask: is Q the only prime ideal of B that is not finitely generated?

Theorem 5.8 implies that the only possible non-finitely generated
prime ideals of B other than Q have height 2. We do not know whether



EXAMPLES OF NON-NOETHERIAN DOMAINS 87

every height 2 prime ideal of B is finitely generated. We show in
Corollary 5.13 and Theorem 5.14 that certain of the height 2 primes of
B are finitely generated.

Lemma 5.11 is the key to the proof of Theorem 3.1 and is also useful
below. We are grateful to Roger Wiegand for observing it.

Lemma 5.11 [15, Lemma 3.1], [18, Lemma 8.2]. Let S be a subring
of a ring T , and let b ∈ S be a regular element of both S and T . Assume
that bS = bT ∩ S and S/bS = T/bT . Then:

(1) T [1/b] is flat over S if and only if T is flat over S.

(2) If T and S[1/b] are both Noetherian and T is flat over S, then S
is Noetherian.

The following theorem shows that the non-flat locus of the map
ϕ : B → R∗[1/a] yields flatness for certain homomorphic images of
B, if R, a,R∗ and B are as in the general construction outlined in
Theorem 3.1.

Theorem 5.12. Let R be a Noetherian integral domain with field of
fractions K, let a ∈ R be a non-zero, non-unit, and let R∗ denote
the (a)-adic completion of R. Let s be a positive integer, and let
τ = {τ1, . . . , τs} be a set of elements of R∗ that are algebraically
independent over K, so that R[τ ] is a polynomial ring in s variables
over R. Define A := K(τ) ∩ R∗. Let Un, Bn, B and U be defined as
follows:

U :=

∞⋃
r=0

Un and B :=

∞⋃
n=0

Bn,

where, for each integer n ≥ 0, Un := R[τ1n, . . . , τsn], Bn := (1 +
aUn)

−1Un, and each τin is the nth endpiece of τi defined as in equa-
tion (2.1.a). Assume that F is an ideal of R∗[1/a] that defines the
non-flat locus of the map ϕ : B → R∗[1/a]. Let I be an ideal in B such
that IR∗ ∩B = I and a is regular on R∗/IR∗.

(1) If IR∗[1/a] + F = R∗[1/a], then ϕ⊗B (B/I) is flat.

(2) If R∗[1/a]/IR∗[1/a] is flat over B/I, then R∗/IR∗ is flat over
B/I.

(3) If ϕ⊗B (B/I) is flat, then B/I is Noetherian.
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Proof. The hypothesis of item (1) implies that ϕP is flat for each
P ∈ SpecR∗[1/a] with I ⊆ P . Hence, for each such P , we have
ϕP ⊗B (B/I) is flat. Since flatness is a local property, it follows that
ϕ⊗B (B/I) is flat.

For items (2) and (3), apply Lemma 5.11 with S = B/I and
T = R∗/IR∗; the element b of Lemma 5.11 is the image in B/IB of
the element a from the setting of Theorem 3.1. Since IR∗ ∩B = I, the
ring B/I embeds into R∗/IR∗, and since B/aB = R∗/aR∗, the ideal
a(R∗/IR∗)∩(B/I) = a(B/I). Thus, items (2) and (3) of Theorem 5.12
follow from items (1) and (2), respectively, of Lemma 5.11.

Corollary 5.13. Assume the notation of Example 5.1. Let w be a
prime element of B. Then B/wB is Noetherian if and only if w /∈ Q.
Thus, every non-finitely generated ideal of B is contained in Q.

Proof. If w ∈ Q, then B/wB is not Noetherian since Q is not
finitely generated. Assume w /∈ Q. Since B/xB is known to be
Noetherian, we may assume that wB �= xB. By Proposition 5.4.1,
QR∗[1/x] = (y, z)R∗[1/x] defines the non-flat locus of ϕ : B → R∗[1/x].
Since wR∗[1/x] + (y, z)R∗[1/x] = R∗[1/x], Theorem 5.12 with I = wB
and a = x implies that B/wB is Noetherian.

For the second statement, we use that every non-finitely generated
ideal is contained in an ideal maximal with respect to not being finitely
generated, and the latter ideal is prime. Thus, it suffices to show every
prime ideal P not contained in Q is finitely generated. If P �⊆ Q, then,
since B is a UFD, there exists a prime element w ∈ P \Q. By the first
statement, B/wB is Noetherian, and so P is finitely generated.

Theorem 5.14. Assume the notation of Example 5.1. Let w be a
prime element of R with w ∈ (y, z)k[x, y, z]. If w is linear in either
y or z, then Q/wB is the unique non-finitely generated prime ideal of
B/wB. Thus, Q is the unique non-finitely generated prime ideal of B
that contains w.

Proof. Let denote the image under the canonical map of R∗ onto
R∗/wR∗. We may assume that w is linear in z, that the coefficient of z
is 1, and therefore that w = z− yg(x, y), where g(x, y) ∈ k[x, y]. Thus,
R ∼= k[x, y](x,y). By Proposition 5.5, B is the approximation domain
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over R with respect to the transcendental element

f = y · τ + z · σ = y · τ + y · g(x, y) · σ.

The setting of Proposition 3.4 applies with C = B, the underlying
ring R replaced by R, and a = x. Thus, the ring B is a UFD, and
so every height 1 prime ideal of B is principal. Since w ∈ Q and Q
is not finitely generated, it follows that ht (Q) = 2 and that Q is the
unique non-finitely generated prime ideal of B. Hence, the theorem
holds.

