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GROBNER STRATA IN
THE HILBERT SCHEME OF POINTS

MATHIAS LEDERER

ABSTRACT. The present paper shall provide a framework
for working with Grobner bases over arbitrary rings k with a
prescribed finite standard set A. We show that the functor as-
sociating to a k-algebra B the set of all reduced Grobner bases
with standard set A is representable and that the represent-
ing scheme is a locally closed stratum in the Hilbert scheme
of points. We cover the Hilbert scheme of points by open
affine subschemes which represent the functor associating to
a k-algebra B the set of all border bases with standard set
A and give reasonably small sets of equations defining these
schemes. We show that the schemes parametrizing Grobner
bases are connected; give a connectedness criterion for the
schemes parametrizing border bases; and prove that the de-
composition of the Hilbert scheme of points into the locally
closed strata parametrizing Grébner bases is not a stratifica-
tion.

1. Introduction. Let k be a ring and S = k[zy,...,z,] be the
polynomial ring over k, equipped with a term order <. There are
various notions of Grébner bases, and of reduced Grobner bases, of an
ideal I C S (see [36] for an overview). We use that notion of a reduced
Grobner basis which is entirely analogous to the definition in the case
where k is a field. The definition will be given in Section 2. The same
notion of a reduced Grobner basis is used in [40], a paper which was a
significant source of inspiration for the work presented here. However,
not every ideal I has a reduced Grobner basis in this sense; a reduced
Grobner basis exists if, and only if, I is a monic ideal. Attached to a
monic ideal is its standard set, which is the set of those elements of N™
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which do not occur as the multidegree of an element of I. For getting
a feeling for monic ideals, let us look at some examples.

Example 1. Let n = 1 and I = (f) C k[z] be a principal ideal. Then
I is a monic ideal if, and only if, it is generated by a monic polynomial.
In this case the reduced Grobner basis of I consists of f alone. The
standard set of I is {0, ... ,deg(f) — 1} C N.

Example 2. Let n = 2. We equip S with the lexicographic order
such that x; > x2. The ideal Iy C Z[z1, z2] generated by

f=a3— 323 + 2,
g=2iT0 — T} + 2122 — T1 + T2 — 1,
h=xf + 22323 — dxdxy + 2y + 2fxd — 2320 — 2]
— 50$1$§ +49z129 + 21 + 50:6% —49x9 — 1
is monic with standard set
A = {(0,0),(1,0),(2,0),(3,0),(0,1),(1,1),(0,2),(1,2)} € N?,

The reduced Grobner basis of I consists of f, g and ﬁ, where

h= x] +x3 — 27 + 8xya5 — 46125 + 352125 — 22120 + 1
+ 83 — 42z3 + 2023 + 1325 — 1.

Example 3. Using the notation of the previous example, the ideal
I2 = (2faga h) - Z[w1a$2]

is not monic, and accordingly, does not have a reduced Grobner basis.
The reason for that is the exponent (0,3) € N2, which appears as the
multidegree of a monic element of I;, but not as the multidegree of any
monic element of I5.

Before outlining our article, let us briefly summarize its main ideas:

e A good notion of Grébner basis over an arbitrary ring is that of the
reduced Gribner basis of a monic ideal.
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e The reducedness property guarantees functoriality of Grobner
bases.

e Functoriality guarantees the existence of a moduli space.

e Some familiar techniques for Grobner bases over fields can be carried
over to the setup over rings.

e S-pair criteria as such are not needed.

If B is a k-algebra and A is a finite standard set, we attach to B the
set of all monic ideals I C B[z] with standard set A. As the reduced
Grobner basis of a monic ideal is unique, we may equivalently attach
to B the set of all reduced Grébner bases in B[z] with standard set A.
It turns out that this map is functorial in B. We denote the functor
by Hilbg/Ak. Note the dependence of this functor on both A and the

term order <. The notation is motivated by the fact that ’Hilb;fk

is a subfunctor of the Hilbert functor of points Hilb% /k- The Hilbert
functor of points has been widely studied (see [4, 16, 20, 21] and
references therein). In particular, it is well known that this functor is
represented by a scheme Hilb‘fq /k- The notions of Hilbert functor and
Hilbert scheme were introduced by Grothendieck in [15]; see [33] for
an introductory account of the subject. In our paper we will show that
"Hilb;A,C is a locally closed subfunctor of Hilb‘é /k» hence representable
by a locally closed subscheme of the Hilbert scheme. We will study an
intermediate functor ’Hilbg/k, which is also representable, such that in
the chain of representing objects

(1) Hilb37, C Hilbg), C Hilbg,,

the first inclusion is a closed immersion and the second inclusion is an
open immersion.

The moduli spaces Hilbg/,c and Hilbg/Ak have been studied by numer-
ous authors, at least in the case where k is a field. In the article [26],
the scheme Hilbﬁ/k is called a border basis scheme, and in the article
[37], the scheme Hilbg/Ak is called a Grébner basis scheme. In the cited
papers, and in [22-25], a theory of border bases, which generalizes the
theory of Grobner basis, is developed. In the present paper we use bor-
der bases as well, in studying the functor Hilbé/k. Some of the results
of the cited papers are parallel to those of our article here. Each time
we state one such result, we will indicate its relation to the cited papers.
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However, the two major differences between the cited papers and our
treatment here are that firstly our treatment is more general, as our k
is an arbitrary ring, and secondly we use the functorial language.

In fact, the starting point for the work presented here was the desire
to obtain a relative, i.e., functorial notion of Grobner bases. The desire
for functoriality is what motivates the use of arbitrary rings rather
than fields. However, functoriality only holds if the leading terms of a
Grobner basis are stable under arbitrary tensor products. Therefore we
have to use monic ideals, and correspondingly, reduced Grobner bases.
Moreover, several of our results are novel, or stronger than previous
results, even if we specialize to the case where k is a field.

