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NEW FREE DIVISORS FROM OLD

RAGNAR-OLAF BUCHWEITZ AND ALDO CONCA

To Jürgen Herzog on his 70th birthday.

ABSTRACT. We present several methods to construct or
identify families of free divisors such as those annihilated by
many Euler vector fields, including binomial free divisors, or
divisors with triangular discriminant matrix. We show how to
create families of quasihomogeneous free divisors through the
chain rule or by extending them into the tangent bundle. We
also discuss whether general divisors can be extended to free
ones by adding components and show that adding a normal
crossing divisor to a smooth one will not succeed.

1. Introduction. The goal of this note is to describe some basic op-
erations that allow to construct new free divisors from given ones, and
to classify toric free surfaces and binomial free divisors. We mainly
deal with weighted homogeneous polynomials over a field of charac-
teristic 0, although several statements and constructions generalize to
power series.

A (formal) free divisor is a reduced polynomial (or power series)
f in variables x1, . . . , xn over a field K such that its Jacobian ideal
J(f) = (∂f/∂x1), . . . , (∂f/∂xn) + (f) is perfect of codimension 2 in
the polynomial or power series ring. For generalities about free divisors
and their importance in singularity theory, we refer to, say, [2] and the
references therein.

A determinantal characterization of free divisors is due to Saito [10]:
a reduced polynomial f is a free divisor if and only if there exists
a matrix A of size n × n with entries in the relevant polynomial or
power series ring such that det (A) = f and (∇f)A ≡ 0 mod (f), where
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∇f = (∂f/∂x1), . . . , (∂f/∂xn) is the usual gradient of f . In that case
A is called a discriminant (or Saito) matrix of the free divisor.

The normal crossing divisor f = x1 · · ·xk, for some 1 � k � n,
provides a simple example of a free divisor. Indeed, it is an example of
a free arrangement, that is, a hyperplane arrangement given by linear
equations �i = 0 such that the product f =

∏
i �i is a free divisor, see

[9] for more on free arrangements.

Section 2 contains generalities and notation. In Section 3 we study
homogeneous polynomials that are annihilated by n− 2 linearly inde-
pendent Euler vector fields, that is, polynomials f such that the vector
space generated by the linear derivatives {xi∂f/∂xi}i=1,... ,n is of di-
mension at most 2. We show that such a polynomial is a free divisor,
provided the gradient ∇f vanishes as an element of the first homology
module of the associated Buchsbaum-Rim complex. As an application,
we classify in Theorem 3.5 those free surfaces {f(x, y, z) = 0} that are
weighted homogeneous and annihilated by some Euler vector field.

In Section 4 we present a composition formula or chain rule for free
divisors. Such a formula implies, for instance, that, if f and g are free
divisors in distinct variables, then fg(f + g) is also a free divisor.

In Section 5 we exhibit some triangular free divisors, that is, free
divisors whose discriminant matrix has a triangular form. It follows,
for instance, that, for natural numbers t � 1, n � 2, the polynomial∏n

j=2(x
t
1 + · · ·+ xtj) is a free divisor.

In Section 6 we characterize binomial free divisors by showing that a
binomial in n+ 2 variables x1, . . . , xn, y, z is a free divisor if and only
if it is, up to permutation and scaling of the variables, of the form

x1 · · ·xnyuzt
(
yα

∏
xai

i + zβ
∏

xbii

)

with min(ai, bi) = 0, α, β > 0, and 0 � u, t � 1. In particular, any
reduced binomial is a factor of a free divisor. This observation leads
us to ask whether any reduced polynomial is a factor of a free divisor.
We discuss this question in Section 7, where we show that the simplest
approach will not work: If f is a smooth form of degree greater than 2
in more than 2 variables, then x1 · · ·xnf is not a free divisor.
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In the final Section 8, we point out that homogeneous free divisors
extend into the tangent bundle: along with f , the polynomial

f

(
∂f

∂x1
y1 + · · ·+ ∂f

∂xn
yn

)

in twice as many variables x1, . . . , xn; y1, . . . , yn is again a free divisor.
Moreover, it will again be linear, if this holds for f .

We want to point out that similar “extension problems” for free
divisors have been considered by others as well, especially in [4, 8,
11].

2. Notation and generalities. Let R be the polynomial ring
K[x1, . . . , xn] or formal power series ring K[[x1, . . . , xn]] over a field
K of characteristic 0. Let θ := θR/K

∼= ⊕n
i=1R∂xi denote the module of

vector fields (or K-linear derivations) of R, with ∂xi being shorthand
for the corresponding partial derivative, ∂xi := ∂/∂xi. For f ∈ R,
we further abbreviate fi := fxi := ∂xif , so that the gradient of f with
respect to the chosen variables is given by the vector∇f = (f1, . . . , fn).

Definition 2.1. For a = (a1, . . . , an) ∈ Kn, we call the linear vector
field Ea =

∑
i aixi∂xi the Euler vector field associated to a. It is an

Euler vector field for f if Ea(f) = δf , for some δ ∈ K.

A vector w ∈ Zn naturally induces a Z-grading on K[x1, . . . , xn]
by setting degwxi = wi. Accordingly, one can assign to any non-zero
polynomial f a degree degw(f), and that polynomial is w-homogeneous,
that is, homogeneous with respect to this grading, if all the nonzero
monomials in f are of degree degw(f). If f ∈ R is w-homogeneous,
then Ew(f) = degw(f)f .

The Jacobian ideal J(f) of f is, by definition, (f1, . . . , fn)+(f) ⊆ R.
Some authors, see e.g., [6, page 110], call this the Tjurina ideal to
distinguish it clearly from the ideal generated by just the partial
derivatives that describes the critical locus of the map defined by f .

Note that J(f) = (f1, . . . , fn) precisely when there exists a derivation
D ∈ θ such that D(f) = f . This happens, for example, if f is
homogeneous of non-zero degree with respect to some weight w ∈ Zn.
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It is well known that, in general, J(f) defines the singular locus of
the hypersurface ring R/(f), equivalently, the hypersurface {f = 0} in
affine n-space An

K .

Definition 2.2. A (formal) free divisor is a polynomial (or power
series) f , whose Jacobian ideal J(f) is perfect of codimension 2 in R.
We allow the ideal to be improper, thus, the empty set is perfect of any
codimension. However, the zero ideal is, by convention, not perfect of
any codimension, and we always assume f �= 0.

In particular, f is then squarefree, equivalently, the hypersurface
ring R/(f) is reduced and we then simply also call f reduced and the
singular locus of that hypersurface is a Cohen-Macaulay subscheme of
codimension 2 in SpecR.

Example 2.3. As simplest examples, any separable polynomial in
K[x] defines a free divisor, and so does any reduced f ∈ K[x, y].

Saito, who introduced the notion, gave the following important cri-
terion for f to be a free divisor:

Theorem 2.4 [10]. Let f ∈ R be reduced. Then f is a free divisor
if and only if there exists a n× n matrix A with entries in R such that
detA = f and (∇f)A ≡ 0 mod (f).