Remarks 5.15. It follows from Proposition 3.2.5 that every height 2
prime of B that is not contained in Q is contracted from a prime ideal
of R∗. As we state in item (7) of Theorem 5.8, there are infinitely many
height 2 prime ideals of B that are contained in Q and contracted from
R∗, and there are infinitely many height 2 prime ideals of B that are
contained in Q and are not contracted from R∗. In particular, infinitely
many of each type exist between zB and Q, and similarly also infinitely
many of each type exist between yB and Q.

Since BQ is a three-dimensional regular local ring, for each height 1
prime p of B with p ⊂ Q, the set

Sp = {P ∈ SpecB | p ⊂ P ⊂ Q and htP = 2}

is infinite. The infinite set Sp is the disjoint union of the sets Spc and
Spn, where the elements of Spc are contracted from R∗ and the elements
of Spn are not contracted from R∗.

We do not know whether there exists a height 1 prime p contained
in Q having the property that one of the sets Spc or Spn is empty.
Furthermore, if one of these sets is empty, which one is empty? If there
are some such height 1 primes p with one of the sets Spc or Spn empty,
which height 1 primes are they? It would be interesting to know the
answers to these questions.

The referee of this article asked how Example 5.1 compares to a
specific ring constructed using the popular “D + M” technique of
multiplicative ideal theory; see, for example, [3, 9] or [8, page 95].
The “D+M” construction involves an integral domain D and a prime
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ideal M of an extension domain E of D such that D ∩M = (0). Then
D+M = {a+b | a ∈ D, b ∈ M}. Moreover, for a, a′ ∈ D and b, b′ ∈ M ,
if a + b = a′ + b′, then a = a′ and b = b′. Since D embeds in E/M ,
the ring D +M may be regarded as a pullback as in [7] or [21, page
42]. The ring suggested by the referee is an interesting example that
contrasts nicely with Example 5.1. We describe it in Example 5.16.

Example 5.16. Let B be the ring of Example 2.3. Then B = k+mB

in the notation of Example 2.3. Assume the field k is the field of
fractions of a DVR V , and let t be a generator of the maximal ideal of
V . Define

C := V +mB = {a+ b | a ∈ V, b ∈ mB}.

The integral domain C has the following properties:

(1) The maximal ideal mB of B is also a prime ideal of C, and
C/mB

∼= V .

(2) C has a unique maximal ideal mC ; moreover, mC = tC.

(3) mB =
⋂∞

n=1 t
nC and B = CmB = C[1/t].

(4) Each P ∈ SpecC with P �= mC is contained in mB; thus,
P ∈ SpecB.

(5) dimC = 4 and C has a unique prime ideal of height h, for h = 2, 3
or 4.

(6) mC is the only non-zero prime ideal of C that is finitely generated.
Indeed, every non-zero proper ideal of B is an ideal of C that is not
finitely generated.

Thus, C is a non-Noetherian, non-catenary, four-dimensional local
domain.

Proof. Since C is a subring of B, mB ∩ V = (0) and VmB = mB,
item (1) holds. We have C/(tV +mB) = V/tV . Thus, tV +mB is a
maximal ideal of C. Let b ∈ mB. Since 1 + b is a unit of the local ring
B, we have

1

1 + b
= 1− b

1 + b
and

b

1 + b
∈ mB.
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Hence, 1+b is a unit of C. Let a+b ∈ C \ (tV +mB), where a ∈ V \ tV
and b ∈ mB. Then a is a unit of V and thus a unit of C. Moreover,
a−1(a+b) = 1+a−1b and a−1b ∈ mB. Therefore, a+b is a unit of C. We
conclude that mC := tV +mB is the unique maximal ideal of C. Since
t is a unit of B, we have mB = tmB. Hence, mC = tV +mB = tC.
This proves item (2).

For item (3), since t is a unit of B, we have mB = tnmB ⊆ tnC for
all n ∈ N. Thus, mB ⊆

⋂∞
n=1 t

nC. If a + b ∈
⋂∞

n=1 t
nC with a ∈ V

and b ∈ mB, then

b ∈
∞⋂

n=1

tnC =⇒ a ∈
( ∞⋂

n=1

tnC

)
∩ V =

∞⋂
n=1

tnV = (0).

Hence, mB =
⋂∞

n=1 t
nC. Again, using tmB = mB, we obtain

C[1/t] = V [1/t] +mB = k +mB = B.

Since t /∈ mB, we have B = C[1/t] ⊆ CmB ⊆ BmB = B. This proves
item (3).

For P as in item (4), we have P � tC. Since P is a prime ideal of C,
it follows that P = tnP for each n ∈ N. By item (3), P ⊆ mB, and it
follows that P ∈ SpecB. Item (5) now follows from item (4) and the
structure of SpecB.

For item (6), let J be a non-zero proper ideal of B. Since t is a unit
of B, we have J = tJ . This implies by Nakayama’s lemma that J as an
ideal of C is not finitely generated; see [3, Lemma 1]. Thus, item (6)
follows from item (4).

By item (6), C is non-Noetherian. Since (0) � xB � mB � tC is a
saturated chain of prime ideals of C of length 3, and (0) � yB � Q �
mB � tC is a saturated chain of prime ideals of C of length 4, the ring
C is not catenary.
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