The paper which bears the closest relationship to our paper here is
[20]. Huibregtse studies the functors Hilbg/k and schemes Hilbg/k, as
we do here. (A standard set A in our notation corresponds to a basis
set B in his, and Hilbé/k in our notation is Ug in his.) In this sense

Huibretse also covers the functorial properties of Hilbé/k. However,
his viewpoint is different from ours: In [20, Lemma 7], he shows how
to glue the schemes Hilbg/k, for all standard sets A C N" of size d,

to obtain the Hilbert scheme Hilb% /k- This implies in particular that
each Hilbg/k is an open subfunctor of Hilb% /k» and that the various

functors ’Hilbg/ , form an open cover of Hilb% /k- These two statements
are Lemma 1 and Proposition 1, respectively, in the present paper. In
contrast to Huibregtse’s approach, we show these statements directly at
the level of functors, without using the representing schemes. Moreover,
Huibretse’s construction of Hilbg/k is entirely different from ours. His
is based on pseudosyzygies and syzygies, whereas ours avoids the use of
the S-pair criteria altogether, as was mentioned above. Furthermore,
the notion of reduced Grobner bases and monic ideals over a ring k£ do
not appear in [20]. Accordingly, the schemes Hilbg/Ak, which we are
mostly interested in here, do not appear in the cited paper. In this
sense our results on the functorial properties of Hilbg/Ak are original.

Another line of work is to study strata analogous to ours in Grothen-
dieck’s classical Hilbert scheme Hilb’;,(g), where p(z) is a polynomial.
The paper [34] is devoted to this project; the equations defining the
strata are derived from Buchberger’s S-pair criterion. However, the
cited paper contains a few inconsistencies, as is indicated in [37] and

[30]. In particular, in the latter paper, the embedding of the strata
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in Hilb’l;(f) is elaborated upon with care. Also, it appears to be the

k
first paper in which the term Grébner stratum is used. Other papers
in which related ideas appear are [5, 38].

As was mentioned above, the research presented here was largely
inspired by the paper [40]. In that paper, k is a Noetherian ring.
Wibmer considers an arbitrary ideal I C S. The canonical map
k — S/I corresponds to a morphism of affine schemes ¢ : Spec S/I —
Speck. The main theorem of [40] (Theorem 11) states the existence of
a unique decomposition of Spec k into a finite number of locally closed
strata such that on each stratum the reduction of I to each point of
the stratum has a reduced Grobner basis of a prescribed shape. It is
striking to note the analogy of that theorem to Theorem 2 of our paper
here. However, in Wibmer’s setting £ has to be Noetherian, whereas
our setting requires no restriction on k.

Our article is organized as follows. In Section 2, we introduce the
basic notions of monic ideals, reduced Grobner bases and standard
sets. In Section 3, we define the Hilbert functor ’Hilbg/k and the

open subfunctors ’Hilbg/k, where A runs through all standard sets
of size d. In Section 4, we thoroughly prove that these subfunctors
cover the whole functor ’Hilbg /k- That gives us the key to defining the

subfunctor Hilbg/Ak of %ilbé/ & in Section 5. In Section 6, we show that,
from representability of Hilbﬁ/k, representability of Hilbg/Ak follows.
In Section 7, we show that the Hilbert scheme Hilb‘é /i 18 the disjoint

union of the representing schemes Hilb;fk. Thus far, the techniques we
use are non-explicit in the sense that we use abstract representability
criteria for functors rather than explicit descriptions of representing
schemes. Once functoriality is proved, we turn to more concrete
questions. In Section 8, we write down a set of equations defining
the affine schemes Hilbg/,c and Hilbg/Ak. In Section 9, we study a few
examples and improve the result of the previous section in shrinking
the set of equations defining the affine schemes. In Section 10, we write
down the universal objects of the functors ’Hilbg/k and Hilb;ﬁc, which

are affine schemes over Hilbﬁ/ , and Hilbg/Ak, respectively. In Section 11,

we show that "Hilbg/A,C is connected, we present a homogeneous variant
of what we have done so far, and we give a connectedness criterion
for ’Hilbg/k. In Section 12, we explore the transition maps between
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Hilbg), and Hilbg,,, we track Hilbg/; in Hilbg,, and we show that
the decomposition of Theorem 2 in general is not a stratification.

2. Notation. We start by collecting the relevant definitions and
facts concerning elements and ideals in S. Throughout, a monomial
order < on S will be fixed. This is, in particular, a total order on the
set of monomials z® = z{* --- 2%, where a = (a1,... ,a,) € N™. Let
f € S, then the monomial order gives the well-known definitions of

o coefficient coef(f,z) of f at z;

e support supp(f), which is the set of all z® such that coef(f, z®) # 0;
e leading monomial LM(f);

e leading coefficient LC(f);

o leading term LT(f), which equals LC(f)LM(f);

e leading exponent (or multidegree) LE(f), for which LM(f) =
SLE(S)

e the non-leading exponents, which are those a such that z lies in
supp(f) but does not equal LM(f).

If I C Sis an ideal, we let LM(I) be the set of all LM(f), where f runs
through I — {0}. This set is closed with respect to multiplication by
arbitrary monomials. Analogously, we let LT(I) be the set of all LT(f),
where f runs through I — {0}. This set is also closed with respect to
multiplication by arbitrary monomials. Clearly if £ is a field, then
LT(I) carries the same information as LM(I) does, but if % is a ring,
then in general LT(I) carries more information than LM(I) does.

If I is an ideal in S and z“ is a monomial, the set
LC(I,2%) = {LC(f); f € I — {0}, LM(f) = =*} U {0}

is an ideal in k.

Definition 1. An ideal [ is called monic (see [35, Definition 3.3] or
[40, Definition 4]) if the following equivalent conditions are satisfied:

e For all monomials 2%, the ideal LC(I, z?) is either the zero ideal or
the unit ideal;

e each element of LM(I) arises as the leading monomial of a monic
fel
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e LT(I) is a monomial ideal;
e the sets LM(I) and LT(I) carry the same information.

Note that if k is a field, then each ideal in S is generated by finitely
many monic polynomials, hence in particular monic. Also note that if
k is an arbitrary ring and I is a monic ideal, then I is finitely generated.