The matrix A appearing in this criterion is called a discriminant (or
Saito) matrix of f . If the entries of A can be chosen to be linear
polynomials, then f is called a linear free divisor. Note that f is
then necessarily a homogeneous polynomial of degree n. The normal
crossing divisor f = x1 · · ·xn is a simple example of a linear free divisor.

Remark 2.5. It follows immediately from this criterion that a free
divisor f ∈ R remains a free divisor in any polynomial or power series
ring over R. When viewed as an element of such larger ring, f is called
the suspension of the original free divisor from R.
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A different way to state the criterion, and to link it with the definition
we chose, denote Der (− log f) ⊆ θ those vector fields D such that
D(f) ∈ (f), equivalently, D(log f) = D(f)/f is a well-defined element
of R. With this notation, one has a short exact sequence of R-modules

0 −→ Der (− log f) −→ θ
df−→ J(f)/(f) −→ 0,

and a reduced f is a free divisor if, and only if, Der (− log f) is a free
R-module, necessarily of rank n. A discriminant matrix is then simply
the matrix of the inclusion Der (− log f) ⊆ θ, when bases of these free
modules are chosen.

Now we turn to our results.

3. Polynomials annihilated by many Euler vector fields. In
this section we assume that:

(a) f ∈ R is a nonzero squarefree polynomial that belongs to the ideal
of its derivatives, f ∈ (f1, . . . , fn) ⊆ R.
(b) The K-vector space of Euler vector fields annihilating f has

dimension at least n − 2. In other words, there exist n − 2 linearly
independent Euler vector fields Ej =

∑
i aijxi∂xi , for j = 1, . . . , n− 2,

such that Ej(f) = 0. Denote by A the n× (n− 2) scalar matrix (aij)
and by B the matrix (aijxi) of the same size.

Under these assumptions, the Jacobian ideal of f is equal to the ideal
of its partial derivatives and has codimension at least two. To show that
it defines a Cohen-Macaulay subscheme of codimension 2, it suffices
thus to find a Hilbert-Burch matrix, necessarily of size n× (n− 1), for
the partial derivatives. By assumption, we have a matrix equation in
R of the form

(∇f)B = (0, 0, . . . , 0).

We need one more syzygy! More precisely; see, for example, [5, 20.4] to
get a Hilbert-Burch matrix for (f1, . . . , fn); we want a column vector
w := (w1, . . . , wn)

T with entries from R such that we have an equality
of sequences of elements from R of the form

(f1, . . . , fn) = In−1(C),

where C is obtained from B by appending the column vector w, and
In−1 denotes the sequence of appropriately signed maximal minors of
the indicated n× (n− 1) matrix.
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Define an R-linear map from Rn to Rn through

ε(w1, . . . , wn) := In−1(B | w),

where (B | w) denotes the n × (n − 1)-matrix obtained from B by
adding column w.

Clearly, B ◦ ε = 0, and the sequence of free (graded) R-modules

BR(B) ≡
(
F2 = Rn(n− 1)

∂2=ε−→ F1 = Rn(−1) ∂1=B−→ F0 = Rn−2 → 0
)

is the beginning of the Buchsbaum-Rim complex for matrix B; see, for
example, [5, Appendix A.2]. By the given setup, the vector ∇f ∈ F1

is a cycle in this complex, and the required vector w exists if, and only
if, the class of ∇f is zero in the first homology group H1(BR(B)) of
this Buchsbaum-Rim complex.

Now, if the ideal of the maximal minors of B has the maximal possible
codimension, equal to n− (n− 2)+ 1 = 3, then the entire Buchsbaum-
Rim complex is exact and, so, in particular, H1(BR(B)) = 0.

The minor of B obtained by deleting rows i and j is the monomial
uijx1 · · ·xn/xixj , where uij is the minor of A obtained by deleting the
rows corresponding to i and j. The ideal generated by these minors
will have maximal codimension if, and only if, all the maximal minors
of A are non-zero.

Summing up, we have the following result.

Proposition 3.1. Under assumptions (a) and (b), and with the
notation as above,

(1) the polynomial f is a free divisor if, and only if, the class of
∇f in the first homology H1(BR(B)) of the Buchsbaum-Rim complex
associated to B vanishes.

(2) If all the maximal minors of A are non-zero, then f is a free
divisor.

Example 3.2. Consider

f = uxa − vxb
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with u, v ∈ K nonzero and a, b ∈ Nn different exponents with
min(ai, bi) � 1, for each i, to ensure that f is reduced. The Euler vector
field

∑n
i=1 cixi∂/∂xi then annihilates f if, and only if,

∑
aici = 0 and∑

bici = 0. Assuming aibj−ajbi �= 0 for some pair of indices i < j, the
space of Euler vector fields annihilating f has dimension n − 2. The
corresponding n× (n−2) coefficient matrix A then satisfies

( a

b

)
A = 0,

where
( a

b

)
is the obvious 2 × n matrix of scalars. Linear algebra tells

us that the maximal minors of A are then, up to sign and a common
non-zero constant, equal to the maximal minors of

( a

b

)
. By virtue of

Proposition 3.1 (2), we can conclude that, if aibj−ajbi �= 0 for all pairs
i < j, then the binomial f is a free divisor.

In Section 6 we will give a complete characterization of homogeneous
binomial free divisors.

In three variables the considerations above lead to a complete char-
acterization of free divisors that are weighted homogeneous and an-
nihilated by an Euler vector field. To write down the corresponding
Hilbert-Burch matrices in a compact form, the following tool will be
useful.

Definition 3.3. Let d > 0 be a natural number, R = K[x1, . . . , xn]
a polynomial ring over a field K of characteristic zero, and y =
{y1, . . . , ym} a subset of the variables x. Define a K-linear endomor-
phism (deg + d)−1

y on R through the following action on monomials:

(deg + d)−1
y (xe) :=

1

|e|y + d
xe,

where |e|y :=
∑

i,xi∈y ei denotes the usual total degree of xe with
respect to the variables y.

In words, (deg+ d)−1
y has polynomials that are homogeneous of total

degree a in the variables y as eigenvectors of eigenvalue 1/(a+d). If y is
the set of all variables, then the corresponding K-linear endomorphism
will simply be denoted by (deg + d)−1.

As is well known, the endomorphism just defined can be used to split
in characteristic zero the tautological Koszul complex on the variables.
Here we will use the following form.
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Lemma 3.4. Let V = ⊕iKxi be the indicated vector space over
K and V ∼= ⊕iKξi, xi �→ ξi an isomorphic copy of it. Let K• =
SKV ⊗K ΛKV ∼= R ⊗K Λ•

K(ξ1, . . . , ξn) be the exterior algebra over
R on variables ξi, the graded R-module underlying the usual Koszul
complex.

The R-linear derivation ∂ :=
∑

i aixi(∂/∂ξi) defines a differential on
K for any choice of ai ∈ K. Let W ⊆ V denote the subspace generated
by those variables y among the x, for which ai �= 0, and denote by ηj
the corresponding variables among the ξi in the isomorphic copy of W .

If ω ∈ Km is a cycle for ∂, then the class of ω in Hi(K
•, ∂) is

zero if, and only if, ω = 0 in R/(y) ⊗ Λi(V/W ). In that case, ω′ :=
(
∑

j(1/aj) dηj∂yj ) ◦ (deg + d)−1
y (ω) provides a boundary, ∂(ω′) = ω.

Theorem 3.5. Let K be a field of characteristic zero and f ∈
K[x, y, z] a reduced polynomial in three variables such that f is con-
tained in the ideal of its partial derivatives, f ∈ (fx, fy, fz).

Assume further that there is a triple (a, b, c) of elements of K that
are not all zero such that the Euler vector field

E = ax
∂

∂x
+ by

∂

∂y
+ cz

∂

∂z

satisfies E(f) = 0.

We then have the following possibilities, up to renaming the variables:

(1) If abc �= 0, then f is a free divisor with Hilbert-Burch matrix

(fx, fy, fz) = I2

⎛
⎜⎜⎜⎝
ax

(
1
c − 1

b

)
(deg + 2)−1(fyz)

by
(
1
a − 1

c

)
(deg + 2)−1(fxz)

cz
(
1
b − 1

a

)
(deg + 2)−1(fxy)

⎞
⎟⎟⎟⎠

where f∗∗ denotes the corresponding second order derivative of f .

(2) If a = 0, but bc �= 0, then f is a free divisor if, and only if,
fx ∈ (y, z). If that condition is verified and fx = yg + zh, then
fy/cz = −fz/by is an element of R, and a Hilbert-Burch matrix is
given by

(fx, fy, fz) = I2

⎛
⎝ 0 fy/cz = −fz/by
by −h/c
cz g/b

⎞
⎠ .
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(3) If a = b = 0, then f is independent of z and, so, as the suspension
of a reduced plane curve, is a free divisor.

Proof. We simply need to verify that the Hilbert-Burch matrix is
correct. One may now either use the preceding lemma, or calculate
directly, as we will do. We just verify that, in case (1), the minor
obtained when deleting the first row is correct, leaving the remaining
calculations to the interested reader. It suffices to check the case when
f = xe1ye2ze3 is a monomial with ae1+be2+ce3 = 0 and ei � 0, |e| > 0.
Then,

by(1/b− 1/a)(deg + 2)−1(fxy)− cz(1/a− 1/c)(deg + 2)−1(fxz)

= by(1/b− 1/a)(deg + 2)−1(e1e2x
e1−1ye2−1ze3)

− cz(1/a− 1/c)(deg + 2)−1(e1e3x
e1−1ye2ze3−1)

=
e1e2
|e| (1− b/a)x

e1−1ye2ze3 − e1e3
|e| (c/a− 1)xe1−1ye2ze3

= fx (e2(a− b)− e3(c− a)) /a|e|
= fx ((e2 + e3)a− e2b− e3c) /a|e|
= fx,

as required.

To apply this result, we need to detect Euler vector fields annihilating
given polynomials, and the following remark is useful for this purpose.

Remark 3.6. Assume that f is a polynomial that is homogeneous with
respect to two weights, w, v ∈ Zn. For every a, b ∈ Z, the polynomial
f is then homogeneous with respect to aw + bv, of degree adegw(f) +
bdegv(f). Taking a = degv(f) and b = −degw(f), we conclude that f
is homogeneous of degree 0 with respect to degv(f)w − degw(f)v, and
so the corresponding Euler vector field annihilates f . If, further, some
degree adegw(f)+ bdegv(f) is not zero, then f satisfies the assumption
(a) from the beginning.

This remark can be applied as follows.
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Example 3.7. Set

f(x, y, z) = xγ1yγ2zγ3Πk
i=1(x

a − αiy
bzc)

with a, b, c, k ∈ N \ {0}, γj ∈ {0, 1} and αi ∈ K. Assume that the αi

are non-zero and distinct so that f is reduced. Then f is a free divisor
if, and only if, not both γ2 and γ3 equal 0, equivalently, γ2 + γ3 > 0.
To prove the statement, take v = (0, c,−b) and w = (b, a, 0), so that f
becomes homogeneous with respect to both v and w, satisfying

degv(f) = cγ2 − bγ3 and degw(f) = bγ1 + aγ2 + kab �= 0.

Hence, by the remark above, f ∈ (fx, fy, fz), and the Euler vector field
associated to

degv(f)w − degw(f)v = (cγ2 − bγ3)(b, a, 0)
− (bγ1 + aγ2 + kab)(0, c,−b)

= −b(−cγ2 + bγ3, aγ3

+ cγ1 + kac,−bγ1 − aγ2 − kab)

annihilates f . Clearly, the second and the third coordinates of this
vector are non-zero, while the first one equals b(cγ2 − bγ3). Now, if γ2
or γ3 is non-zero, then fx ∈ (y, z), and we conclude by Theorem 3.5,
either part (1) or (2), that f is a free divisor.

On the other hand, if γ2 = γ3 = 0, then f contains a pure power of
x and so fx /∈ (y, z). We may then conclude by Theorem 3.5 (2) that
f is not a free divisor.

Remark 3.8. Some isolated members of this family of examples have
been identified as free divisors before:

f = y(x2 − yz) or f = xy(x2 − yz),

the quadratic cone with, respectively, one or two planes, of which one
is tangent, or

f = y(x2 − y2z),
the Whitney umbrella with an adjoint plane, see [8].
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FIGURE 1. The free divisors defined by h = yz(x2 −5yz)(x2 − 1
2
yz)(x2 +yz) (left)

and h = yz(x2 − 1
2
y2z)(x2 + 5y2z) (right).

A remarkable feature of this example is that it exhibits free surfaces
with arbitrarily many irreducible components that are not suspended,
in that we can, for example, extend the family of examples involving
quadratic cones to

f = xγ1yγ2zγ3

k∏
i=1

(x2 − αiyz)

for k � 1, γj ∈ {0, 1} with γ2 + γ3 �= 0 and scalars αi ∈ K satisfying∏k
i=1 αi

∏
i<j(αi − αj) �= 0. Such f will clearly have γ1 + γ2 + γ3 + k

many irreducible components, 1 � γ1+γ2+γ3 � 3 among them planes.

4. A chain rule for quasihomogeneous free divisors. We
start with a simple observation: if f ∈ K[x] = K[x1, . . . , xn] and
g ∈ K[y] = K[y1, . . . , ym] are free divisors, then fg ∈ K[x, y] is a
free divisor. To see this, one just takes the discriminant matrices A,B
associated to f and g, and notes that the block matrix(

A 0
0 B

)

is a discriminant matrix for fg that one can think of as the pullback
of the planar normal crossing divisor along the map with components
(f, g). Such free divisors have been called “product-unions” by Damon
[3] or “splayed” divisors by Aluffi and Faber [1].
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If f = f1 · · · fk is square free, then a vector field D is logarithmic for
f if, and only if, D is logarithmic for each fi, as

D(log f) =
∑
i

D(log fi) =
∑
i

D(fi)

fi

can only be an element of R if that holds for the summands.