We will mostly be working with leading exponents, more precisely,
with the set LE(I), which is the set of all LE(f), where f runs through
I. Clearly LE(I) carries the same information as LM(I). Therefore
it carries the same information as LT(I) if, and only if, I is monic.
In fact, we will not be working with LE(I) itself but rather with its
complement in N™:

Definition 2.

o A standard set (or staircase, or Grobner escalier) in N™ is a subset
A C N™ such that its complement in N is closed with respect to
addition with elements of N™. (Equivalently, standard sets are precisely
the complements of the sets LE(I), where I runs through all ideals in
S.)

e If for a given I we have LE(I) = N™ — A, we say that A is the
standard set attached to I.

o If A is a standard set, the set €(A) of corners of A is the set of
all @ € N™ — A such that for all i, @ — e; ¢ N™ — A, where e; is the
t-standard basis vector.

o If A is a standard set, the border of A is the set #B(A) =
"(A+e) - A

e (Note that if A is a standard set, then A U %B(A) is a standard set
as well.)

e An edge point of a standard set A is an € € A such that there exist
A and X in {ey,...,e,} having the property that ¢ + X and €+ A’ both
lie in B(A) and e + A+ X lies in (A U B(A)).

e If ¢ € A is an edge point, the vectors A\ and )’ are, however, not
uniquely determined. Therefore, in the situation of the last bulleted
item, we call (¢,\,\') an edge triple.

Figure 1 shows an example of a standard set in N2, along with its
corners, its border and its edge points. The standard set is drawn in
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FIGURE 1. A standard set, o its border, ® its corners, and [ its edge points.

FIGURE 2. A standard set A together with e elements of Z8(A) and o elements of
AU B(A)).

thick lines, the corners are marked by bullets, all other points in the
border are marked by circles, and the edge points are marked by boxes.

The standard set of Figure 1 has the property that, for each edge
point ¢, there exist unique A and X such that (¢, A\, \) is an edge
triple. Figure 2 shows a standard set A, again drawn in thick lines,
such that each edge point ¢ admits multiple A and )’ making an edge
triple (£, A, A'). The border of A, which is at the same time the set of
corners of A, is marked by bullets. The border of A U %(A), which
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is at the same time the set of corners of A U %(A), is marked by
diamonds. The edge points are marked by boxes. The edge triples of
A are presented in Table 1.

TABLE 1.
€ A by
(1,0,0) | (1,0,0) | (0,1,0)
(1,0,0) | (1,0,0) | (0,0,1)
(1,0,0) | (0,1,0) | (0,0,1)
(0,1,0) | (0,1,0) | (1,0,0)
(0,1,0) | (0,1,0) | (0,0,1)
(0,1,0) | (1,0,0) | (0,0,1)
(0,0,1) | (0,0,1) | (1,0,0)
(0,0,1) | (0,0,1) | (0,1,0)
(0,0,1) | (1,0,0) | (0,1,0)

Definition 3. A Grébner basis of an ideal I is a finite subset G of
I such that the ideals in S generated by LT(I) and LT(g), for g € G,
agree. Note that not every ideal I necessarily admits a Grébner basis,
since k was not assumed to be Noetherian. A Grébner basis G is called
reduced if {LE(g); g € G} = ¢(A), where LE(I) = N"” — A; each g € G
is monic; and all non-leading exponents of g lie in the standard set
attached to I. An ideal I admits a reduced Grébner basis if, and only
if, I is monic. (See [2, Theorem 2.11] and [40, Theorem 4].)

3. The Hilbert functor of points and its standard subfunc-
tors. Fix a positive integer d. We consider the Hilbert functor of
points
(2)

Hilb% ), : (k-Alg) — (Sets)
¢ : Blz] — @ such that
B+— ¢ is surjective and ~,
Q is a locally free B-module of rank d

where ¢ : Blz] — Q and ¢’ : B[z] — Q' are equivalent if there exists
a B-algebra isomorphism % : Q — Q' such that the following diagram
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commutes:
Bla] —%—Q

Blz] LN Q.
Therefore ¢ and ¢’ are equivalent if, and only if, their kernels agree.
In this sense, the functor ’Hilbfé /1, parametrizes all ideals in the poly-
nomial ring S such that the corresponding quotient is locally free of
codimension d.

At this point a remark on local freeness is in order. In the literature,
one can find at least two definitions of when a B-module is locally free
(see [8, page 137]).

The first is to demand that, for each prime ideal p C B, the localized
module M), is free over the localized ring By,. The second is to demand
that there exist fq,..., fi € B generating the unit ideal such that each
localization M([f;"'] is a free R[f; ']-module. The second definition
(which is used for instance in [17]) is stronger. However, if the module
M is locally free of a finite rank d, both definitions agree, and are
equivalent to the following statement: For each prime ideal p C B,
there exists an f € B — p such that the localized module M/ is free
over the localized ring By. We will use this definition in the proof of
Proposition 1 below.

Our first goal is to cover the functor Hilb% /i by a finite collection of
open subfunctors, indexed by all standard sets of size d. We shall now
define these subfunctors. Given a standard set A, we use the shorthand
notation z2 for the family (2#)gca and kz® = ®geakz’. We consider
the canonical inclusion

i kz® — S.

Definition 4. Let A be a standard set of size d. We define ’Hilbé/k

to be the subfunctor of ’Hilbg /i Which associates to each k-algebra B
the set of equivalence classes of all ¢ : B[z] — Q as in (2) such that
the composition

Bz® = B®y, ka® 922 Blz] ¢ Q

is surjective, and therefore an isomorphism.
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(The same functors are studied in [20], as was mentioned in the
introduction.) In particular, all @ appearing in Hilbg/k(B) are free
B-modules of rank d. Evidently there are the following alternative
descriptions of the subfunctor,

(3)
¢ : Blz] — @ such that
'Hilbg/k (B) = ¢ is surjective and / ~,
(z” + ker ¢)gen is a B-basis of B[z]/ker ¢

and also

¢ : Blz] = @ such that
(4) Hﬂbé/k(B) = ¢ is surjective and / ~ .
(¢(zP))gen is a B-basis of Q

Upon fixing an isomorphism Q = Bz® and requiring that ¢o(id®wa) =
id, we can rephrase the functor Hilbé/ i as follows:

N ¢ : Blx] — Bz®;
(5) HMilbgy,(B) = ¢ is a k-algebra homomorphism such that
po(id®ea) =id.