We now use these observations to establish a chain rule for free
divisors. In this form, the result and its proof are due to Mond and
Schulze [8, Theorem 4.1], while we originally had obtained a weaker
result. We include an algebraic version of the proof, and strengthen
their result by removing the hypothesis that no fi be a smooth divisor.

Theorem 4.1. Let k � 1 be an integer, K a field of characteristic
zero. Assume, given a free divisor f = f1 · · · fk ∈ R = K[x1, . . . , xn]
that admits vector fields Ej , for j = 1, . . . , k, satisfying Ej(fi) = δijfi,
where δij is the Kronecker delta.

If H = y1 · · · ykH1 ∈ Q := K[y1, . . . , yk] is a free divisor such that
f and H1(f1, . . . , fk) are without common factor, then the polynomial

H̃ := H(f1, . . . , fk) ∈ R is a free divisor.

Proof. Because f is a free divisor, its R-module of logarithmic vector
fields Der (− log f) is free. It contains the vector fields Ei, because
Ei(f) = f by the product rule. Further, the Ei are linearly independent

over R, as 0 =
∑k

i=1 giEi ∈ θ implies 0 =
∑k

i=1 giEi(fj) = gjfj , and
so gj = 0 for each j. In this way, ⊕k

i=1REi becomes a free submodule
of Der (− log f).

Now any D ∈ Der (− log f) is logarithmic for each fi as those
elements of R are relatively prime, f being squarefree. Therefore, D �→∑k

i=1D(log fi)Ei provides an R-linear map Der (− log f) → ⊕k
i=1REi

that splits the inclusion, and whose kernel consists of those derivations
D that satisfy D(fi) = 0 for each i.

Therefore, we can extend the Ei to a basis (E1, . . . , Ek, D1, . . . , Dn−k)
of Der (− log f) as R-module, with Dj(fi) = 0 for i = 1, . . . , k and
j = 1, . . . , n− k.
Let C be the n×nmatrix overR that expresses the just chosen basis of

Der (− log f) in terms of the partial derivatives ∂/∂xj, for j = 1, . . . , n,
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so that

(E1, . . . , Ek, D1, . . . , Dn−k) =

(
∂

∂x1
, . . . ,

∂

∂xn

)
C.

The matrix C is then a discriminant matrix for f , and, in particular,
detC = f .

Now we turn to H ∈ Q and observe that any D ∈ DerQ(− logH),
a logarithmic derivation for H over Q, is necessarily of the form
D =

∑k
r=1 yrbr(∂/∂yr) for suitable elements br ∈ Q, as H contains

by assumption y1 · · · yk as a factor, whence D(log yr) = br must be in
Q. In matrix form, a discriminant matrix for H can be factored as

A := diag (y1, . . . , yk)B,

where the first factor is the diagonal matrix with entries yr and B =
(brs) is a k×k matrix over Q so that the vector fields

∑
r yrbrs(∂/∂yr)

form a Q-basis of DerQ(− logH). Because detA = H by Saito’s
criterion in Theorem 2.4, it follows that detB = H1 ∈ Q.

Next note that the given fi define a substitution homomorphism
Q→ R that sends yi �→ fi. For any b ∈ Q, we denote b̃ = b(f1, . . . , fk)

its image in R. We claim that a derivation D̃ :=
∑

r b̃rEr is logarithmic

for H̃ ∈ R, if D :=
∑

r yrbr(∂/∂yr) is logarithmic for H ∈ Q. In fact,
the usual chain rule for derivations first yields

D̃(H̃) =

k∑
r=1

b̃rEr(H̃)

=

k∑
r=1

b̃r

k∑
s=1

∂̃H

∂ys
Er(fs)

=

k∑
r=1

frb̃r
∂̃H

∂yr

as Er(fs) = δrsfr by assumption. Now the last term equals D̃(H), the
image of D(H) under substitution. Thus, if D(H) is in (H) ⊆ Q, its

image is in (H̃) ⊆ R, and so D̃ is indeed logarithmic for H̃.
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On the other hand, if D is a derivation on R that vanishes on each
fi, then applying the chain rule yet again shows

D(H̃) =
k∑

r=1

(̃
∂H

∂yr

)
D(fr) = 0,

whence such D is in particular logarithmic for H̃. Putting everything
together, (

∂

∂x1
, . . . ,

∂

∂xn

)
C

(
B̃ 0
0 In−k

)
,

with In−k the identity matrix of indicated size, represents n logarithmic

vector fields for H̃ . Taking determinants, we get

det

(
C

(
B̃ 0
0 In−k

))
= detCdet B̃

= detCd̃etB = f1 · · · fkH̃1 = H̃.

Thus, the proof will be completed by Saito’s criterion Theorem 2.4,
once we show that H̃1 is squarefree, as by assumption f is already
squarefree and relatively prime to H̃1. To this end, we use the Jacobi
criterion, see e.g., [7, 30.3]. The rank of the Jacobi matrix(

∂fi
∂xj

)i=1,... ,k

j=1,... ,n

is k outside of {f = 0}, as E1(f1) · · ·Ek(fk) = f is in the ideal of
maximal minors of that matrix. Therefore, R is smooth over Q outside
of {f = 0}, and the inverse image {H̃1 = 0} of {H1 = 0} remains thus
reduced.

We mention the following special case of Theorem 4.1 as an example.

Corollary 4.2. If f ∈ K[x] = K[x1, . . . , xn] and g ∈ K[y] =
K[y1, . . . , ym] are free divisors that are weighted homogeneous, then
fg(f + g) ∈ K[x, y] is a free divisor.

Remark 4.3. In the original treatment of Theorem 4.1 in [8], the
hypothesis that f and H1(f1, . . . , fk) are without common factors is
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missing. That hypothesis is, however, necessary, as is shown by the
following example that Eleonore Faber kindly provided.

Take f1 = (1 + u)(x2 − y3), f2 = (1 + v)(y2 − x3) and f3 =
(1 + w)(f3

1 + f2
2 ) in R = K[x, y, u, v, w]. A calculation in Singular

shows readily that f = f1f2f3 is a free divisor. The vector fields
E1 = (1 + u)∂/∂u,E2 = (1 + v)∂/∂v, and E3 = (1 +w)∂/∂w certainly
satisfy Ei(fj) = δijfi.

Now take H(y1, y2, y3) = y1y2y3(y
3
1 + y22), a binomial free divisor

according to Theorem 6.1, and observe that

H(f1, f2, f3) = f1f2f3(f
3
1 + f2

2 ) = f1f2(1 + w)(f3
1 + f2

2 )
2

is not reduced, thus, is not a free divisor, as f and H1(f1, f2, f3) have
the factor f3

1 + f2
2 in common.

5. Triangular free divisors. Let K be a field of characteristic
zero. Assume, given a “seed” F0 ∈ R := K[y1, . . . , yn], and define
inductively for i > 0 polynomials

Fi := αix
ai

i + βiF
bi
i−1 ∈ Q := R[x1, . . . , xi]

for natural numbers ai, bi > 0 and αi, βi ∈ K with αi �= 0.