The multiplicative structure on Bz®, making this module a B-algebra,
is induced by that on B[z] by the equation B[z]/ker ¢ = Bz”. Note
that by fixing the isomorphism, we pick one representative of the
equivalence class modulo ~. In what follows, we will shift freely
between the descriptions (3), (4) and (5).

One can replace the homomorphism tan by an arbitrary k-module
homomorphism ¢ : k4 — S and define a functor ’Hilbg /k analogous to
the above. Such functors have been used in [16, subsection 5.1]. The
authors state that ’Hilbg /i 18 an open subfunctor of Hilb% /i and give a
sketch of proof for this. For preparing the ground for the next sections,
we carefully prove openness of the subfunctor ’Hilbg/ i of ’Hilbg /i here.

The proof for a functor Hilbil /K S in [16] is entirely analogous.

Lemma 1. The canonical inclusion i : Hilbg/k — Hilbg/k is an
open embedding of functors.
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Proof. Given a k-scheme X, we denote by hx the Hom functor which
sends a k-scheme Y to the set Morg (Y, X). By [9, Definition VI-5], we
have to check that for each k-algebra B and each morphism of functors
Y : hspecB — Hilb‘é/k, the above horizontal arrow in the Cartesian
diagram

g — hSpec B

o T

Hilbg), —— Hilb§

is isomorphic to the inclusion of functors hy — hspec 5 induced by the
inclusion of schemes U — Spec B, where U is an open subscheme of
Spec B. So let an arrow ¥ : hgpecB — ’Hilbg/k be given. By Yoneda’s

lemma (see [9, Lemma VI-1]), this is an element of Hilb‘é/k(B); there-
fore, the equivalence class of a surjective ¢ : B[z] — Q. After localizing
in B at f1,...,fs € B which generate the unit ideal, we may assume
that @ is a free B-module of rank d. Further, let p : Kk — B be the
structure morphism of the k-algebra B. The functor ¢ in the Cartesian
diagram (6) associates to each k-algebra A the set of all pairs (g, h) in
hspec B(Spec A) x Hilbg/k(A) such that ¢¥(g) = i¢(h) in ’Hilb‘é/k. How-
ever, g is nothing but a k-algebra homomorphism v : B — A, and h
is nothing but (the equivalence class of) a k-algebra homomorphism
n : Alz] — Q'. Therefore, the condition ¥(g) = i(h) says that the
morphisms

pRv:Alz]®p A=Blz] — Q®p A

and
n:Alzr] — Q'

are in the same equivalence class. After localizing also at certain
elements of A, we may assume that Q' is free of rank d. We now fix
isomorphisms Q ®p A = Az® and Q' = Az® and accordingly demand
that ¢ ® v = 1. Then the condition making the diagram Cartesian
is that n lies in ’Hilbﬁ/k(A). In other words, we have reformulated
the functor ¢ as follows: ¥(A) is the set of all ¥ : B — A such that
¢ ®~: Alr] — Az® is an A-algebra homomorphism and

(7) (6 ©@7)0 (ta® (yop)) : Az — Alz] — Az®
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is an isomorphism. Consider the special case B=B,y=id: B -+ B
and the composition

po(tan ®p): Be® — Blz] — Bz,

Let M be the matrix of this B-module homomorphism, and let J C B
be the ideal generated by det (M). Then clearly for any v : B — A,
the composition (7) is an isomorphism if, and only if, A = Av(J). By
Exercise VI-6 of [9], we are done. O

As was mentioned in the introduction, the statement of Lemma 1 is
implicit in [20], but not explicitly proved there.

4. The standard cover. In Section 5.2 of [16], the authors
show with a very quick argument that their functors Hilbz Jk where

¢ runs through all homomorphisms B? — B[z, form an open cover
of the functor Hilb% /k» and also that there exists a finite set of such

subfunctors which covers Hilbg /k- We now show, in a constructive way,
that our subfunctors Hilbﬁ/k, which are also finite in number, suffice

to cover ’Hilb‘é /- Our covering family of subfunctors is a subfamily of
the family of [16], and is minimal.

Proposition 1. The functors ’Hilbg/k, where A runs through all

standard sets of size d, form an open cover of the functor Hilbg/k.
Moreover, this cover is minimal in the sense that when removing any
member of it, the result is no longer a cover.

Proof. We will show that, for all B € (k-Alg), for all prime ideals
p C B and for all ¢ € Hilb‘é/k(B), there exist a ¢ € B —p and a
standard set A of size d such that the localization

(¢ ®idp,) o (ta ®idp,) : Bya®™ — Bylz] — Qq
is an isomorphism. This will prove that the various ’Hilbg/k cover
Hilb% ..

Let B be a k-algebra and ¢ : B[z] — Q a B-algebra homomorphism
representing an element of Hilb% /k(B), and let p C B be a prime ideal.
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We use the localization B, and its residue field K = B,/pB,. Upon
tensoring ¢ with By, and &, respectively, we obtain the extensions

¢p : Bplz] — Qp,
Or : KlT] — Q-

(8)

By assumption, @ is locally free of rank d, i.e., there exists an f € B—p
such that Q; = ®Z , Bye;. Localizing further, we get Q, = @?Zprsj.
Taking residue classes, we get Q,, = 69?:155]-. Local freeness of () and
surjectivity of ¢ imply that both maps in (8) are surjective. Since & is
a field, the ideal ker ¢, has a Grobner basis with respect to <, with a
standard set A attached to it. As @ has dimension d, the standard
set has size d. The family z” + ker ¢, where § runs through A, is
a k-basis of k[z]/ker ¢,. Therefore the family ¢,(z”), where B runs
through A, is a s-basis of Q. From the commutative diagram

B[] P, Qyp

CaHJv Jcan

Rla] —— Qu,

where the vertical arrows are canonical maps, we see that ¢, (z”) is a
lift of ¢, (x”) with respect to the canonical map. Nakayama’s lemma
(see [8, Corollary 4.8]) implies that the family ¢,(z?), where 8 runs
through A, generates the By-module Q),. As the rank of @y is d = #A,
this family is even a Bjy-basis.

Therefore the composition
bpota: Bpr® — Bylz] — Qp = @, Bye;

is an isomorphism. Going from left to right, we write the image of the
basis element 7 under the composition as

d
9 oup)(zP) = il i
(9) (¢p 0 1a)(2”) ; o

Going from right to left, we write the image of the basis element ¢; as

d;
(10) (p0ea) () = D 30’
pea "B
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Here all gg; and all h; g lie in B —p. We set

h= <H ﬁgﬂﬂ) : <f[ 11 hiﬂ)

BEA i=1 i=1B8€A

and ¢ = fh. (Remember that f is the element of B — p with
respect to which we localized earlier.) Then By = (By)s, and therefore
Qg = ®L_, Bye;. Formulas (9) and (10) define homomorphisms

Byz® — @ Bye;

and
ealeBpe,- — BpacA,

respectively, which are obviously inverses of each other. The first
assertion of the proposition is proved.

As for the second assertion, we fix a standard set II of size d and
consider the ideal I = (%, € N” —II) C S. Then clearly S/I is an
element of ’Hilbg/k. For all standard sets A # II of the same size, there
exists an element 8 € II — A. Therefore z° + I is zero in S/I, and the
family (27 + I)gea is not a k-basis of S/I. It follows that the functors
Hilbg/k, for all A # II, do not suffice to cover all of "Hilb‘é/k. O

As was mentioned in the introduction, the statement of Proposition 1
is implicit in [20], but not explicitly proved there.

5. Grobner bases in the standard subfunctors. Let us further
investigate the functor Hilbg/k. Let B be a k-algebra, p C B a prime
ideal and ¢ € Hilbg/k (B). In the course of the proof of Proposition 1,
we made use of polynomials lying in the ideal ker ¢,. Since A is the
standard set attached to the ideal ker ¢, each element of the reduced
Grobner basis of ker ¢, can be expressed as

(11) fa=2%+ Z Capt?, where o5 = 0if a < S.
BeA

The latter condition guarantees that LE(f,) = «. A priori a polynomial
as in (11) exists only for all @ € ¥(A). The collection { fo; @ € €(A)} is
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the reduced Grobner basis, which is unique. Therefore the polynomial
of (11) is unique for all & € €(A). The following lemma (applied to
R = k, I = ker ¢,;) implies that a unique polynomial as in (11) exists
for all @« € N™ — A.

Lemma 2. Let R be a ring and A a standard set. Assume that for
all £ € €(A), there exists a monic f¢ € R[x] such that LE(fe) = £
and all non-leading exponents of fe lie in A. Define I to be the ideal
(fe; £ € €(A)) in Rlz]. Then the following statements hold.

(i) For all « € N™ — A, there exists a unique fo € I such that
LE(f.) = a and all non-leading exponents of fo lie in A.

(if) All coefficients of all fo are polynomial expressions with coeffi-
cients in Z of coef(fo,x?), for a € €(A), 2P € supp(fa)-

(iii) If LE(I) = N™ — A, then I is monic with reduced Grébner basis
(fﬁ)ée%(A)' Moreover, the family (fo)acNn—a is an R-basis of the
module I.

This lemma is apparently well known, at least in the case where R is
a field. However, it is hard to find a reference for it in the literature,
as was mentioned in the discussion after Lemma 15 in [28]. Its proof
boils down to an inductive construction of the polynomials f,.

We have seen that by Nakayama’s lemma the family of all 2, where
B runs through A, is a By-basis of By[x]/ker@,. Therefore each
polynomial f, € ker ¢,; as in (11), for « € N — A, has a unique lift to
an element

]/f:x — :Ua + Z /c\a,ﬁmﬁ

BEA

of ker ¢,. However, though co 3 = 0 for o < 3, the coefficients ¢, g
need not be zero for a0 < 3.

Proposition 2. The ideal ker ¢, is monic with Grobner basis f;,
for a € E(A), if, and only if, ¢up = 0 for all o € €(A) and for all
B € A such that o < .

Proof. This is a consequence of Lemma 2. O
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In the complementary case, the set {f,;a € ZB(A)} is still the border
basis of ker ¢,, in the terminology of [25, subsection 6.4]. In our
context, border bases are best described as follows. Take a k-algebra
Band a ¢ : Blz] - Q in Hilbg),. Let a € N" — A, then by (3), there
exist unique do g € B, for § € A, such that

v+ Z do pz? = 0 € Blz]/ker ¢,
BEA

or equivalently,

fo=a%+ Z da”g:l?ﬂ € ker ¢.tagl2
BeA

The collection {f,;a € ZB(A)} is the border basis of ker¢. If in
addition ker ¢ is monic with standard set A, then Lemma 2 implies
that the collection {fn; € ¥(A)} is the reduced Grébner basis of
ker ¢. In this sense the notion of border bases is a generalization of the
notion of Grébner bases. The goal of the next section is to exhibit that
observation in the language of Hilbert functors.

6. The Grobner subfunctors. In [20, Theorem 37], [16, Theorem
5.4] and [4, Theorem 2.8,] the authors show that the functor ’Hilbg/k
is representable by an affine scheme. We make use of this fact in this
section, denoting by Hilbﬁ/k the representing scheme. (We will give
explicit descriptions of the coordinate ring of this scheme in Sections
8 and 9.) Proposition 2 suggests considering the following elements of
Hilbg, (B):

Definition 5. For each k-algebra B, let Hilbg/Ak(B) be the set of
equivalence classes of surjective B-algebra homomorphisms ¢ : B[z] —
Q such that ker ¢ has a reduced Grébner basis of the form

(13) fa=2"+ ) daga’
BEA, B=<a

where o runs through € (A).

As was mentioned in Section 2, an ideal admits a reduced Grébner
basis if, and only if, it is monic. Moreover, the equivalence class of a
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surjective B-algebra homomorphism ¢ : B[z] — @ is determined by its
kernel, and as a monic ideal is determined by its reduced Grébner basis.
This gives us the following alternative characterizations of 7-Li1b§/A,C (B)
as:

e the set of equivalence classes of surjective ¢ : Blz] — Q such that
ker ¢ is a monic ideal with standard set A.

e the set of all monic ideals in B[z] with standard set A.

e the set of all reduced Grébner bases in B[z] with standard set A.