Proposition 5.1. Assume F0 is a free divisor in R with discriminant
(n× n)-matrix A over R. If F := FiFi−1 · · ·F0 is reduced, then it is a
free divisor over Q with “triangular” discriminant matrix of the form

B =

⎛
⎜⎜⎜⎜⎝
A 0 0 · · · 0
∗ F1 0 · · · 0
...

...
. . .

. . .
...

∗ ∗ ∗ Fi−1 0
∗ ∗ ∗ ∗ Fi

⎞
⎟⎟⎟⎟⎠

where the entries marked “ ∗” represent elements of Q that can be
calculated explicitly.

Proof. First observe that the determinant of the displayed matrix
certainly equals F . It thus remains to prove that we can choose the
columns to represent logarithmic vector fields for it.
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The proof proceeds by induction on i � 0, the case i = 0 being
true by assumption. For i � 1, set G = F/Fi, and assume that the
result is correct for G. The last column in B represents the vector field
D = Fi∂/∂xi, and we now show that it is a logarithmic vector field for
F , that is, F divides D(F ):

D(F ) = D(Fi)G = Fi
∂Fi

∂xi
G =

(
∂Fi

∂xi

)
F,

the first equality due to the fact that G is independent of xi.

To finish the proof, it suffices now to establish the following:

Lemma 5.2. Let D be a logarithmic vector field for G as an element
of R[x1, . . . , xi−1].

(1) D is a logarithmic vector field for each factor F0, . . . , Fi−1 of G,
so that cFj := D(Fj)/Fj ∈ R[x1, . . . , xi−1] for each j = 0, . . . , i− 1.

(2) The vector field

D̃ =
bicFi−1

αiai
xi

∂

∂xi
+D

is the unique extension of D to a logarithmic vector field for F in Q.
It satisfies

D̃(F ) =
(
(bi + 1)cFi−1 +

i−2∑
j=0

cFj

)
F.

Proof. The first part was already pointed out above: if D is any
logarithmic vector field for a product fg of coprime factors, then it is
necessarily a logarithmic vector field for each factor.

Now we turn to the derivation D given in the statement. Assume
there is an extension D̃ = u(∂/∂xi) +D of D to a logarithmic vector
field for F . We then get first from the product rule

D̃(F ) = D̃(Fi)G+ FiD̃(G),

and by definition of D̃ and Fi, this evaluates to

=
(
uαiaix

ai−1
i + βibiF

bi−1
i−1 D(Fi−1)

)
G+ FiD(G)
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as D̃(H) = D(H) for H equal to either Fi−1 or G,

=
(
uαiaix

ai−1
i + βibicFi−1F

bi
i−1

)
G+ cGFiG,

as D is, respectively, logarithmic for Fi−1 and for G with the indicated
multipliers.

Due to F = FiG, we see that D̃(F ) will be a multiple of F if, and
only if, Fi = αix

ai

i +βiF
bi
i−1 divides uαiaix

ai−1
i +βibicFi−1F

bi
i−1, if, and

only if,
u = bicFi−1xi/ai,

and in that case
D̃(F ) = (bicFi−1 + cG)F.

It follows that

D̃ :=
bicFi−1

ai
xi

∂

∂xi
+D

is the unique extension of D to a logarithmic vector field for F , as
claimed. Finally, observe that the multiplier in question is

c :=
D̃(F )

F
= bicFi−1 + cG

= bicFi−1 +
i−1∑
j=0

cFj

= (bi + 1)cFi−1 +

i−2∑
j=0

cFj ,

and that finishes the proof.

To end the proof of Proposition 5.1, if the result holds for i − 1, we
extend the column that represents the logarithmic vector field D for
G = Fi−1 · · ·F0 in the displayed discriminant matrix by adding the

corresponding coefficient [(bicFi−1)/ai]xi of ∂/∂xi in D̃ as the entry in
the last row of the discriminant matrix for F .

Note that, in Proposition 5.1, we may take as seed F0 any reduced
polynomial in two variables.
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FIGURE 2. The union of a cylinder over an A1-curve and an A2-surface given by
h = (x2 − y2)(x2 − y2 + z3) (left) and the union of a cylinder over an A2-curve and
an E8-surface given by h = (x2 + y3)(x2 + y3 − z5) (right).

Example 5.3. Given positive integers t1, . . . , ti, for j = 2, . . . , i, set
Gj = xt11 + · · · + x

tj
j . Take F0 = G2 as a seed, and set aj = tj+2, bj =

αj = βj = 1 to obtain Fj = Gj+2 for j = 0, . . . , i − 2. The resulting
product G = G2 · · ·Gi of Brieskorn-Pham polynomials is a free divisor
by Proposition 5.1.

One can easily calculate the entries of the discriminant matrix. To
illustrate, we treat the case where each exponent is t = 2, so that
Gj = x21 + · · ·+ x2j .

The first column can be taken as representing the usual Euler vector
field that is the unique extension of the Euler vector field for G2. The
second column can be taken to correspond to the vector field D =
−x2∂/∂x1 + x1∂/∂x2 that in turn corresponds to the automorphism
interchanging x1 and x2. As for this D, one has D(G2) = 0, and
Lemma 5.2 shows that the corresponding matrix entries below the
second row will be zero as well.

Now we indicate how to obtain the entries of columns 3 through i.
Counting from the top, start with D = Gj∂/∂xj , thus, putting Gj as
the entry in the jth row as first nonzero entry in column j � 3, and
note that D(Gj) = 2xjGj , so that cGj = 2xj . By Lemma 5.2, the entry
below it will be

aj+1,j =
bj+1cGj

aj+1
xj+1 =

cGj

2
xj+1 = xjxj+1.

Now cGj+1 = 2xj again, and induction shows that a relevant discrimi-
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nant matrix can be taken in the form

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1 −x2 0 0 · · · 0
x2 x1 0 0 · · · 0
x3 0 G3 0 · · · 0

x4 0 x3x4 G4
. . .

...
...

...
...

...
. . . 0

xi 0 x3xi x4xi · · · Gi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

6. Binomial free divisors. The goal of this section is to investigate
binomials (uxa + vxb)xc, with u, v ∈ K,uv �= 0, and exponent vectors
a, b, c with |a|, |b| � 1, min(ai, bi) = 0, that are free divisors. This forces
each entry of c to be in {0, 1}, and we can absorb the constants u, v
into the variables to reduce to the form F = L(M +N), where L is a
product of distinct variables and M,N are coprime monomials.

We further assume R = K[x1, . . . , xn+2], with K as usual a field of
characteristic 0, and we may suppose that F involves all the variables,
as otherwise it is just a suspension of a divisor that satisfies this
requirement.

With these preparations we show the following result.

Theorem 6.1. The binomial F = L(M + N) as above is a free
divisor if

(a) at most one of the variables appearing in M does not appear in
L, and

(b) at most one of the variables appearing in N does not appear in L.

Note that, if F is required to involve all variables, then these conditions
imply degL � n.