Lemma 3. ’Hilb;ﬁk is a subfunctor of ’Hilbﬁ/k,

Proof. Let ¢ : Blz] — Q be an element of Hilb;fk(B). The division

algorithm (see [7, Sections 2, 3]) shows that the family (2 + ker ¢),
where 8 runs through A, is a B-basis of B[z]/ker¢. Therefore the
family ¢(z”), where B runs through A, is a B-basis of Q. Hence
¢ : Blz] — Q is also an element of Hilbﬁ/k(B). In particular, we

may assume that Q = Bz®.
We show that ’Hilb;/Ak is a functor. Let

¢ : Blz] — Bz®

be an element of Hilb;ﬁk (B) and ¢ : B — A be a k-algebra homomor-
phism. Tensoring is right exact, hence a surjective homomorphism

p®id : Alz] — Az”.

We have to show that ker ¢ ® id is monic with standard set A. For
this, we write the elements of the reduced Grébner basis of ker ¢ as in
formula (13). We define

Ga = % + Z %/J(da,,e)ﬂlﬁ,
BEA, B<a

for all @ € €(A). Then clearly all g, lie in ker (¢ ® id). By Lemma
2 (i), we get a unique polynomial of the form

Jo = % + Z Ca,pt’

BeA
B=a
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even for all « € N” — A and in particular, all these g, lie in ker (¢®id).
Now let g be an arbitrary element of ker (¢ ® id). Denote the leading
term of g by cx*#. We have to show that p lies in N™ — A, as in this
case, Lemma 2 (iii) guarantees that ker (¢ ®1id) is monic with standard
set A. Consider the polynomial

g =g- Z coef(g, 2”) gs-
BEN"—A,
B=<u
Then ¢’ lies in ker (¢ ® id); its support is contained in A U{u}; and its
leading term is cz#. However, as ¢ ® id lies in Hilbg/Ak (A), we know
that the family z” + ker (¢ ® id), where 3 runs through A, is a basis of
Alx]/ker (¢®id). This shows that if 4 € A, then ¢ = 0, a contradiction.
Hence pp € N™ — A. mi

Lemma 4. Hilb;fk 18 a Zariski sheaf.

Proof. Let B be a k-algebra, (U; = Spec By, )icr an open cover of
Spec B by distinguished open sets and ¢; € Hilbg/Ak (By,) such that for
all 4,7,

(bi ®id : Bgi ®Bgi ng — Qi ®Bgi ng

and
¢j @id: By; ®p,, By, — Q; ®n, By,

agree, i.e., define the same map

. _ A
$ij : Bgig; — Qij = Bg,g;z".

We write the elements of the reduced Grébner basis of ker ¢; and ker ¢;,

respectively, as
@) _ .« @ .8
fi =2+ 3 dojpa”,

BeEA
B<a
19 =+ 3 i,
BEA
B=a

respectively, where a runs through ¥(A). From Lemma 3 we know
that ker ¢;; = ker ¢; ® id = ker ¢; ® id is monic with standard set A.
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The images of féi) and fo(éj ), respectively, in By, g, [x] have the following
properties:

e They lie in ker ¢;;.
e Their leading exponent is «.
e Their non-leading exponents lie in A.

Therefore they are the reduced Grobner basis of ker ¢;;. In particular,
f(gi) and fo(éj ) agree on Spec By,,.. The sheaf axiom for the quasi-
coherent sheaf B[z] on Spec B provides a polynomial f, € B[z] whose
image in By, [z] is # for all i. Tt is clear that this polynomial takes the
shape (13). Upon defining I = (fo;a0 € €(A)) and ¢ : S - Q = S/I
to be the canonical map, we have lifted the various homomorphisms ¢;
to a homomorphism ¢. The same line of arguments as at the end of
the proof of Lemma 3 shows that I is monic with Grobner basis f,,
where a runs through % (A). Therefore ¢ lies in Hilbg/Ak (B). O

Theorem 1. Hile/Ak is represented by a closed subscheme Hilbg/Ak
of Hilbg),,.

Proof. We prove this by applying Proposition 2.9 of [17]. For this we
adopt two items of the terminology of the cited paper.

e Let B be an object of (k-Alg), and let a condition on morphisms
¥ : B — A in (k-Alg) be given. We say that the condition is closed if
there exists an ideal J C B such that ¢ : B — A satisfies the condition
if, and only if, ¢ factors through the canonical map B — B/J.

e Let B be an object of (k-Alg) and the B-algebra homomorphism
¢ : Blz] — @ an object of ’Hilbg/k(B). We say that a morphism
¥ : B — A in (k-Alg) satisfies Vp 4 if the A-algebra homomorphism
Hilbé/k (1)(¢), which is an element of ’Hilbg/k(A), lies in ’Hilbg/Ak (A).

By [17, Proposition 2.9], the functor Hilbg/Ak (which is a Zariski sheaf
by Lemma 4) is represented by a closed subscheme of ’Hilbg/k if, and
only if, for all B in (k-Alg) and all ¢ : Blz] — @ in ’Hilbg/k(B), the
condition Vp 4 is closed.

Let B and ¢ as above be given. Then the family (z? + ker ¢)ﬂ€(g(A)

is a B-basis of B|z]/ker ¢. By Lemma 2, there is a unique polynomial
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of the form

fa=2"+)  dapa’ €ker¢
peA

for all « € N™ — A. Define J C B to be the ideal generated by all ds g,
where o runs through N” — A and S runs through all elements of A
such that o < .

Given a morphism ¢ : B — A in (k-Alg), the homomorphism
Hilbg 7, (¢) () is nothing but the tensor product ¢®id : Alz] - Q@5 A.
The polynomial

V(fa) = 2%+ > U(days)s”

BeEA

is the unique element of ker (¢ ® id) such that its leading exponent is
«a and all non-leading exponents lie in A. Now ¢ : B — A factors
through B — B/J if, and only if, for all « € €(A) and all 8 € A
such that a < B, we have ¥(do,3) = 0. This is equivalent to the
ideal (¥(fa); €(A)) C Alz] being monic with reduced Grébner basis
{Y(fo);a € €(A)}. Therefore ¢ : B — A factors through B — B/J
if, and only if, ker(¢ ® id) is monic with Grdébner basis ¥(fy), where «
runs through ¢(A). We have proved that Vg 4 is a closed condition. O

7. The Grobner strata. We have proved that in the chain of
inclusion (1) the first inclusion is a closed immersion and the second
inclusion is an open immersion.