If F is a homogeneous binomial, that is, degM = degN , then the
preceding sufficient conditions are also necessary.

Proof. For the first claim, we can write, up to a permutation of the
variables and setting y = xn+1 and z = xn+2,

F = x1 · · ·xnyuztG
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where
G = xayα + xbzβ

and a, b ∈ Nn with min(ai, bi) = 0, α, β > 0 and u, t ∈ {0, 1}. Let V
be the K vector space generated by the monomials x1 · · ·xnxayu+αzt

and x1 · · ·xnxayuzt+β involved in F . Obviously, V is two-dimensional,
the elements F, zFz form a basis, and V contains xiFxi for each
i = 1, . . . , n+ 2. So we get the relations

(1) xiFxi + vizFz ≡ 0 (mod F ),

with some vi ∈ K, for i = 1, . . . n. Now note that

Fy = x1 · · ·xnzt(uG+ αxayα−1+u)(2)

and

Fz = x1 · · ·xnyu(tG+ βxbzβ−1+t)(3)

whence we also get the relations

(4) βyFy + αzFz ≡ 0 (mod F )

and

(5) −yu(tG+ βxbzβ−1+t)Fy + zt(uG+ αxayα−1+u)Fz = 0.

Collecting this information in the (n+ 2)× (n+ 2) matrix,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

x1 0 · · · 0 0
0 x2 0 · · · 0 0
...

...
0 0 · · · xn 0 0
0 0 · · · 0 βy −yu(tG+ βxbzβ−1+t)
v1z v2z · · · vnz αz zt(uG+ αxayα−1+u)

⎞
⎟⎟⎟⎟⎟⎟⎠

it follows from (1) and (4) that the first n + 1 entries of (∇F )A are
congruent to 0 modulo F , while (5) implies that the last entry of (∇F )A
already equals 0 in R. Finally, it is straightforward that

detA = (βα+ uβ + tα)F and βα+ uβ + tα �= 0,
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whence we conclude from Saito’s criterion in Theorem 2.4 that F is a
free divisor.

Next we show that if F is a homogeneous free divisor then conditions
(a) and (b) are satisfied. We argue by contradiction. Suppose that F is
a free divisor that involves all variables, but fails one of the conditions
(a) or (b). By symmetry, and after permutating the variables, we may
assume that F is of the form:

F = xayαzβ + xb,

where we set y = xn+1 and z = xn+2 as before, and a, b ∈ Nn,
α > 0, β > 0. With J again the Jacobian ideal of F , note that
(y, z) ⊆ (J : xayα−1zβ−1). Since J is perfect of codimension 2, either
(y, z) is a minimal prime of J or xayα−1zβ−1 ∈ J . In the former case,
F ∈ J ⊂ (y, z) implies xb ∈ (y, z), and that is impossible. In the latter
case,

xayα−1zβ−1 ∈ J ⊆ (yα−1zβ, yαzβ−1) + (∂xb/∂xi; i = 1, . . . , n),

and so xayα−1zβ−1 must be divisible by ∂xb/∂xi for some i. This
contradicts the homogeneity of F .

Example 6.2. A particular case of Theorem 6.1 has recently been
presented independently by Simis and Tohaneanu [11, Proposition
2.11]: In our notation from the proof above, they take a homogeneous
binomial of the form G = xayα + zβ , with α > 0, |a| + α = β, and
ai �= 0 for i = 2, . . . , n in xa = xa1

1 · · ·xan
n , so that G is homogeneous of

degree β and the only potentially missing variable in the first summand
is x1. The authors then affirm that

F = x1 · · ·xn(xayα + zβ) and

F =
x1 · · ·xn

xi
y(xayα + zβ) for some i = 1, . . . , n,

are homogeneous free divisors. Theorem 6.1 shows that, in each case,
zF is a homogeneous free divisor as well.

7. “Divisors” of free divisors. The results of the previous sections
show that:
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(1) Any reduced homogeneous binomial has a multiple that is a free
divisor by Theorem 6.1.

(2) If K is algebraically closed, then any quadric Q can be put in
standard form x21 + · · · + x2i . Hence, it has a multiple that is a free
divisor by Example 5.3.

(3) If f, g are free divisors in distinct sets of variables, then f + g
divides the free divisor fg(f + g) by Corollary 4.2.

So we are led to ask:

Question 7.1. Let f be a (homogeneous) reduced polynomial. Does
there exist a free divisor g such that f divides g?

This question is also raised and addressed in [4, 8, 11].

In light of the discussion above, the first case to look at is that of
cubics in three variables. Again, by Example 5.3, we know that the
Fermat cubic x3 + y3 + z3 divides the free divisor (x3 + y3)(x3 + y3 +
z3). So, what about other smooth cubics or smooth hypersurfaces
in general? What we can prove is a negative result: it asserts that a
smooth form, in n > 2 variables of degree larger than 2, times a product
of n linearly independent linear forms is never a free divisor.

Theorem 7.2. Let f be a smooth form of degree k = deg f > 2
in n > 2 variables and �1, �2, . . . , �n linearly independent linear forms.
Set g = �1 · · · �nf , and denote J(g) ⊆ R = K[x1, . . . , xn] the Jacobian
ideal of g. Then one has:

(1) g is not a free divisor, instead

(2) depthR/J(g) ≤ min(max(0, n− k), n/2) < n− 2.

In particular, if k � n then depthR/J(g) = 0.

Since k > 2 and n > 2 imply max(0, n − k) < n − 2, assertion (1)
indeed follows from (2) as claimed. To prove (2) in Theorem 7.2, we
need to set up some notation. To avoid confusion, 〈a1, . . . , an〉 will
denote the vector with coordinates ai, while (a1, . . . , an) denotes the

ideal or module generated by the ai. For a form f , we set f̂i = xifi+f ,
with fi = ∂f/∂xi as before.
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Lemma 7.3. Let f be a form in K[x1, . . . , xn]. If g = x1 · · ·xnf
is reduced, then the ideals J(g) and (xifi; i = 1, . . . , n) of R have the
same projective dimension. In particular, g is a free divisor if, and only
if, (xifi; i = 1, . . . , n) is perfect of codimension 2.

Proof. Set yi = x1 · · ·xn/xi, and note that gi = yif̂i. If

〈α1, . . . , αn〉 is a syzygy of ∇g, then 〈α1f̂1, . . . , αnf̂n〉 is thus a syzygy
of 〈y1, . . . , yn〉. By the Hilbert-Burch theorem, the syzygy module of
〈y1, . . . , yn〉 is generated by x1e1−xiei with i = 2, . . . , n, whence there
exist polynomials a2, . . . , an such that

α1f̂1 = (a2 + · · ·+ an)x1 and

αif̂i = −aixi for i = 2, . . . , n.

Since g is squarefree, xi does not divide f , whence that variable must
divide αi for each i. In other words, αi = xiβi for suitable βi ∈ R, and
then 〈β1, . . . , βn〉 is a syzygy of 〈f̂1, . . . , f̂n〉.
Therefore, the R-linear map ψ : Rn → Rn sending ei to xiei induces

an isomorphism between the syzygy module of 〈f̂1, . . . , f̂n〉 and the
syzygy module of ∇g.
Because f is homogeneous, one has the Euler relation f=(1/k)

∑
i xifi,

whence
(f̂i; i = 1, . . . , n) ⊆ (xifi; i = 1, . . . , n).