Definition 6. We call the locally closed subscheme Hilbg/A,c of
Hilb% /i, the Grébner stratum attached to the standard set A.

Here is an example illustrating the difference between Hilbﬁ/k and
Hilbg ;.

Example 4. Let &k = Z, A = {0,e1,e2} C N? and < the
lexicographic order on S = k[xy,z2] such that x; > z3. The ideal

I, = (23 + 221 + 229 + 3, zy19 + 22 + 222 + 3,
X3 +2x; +2x2+3)C S
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lies in Hilbg, but not in Hilbg/;. The ideal

I, = (22 4+ 221 + 22y + 3, z120 + 221 + 220 — 4,
X2 +2x2+2)CS

lies in Hilbg/Ak. The difference stems from the coefficient of the term
x1 in the generators printed in boldface type. That coefficient vanishes
only for I and not for I,. The given generators of I, are the reduced
Grobner basis of I,. The ideal I, does not have a reduced Grobner
basis if < is the term order we chose. However, if we replace that order
by the graded lexicographic order, then the given generators are the
reduced Grdbner basis of I,. We will justify this in Example 9, see
Section 9 below.

Grobner strata and related objects have been studied by many au-
thors, see [1, 11, 12]. The cited authors refer to these schemes as
Schubert schemes, or Schubert cells. Their terminology is motivated
by the analogy of the inclusion Hilbg/Ak C Hilb‘é /i to the inclusion of
a Schubert cell in the Grassmannian in the case where A is a subset
of the standard basis {e1,... ,e,} C N", augmented by 0 € N™. One
interesting thing about Grébner strata is the following statement.

Theorem 2. As a topological space, the scheme Hilb‘fg/k decomposes
into locally closed strata as follows,

Hilb , = [ [ Hilbg /.
A
where the disjoint union goes over all standard sets A C N™ of size d.

Proof. We have to show that each closed point of Hilbfé/k lies in
precisely one stratum Hilbg/Ak. Let = : Spec F — Hilb‘é /i be a closed
point, F' a field. We interpret this as an element of Hilbg(F), i.e.,
as a surjective F-algebra homomorphism ¢ : F[z] — Q. The kernel
of this homomorphism has a well-defined reduced Grobner basis, and
a well-defined standard set A. Therefore x lies in Hilbg/Ak, and not in

any Hilbgy, for T # A. ul
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Note that in general a non-closed point of Hilb‘fq /i, does not lie in any
stratum Hilbg/Ak of (14). Indeed, a non-closed point of Hilb% /i lies in
some Hilbé/ «» and thus corresponds to a homomorphism ¢ : B[z] — @

lying in Hilbg/k (B), where B is a ring rather than a field. In particular,

for all @ € #(a), there exists an f, as in (12). However, it may happen

that dn g # 0 for some pair a < 3. If so, then the point does not lie in
ap <A

Hilbg .

Example 5. Consider the case n = 2, d = 3. There are three
standard sets

Al = {07617261}7 AZ = {anla€2}’ A3 = {an27262}

of size 3 in N2. In Examples 9 and 10 below we will show that the
three corresponding open patches Hilb?;k are all isomorphic to AS.

R™ = k[T(3,0)8, T(0,1),55 B € A1,
RA? = k[T(2,0),6:T(1,1).8: T(0,2),85 B € A2 —{0}],
RAB = k[T(170)7ﬂ’T(370)7ﬁ; /8 € Al]

Let K; = FracR® and 7 = SpecK; be the generic point of
Hilbg/"k. The point 7; of Hilb?;‘,C corresponds to the Kj-algebra
Qi = Ki[l‘l,l‘g]/Ji, where

Ji = (23 — T(3,0),2,00%1 — T(3,0),1,0%1 — T(3,0),(0,0)
T2 — T(o,l),(z,o)ﬂ?% - T(o,l),(l,o)ifl - T(O,l),(O,O)):

J2 = (23 — T(2,0),(1,0Z1 — T(2,0),00,1)%2 — T(2,0),(0,0)
T1T2 — T(1,1),(1,0)$1 - T(1,1),(0,1)$2 - T(1,1),(0,0)
x5 — T(0,2),(1,0)%1 — T(0,2),(0,1)%2 — T{0,2),(0,0) )

Jz = (z1 — T(1,0),(0,2)33§ - T(l,o),(o,l)ivz - T(l,O),(O,O):
23 — T(0,3),(02)%5 — L(0,3),00,0%2 — 1(0,3),(0,0))-

(The meaning of those T}, 3 appearing in J; which are not generators

of R®¢ will be explained in Examples 9 and 10 below.) We may assume
that the term order satisfies 1 = 2; thus, in particular 3 = x5. Since
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T(3,0),(0,1) # 0 in Ky, we see that the given generators of J; are not a
reduced Grobner basis. In fact, J; does not admit a reduced Grébner
basis. Consequently 7; does not lie in any stratum of (14). Similarly,
if < is the lexicographic order, then 7y does not lie in any stratum of
(14) either, and if < is the graded lexicographic order, then ns does lie
in any stratum of (14).

8. Representing the functors. We start this section by briefly
reviewing the construction of the affine scheme Hilbﬁ/k given in [4,

Theorem 2.8] and [16]. Hilbé/k(B) is the set of equivalence classes of
B-algebra homomorphisms ¢ : B[z] — @ such that the composition
Bz® — B[z] — Q is an isomorphism. Each equivalence class of
¢ : Blz] — Q corresponds to precisely one B-algebra structure on
the B-module Bz”. Therefore Hilbé/k(B) is reinterpreted as the
set of all B-algebra homomorphisms ¢ : B[z] — Bz® such that
$o (ta ®id) : Bz® — Bzx® is the identity map. Now that we have
free modules with bases, we identify ¢ with its matrix (aug)aenn, gea,
which is given by

(15) d(z*) = Z aepz’, for all a € N™.
geA

The condition ¢ o (tpo ® id) = id says that
aap = 0a8, for all € N" and for all § € A.