Using the Euler relation once more, one obtains as well
∑n

i=1 f̂i =

(deg f + n)f ; thus, f ∈ (f̂i; i = 1, . . . , n), and then also

(xifi; i = 1, . . . , n) ⊆ (f̂i; i = 1, . . . , n).

Accordingly, these ideals agree.

It follows that the first syzygy module of the ideal J(g) and that of
the ideal (x1f1, . . . , xnfn) differ only by a free summand whose rank
is in fact the K-dimension of the vector space of Euler vector fields
annihilating f . So the statement follows.

Example 7.4. Let us illustrate the preceding result.

(a) Consider f =
∑k

i=1 uiMi with 0 �= ui ∈ K, with Mi pairwise
coprime monomials of same degree, and set g = x1 · · ·xnf . Then
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depthR/J(g) = n − k, because here the ideal (xifi)i=1,... ,n is the
complete intersection ideal (M1, . . . ,Mk).

(b) Let f be the Cayley form in n variables, the elementary symmetric
polynomial of degree n− 1, that can be written

f = x1 · · ·xn(x−1
1 + · · ·+ x−1

n ),

and consider g = x1 · · ·xnf .
Denoting Jk the ideal generated by all square-free monomials of

degree k, it is well known that Jk is perfect of codimension n− k + 1.
The radical of the Jacobian ideal of f is easily seen to be Jn−2. So f is
irreducible and, for n � 3, singular with singular locus of codimension 3.

On the other hand, one checks that (xifi; i = 1, . . . , n) = Jn−1

and Lemma 7.3 therefore verifies that g is a free divisor, as was also
observed in [8], where further a discriminant matrix is given.

(c) For a given form f , smooth and in generic coordinates, the
elements (xifi)i tend to form a regular sequence. In that case, the
resolution of the first syzygy module of J(g) is thus given by the
corresponding tail of the Koszul complex on (xifi)i, shifted in degree
and, therefore, R/(xifi)i embeds as the nonzero Artinian submodule
H0

(xi; i=1,... ,n)(R/J(g)) into R/J(g), forcing depthR/J(g) = 0. As

a concrete example, take a Fermat hypersurface f =
∑n

i=1 x
k
i , with

k � 1, n � 3.

(d) For a subset A of {1, . . . , n}, set xA = Πi∈Axi. With notation as
in Lemma 7.3, one obviously has

(fi; i ∈ A) ⊆ (xifi; i = 1, . . . , n) : (xA).

Accordingly, either xA ∈ (xifi)i or the projective dimension of
R/(xifi)i is at least the codimension of R/(fi; i ∈ A). In particu-
lar, if deg f > n, then no such monomial is in (xifi)i, and we see again
that depthR/J(g) = 0.

The last example leads to the following result.

Proposition 7.5. Assume f ∈ R = K[x1, . . . , xn] with n > 2
is smooth of degree k > 2, and let �1, . . . , �n be linearly independent
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linear forms. With g = �1 · · · �nf , one then has

depthR/J(g) � max(0, n− k).

Proof. Changing coordinates, we may assume that �i = xi. Set
v = min(k, n). In view of Example 7.4 (d) to Lemma 7.3, it is enough
to show that x1 · · ·xv /∈ (x1f1, . . . , xnfn). If k > n this is obvious. If
k ≤ n, then v = k, and we argue as follows. Suppose by contradiction
that

(∗) x1 · · ·xk =
∑
i

λixifi

with λi ∈ K. Let xα1
1 · · ·xαn

n be a monomial in the support of f that is
different from x1 · · ·xk. From (∗), it follows that ∑n

i=1 λiαi = 0. If we
show that the support of f contains at least n monomials different from
x1 · · ·xk whose exponents are linearly independent, we can conclude
that λi = 0 for all i, thus, contradicting (∗). Since f is smooth, for
each i, there exists some j = j(i), such that the monomial xk−1

i xj is in
the support of f .

We claim that the exponents of xk−1
i xj(i), for i = 1, . . . , n, are

indeed linearly independent. To prove this, consider the linear map
h : Cn → Cn defined as h(ei) = ej(i). Any such map is easily seen

to satisfy (hn! − 1)hn = 0, whence the eigenvalues of h are either 0 or
roots of unity. In particular, no integer m with |m| > 1 is a root of the
characteristic polynomial det (−tI + h) of h. Therefore, we have that
det (−tI + h) �= 0 at t = −k + 1, and this proves the claim.

As for a last ingredient, note the following.

Lemma 7.6. If f ∈ R = K[x1, . . . , xn] is smooth, then the
codimension of (xifi)i=1,... ,n is at least n/2.

Proof. Let P be a minimal prime of I = (xifi)i=1,... ,n in R. If c is the
number of variables xi contained in P , then that prime ideal contains
at least n− c of the fi. Hence, P contains two regular sequences: one
of length c and the other of length n− c. So the codimension of I is at
least n/2.
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The Proof of Theorem 7.2 is now obtained by combining Lemma 7.3,
Proposition 7.5 and Lemma 7.6.

Remark 7.7. As far as we know, in Example 7.4 (d), it might even be
true that, for any smooth f in any system of coordinates, x1 · · ·xn /∈
(x1f1, . . . , xnfn), so that then, in particular, depthR/J(g) = 0 always.

However, for a smooth f , the ideal (xifi)i=1,... ,n can be of codimen-
sion n/2, but, of course, only for n even. For example,

f = (xk−1
1 + xk−1

2 )x2 + (xk−1
3 + xk−1

4 )x4

is smooth, and the codimension of (xifi)i=1,... ,4 is 2. Neverthe-
less, in this case, R/(xifi)i=1,... ,n still has depth 0 since x1x2x3x4 �∈
(xifi)i=1,... ,n.

8. Extending free divisors into the tangent bundle. Let
R = K[x1, . . . , xn] be as before, and set R′ = R[y1, . . . , yn]. Define a
map ∗ : R→ R′ by

f∗ =
n∑

i=1

yi
∂f

∂xi

for every f ∈ R. Clearly, ∗ is a K-linear derivation. For a matrix
C = (cij) with entries in R, we set C∗ = (c∗ij).

Theorem 8.1. Let f ∈ R be a homogeneous free divisor of degree
k > 0. Then ff∗ is a free divisor in R′, in 2n variables and of total
degree 2k, that is linear if f is so.

Proof. First note that ff∗ is reduced because f∗ is irreducible. By
contradiction, if f∗ were reducible, then, since f∗ is homogeneous of
degree 1 in the y’s, the partial derivatives of f had a non-trivial common
factor contradicting the fact that f is reduced.

Secondly, we identify a discriminant matrix for ff∗. Since f is
homogeneous, a discriminant matrix for f can be constructed as follows.
Because J(f) is a perfect ideal of codimension 2, we can find a Hilbert-
Burch matrix B = (bij) for J(f), of size n × (n − 1), such that the
(n−1)-minor of B obtained by removing the i-th row is (−1)i+1∂f/∂xi.
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Adjoining xT = (x1, . . . , xn)
T as a column to matrix B, we obtain

the matrix
A = (B | xT )

that is, by construction, a discriminant matrix for f . We now claim
that the following 2n× 2n block matrix

A′ =
(
B xT 0 0
B∗ 0 B yT

)

is a discriminant matrix for ff∗. Its determinant is clearly ff∗, by
definition of A,B and f∗. The product rule yields

∇(ff∗) = f∗(∇x(f), 0) + f(∇x(f
∗),∇x(f)),

and hence,

∇(ff∗)A′ = f∗(∇x(f), 0)A
′ + f(∇x(f

∗),∇x(f))A
′.

Now (∇x(f), 0)A
′ = (∇x(f)A, 0) ≡ 0 mod (f), and so it remains to

show that

(†) (∇x(f
∗),∇x(f))A

′ ≡ 0 mod (f∗).

Expanding returns the vector

(∇x(f
∗),∇x(f))A

′

= (∇x(f
∗)B +∇x(f)B

∗,∇x(f
∗)xT ,∇x(f)B,∇x(f)y

T ).

Concerning its first part, note that ∇x(f
∗) = ∇x(f)

∗, whence

∇x(f
∗)B +∇x(f)B

∗ = (∇x(f)B)∗ because ∗ is a derivation,

= 0∗ = 0 as ∇x(f)B = 0 by construction.

Regarding the second component,

∇x(f
∗)xT = (k − 1)f∗ ≡ 0 mod (f∗),

because f∗ is homogeneous of degree k−1 with respect to the variables
x. Finally,

∇x(f)B = 0 by choice of B, and

∇x(f)y
T = f∗ by definition.
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Therefore, (†) holds and ff∗ is confirmed as a free divisor. The
assertions on degree and number of variables are obvious from the
construction.

A free divisor is linear if all entries in a discriminant matrix are linear,
and this property is clearly inherited by A′ from A.

Remark 8.2. The geometric interpretation of the hypersurface defined
by ff∗ is as follows.

Viewing f ∈ R as the function f : SpecR = An
K → A1

K = SpecK[t],
its differential fits into the exact Zariski-Jacobi sequence of Kähler
differential forms

0← Ω1
R/K[t] ← Ω1

R/K
∼= ⊕iRdxi

df∂/∂t← Ω1
K[t]/K ⊗K[t] R ∼= Rdt,

and one may interpret R′ ∼= SymRΩ
1
R as the ring of regular functions

on the tangent bundle TX ∼= SpecR′ ∼= A2n
K over X = SpecR ∼= An

K .

This identifies R′/(f∗) with the regular functions on the total space
of the affine relative tangent “subbundle” TX/S ⊆ TX , the kernel of the
Jacobian map df : TX → TS that consists of the vector fields vertical
with respect to (the fibers of) f over the affine line S = SpecK[t].

Accordingly, the hypersurface H defined by ff∗ is the union of that
affine “bundle” with SpecR′/(f), the restriction of the total tangent
bundle TX to SpecR/(f), in turn the fibre over 0 of the function f .
Equivalently, SpecR′/(f) is the suspended free divisor obtained as the
inverse image of SpecR/(f) along the structure morphism p : TX → X .
Thus, H = TX/S ∪ SpecR′/(f) = df−1(0) ∪ (fp)−1(0) ⊆ TX .

TX/S
��
�
�
���

��
�
�
�
���

� {0}��
�
�
��

H � � TX�
�
�
���

�
df

TS�
�
�
��

(fp)−1(0)�
�
�
��

	�
�
�
�


��
�
�
���

X �
f

S

f−1(0)

�	
	
	
	


� {0}
�	
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Interesting examples are hard to visualize as they will live in four
or more dimensions. However, the intersection of the two (unions
of) components, TX/S ∩ SpecR′/(f) ⊆ SingH is easy to understand:
Geometrically, over X it fibers into the union of the hyperplanes
perpendicular to ∇f(x) for some x ∈ X on {f = 0}, that is,

TX/S ∩ SpecR′/(f) =
⋃

x,f(x)=0

{(x, y) ∈ An × An | ∇f(x)y = 0} .

Example 8.3. Applying Theorem 8.1 to the normal crossing divisor
x1 · · ·xn, we find that

(x1 · · ·xn)2
n∑

i=1

yi
xi

is a linear free divisor.

Remarks 8.4. Various generalizations are possible:

(1) Given a homogeneous free divisor f in a polynomial ring of
dimension n, one can iterate the use of Theorem 8.1 to get an infinite
family {Fi}i∈N of homogeneous free divisors, defined by F0 = f and
Fi+1 = FiF

∗
i , where ∗ is, of course, to be understood relative to

the polynomial ring containing Fi. By construction, Fi belongs to a
polynomial ring of dimension 2in, its degree equals 2ideg f , and it is a
linear free divisor if, and only if, f is linear.

Taking F0 = x as a seed, we obtain the sequence of linear free divisors

x, xy, xy(xz1 + yz2), xy(xz1 + yz2)

(2xyz1u1 + y2z2u1 + x2z1u2 + 2xyz2u2 + x2yu3 + xy2u4), . . .

in K[x, y, z1, z2, u1, . . . , u4, . . . ].

(2) Theorem 8.1 holds also for free divisors that are weighted ho-
mogeneous of degree d �= 0 with respect to some weight vector
w = (w1, . . . , wn) ∈ Zn. In the proof one simply replaces the col-
umn vector xT in the discriminant matrix with (w1x1, . . . , wnxn)

T .
Again, linearity is preserved.
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One can further generalize Theorem 8.1, as well as Remark 8.4 (1),
also as follows, incorporating right away the weighted homogeneous
version as in Remark 8.4 (2).

Theorem 8.5. With notation as before, assume f weighted ho-
mogeneous of degree d �= 0 with respect to some weight vector w =
(w1, . . . , wn) ∈ Zn.

With m � 1, let R′ = R[yij : 1 ≤ i ≤ n, 1 ≤ j ≤ m], assign weights
|yij | = wi, and set f{∗j} =

∑
i yij∂f/∂xi. Then f

∏m
j=1 f

{∗j} is a free
divisor in (m+1)n variables of weighted homogeneous degree (m+1)d
that will be linear along with f .

Proof. The proof is a simple variation of the one given for m = 1.
For instance, if m = 2, the discriminant matrix can be taken as

⎛
⎝ B wxT 0 0 0 0
B{∗1} 0 B wyT1 0 0
B{∗2} 0 0 0 B wyT2

⎞
⎠

where wx = (w1x1, . . . , wnxn), with wy1, wy2 analogous abbrevia-
tions.

In this way, one may obtain any normal crossing divisor x0 · · ·xm,
starting from f = x0 and using f{∗j} = xj∂f/∂x0 = xj for j =
1, . . . ,m.
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