The B-module homomorphism ¢ is a B-algebra homomorphism if,
and only if, it is multiplicative. This characterization will be used
in the proof of Proposition 3 below. For the time being, we use
another characterization: the B-module homomorphism ¢ is a B-
algebra homomorphism if, and only if, its kernel is an ideal in B[z].
It is easy to check that the family z® — (1A ® id) o ¢(z*), where z*
runs through all monomials in B[z|, generates the B-module ker ¢.
Therefore ker ¢ is an ideal in B[z] if, and only if,

d(z (2% — (1a ®id) 0 p(z%))) = 0, for all A\,a € N™.

Upon expressing ¢ by its matrix and using the fact that ¢a is the
canonical inclusion, this condition reads as follows:

> <0A+a,ﬂ -3 aa,yaxﬂg)xﬁ =0, for all \,a € N"™.
BeA YEA
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Since Bz is free with basis z®, this means that

Urtaf = D) day@riq,s = 0,
(16) YEA

for all A\, € N" and for all § € A.

Clearly it suffices to let * run only through x,... ,z,. Therefore the
functor ’Hilbg/ i is represented by the affine scheme

(17) Hilbg),, = Spec R/I*,

where T2 is the ideal

I? = (Top — Sap;a € N, B € A)

+ (T/\-l-aaﬂ - Z Ta,'yTA—i-"/,ﬂ; o€ Nn7>\ € {617 s aen}aﬁ € A)
YEA

in the polynomial ring R = k[T, g;a € N, 3 € A].

The heart of the above described method for obtaining the coordinate
ring of the scheme Hilbé/k is the system of equations (16). These are
the structural equations defining the multiplicative structure on the
B-algebra Bz®. In contrast to this approach to the coordinate ring
of Hilbﬁ/k, the same ring is obtained by using a border basis variant
of Buchberger’s S-pair criterion in the articles [20, 22, 23, 24, 26,
37]. In those articles, finite presentations of the coordinate ring of
Hilbé/k are given. At the moment our approach seems weaker, as the
presentation of (17) uses infinitely many generators and relations. In
the next section we will see that our approach is in fact stronger. In
Proposition 3 we derive a finite presentation of the coordinate ring R/I.
In Theorem 3 below we will derive an improvement on this proposition.

We introduce the following notation. If N C N” is a standard set, we
write NV = 2 (N) and, for alli > 1, NO+1) = 2(NUNMU...UN®),
Proposition 3. Let N be a standard set in N™ containing A.
Then the functor Hilbé/k is represented by the affine scheme Hilbé/,C =

Spec R, where
R® = R/T*
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and I® = IP + I + 15 is the sum of the ideals

I = (Tap —bapsa €N,BEA), I = (Ta—I—A,B > Tay Ty s;
YEA

a e NUNW Xe{ei,... e} such thata+X€ NUNW B¢ A) and

Iy = < Y TanTying = O TaryToingia,d’ € N,
YEA YEA

M eder,...,eny st.a+td=a +XNeN? ge A>
in the polynomial ring R = k[T, g;a € N U NO ge Al.

Proof. Again we start with a B-module homomorphism ¢ : Blz] —
Bx?, represented by its matrix (a, ) as in (15). Our goal is to find
constraints on the coefficients a, s which guarantee that Bz® has a
multiplicative structure such that ¢ is a B-algebra homomorphism.
As was mentioned above, ¢ is a B-algebra homomorphism if, and
only if, ¢ is multiplicative. By linearity of ¢, this is equivalent to
¢(ztP) = ¢(z*)p(z?) for all o, € N, and by an easy induction
argument, the latter condition is equivalent to

(18) $(a*T) = p(a)d(2*)

for all « € N™ and all X € {ey,...,e,}. Therefore, our goal is to find
constraints on the coeflicients a, g which guarantee that Bz has a
multiplicative structure and the multiplicativity condition (18) holds
for all @ € N™ and all A € {ey,...,e,}. We will see in the course
of the proof that we do not need the full matrix (aa g)acn» gea, but
rather only the rows indexed by a € NUNW,

Step 1. As above, the condition ¢ o (1o ® id) = id translates into the
following constraints on the coeflicients aq g:

Va €N, VB e A: aa,p = (5,175.

Step 2. We impose the multiplicativity condition (18) on all o and
a+ X which lie in NUN®. Let us translate this into equations for the
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coefficients an 3. The left hand side of (18) is
a+)\ Z Gogr, 533
BEA

The right hand side of (18) is a priori not defined before we have the
multiplicative structure of Bz® at hand. However, upon assuming that
(18) holds for elements of N U N we can surmount that obstacle by

a trick:
Z Uo7 Gz Z tay$(27)d(a”)
(19) 7EA YEA
= Z aa,v‘b(m’y—i_}‘) = Z aa,‘va’H)\,ﬁwﬁ'
YEA ByEA

Here we used the fact that 7 = ¢(z7) if v € A, and the multiplicativity
condition (18) for v and v + A lying in N U N, The two expressions
have to coincide, hence the following constraints on the coefficients

Ao, B+
(200 Vae NUNW, vxe{ey,..., e}
st.a+Ae NUND vBeA:
Qo4 \,8 = Z Ao,y Ay )\, 8-
YEA
Note that these are just (some of) the structural equations (16).

At this point multiplicativity holds within N U N in the sense that
(18) holds if o, + A € NUN®,

Step 3. We define more values of ¢ by means of equation (18). More
precisely, we take « € N and X € {e1, ... ,e,} such that a+ X € N®

and define
A
z® Z Qa,yAy+A, ﬂxﬂ
ByYEA

Then the multiplicativity condition (18) holds for these values of o and
A, as the right hand side of the last equation is

Y aand@ ) = 3 auqd@)(@)
BYEA ByYEA
> ay@0(5) = $()o(x).

ByYEA
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At this point we have to make sure that the definition just given is
unambiguous. This means that if o/ € N and X € {ey,...,en}
are such that a + A = o' + X, the definitions of ¢(z***) and of
qﬁ(a:o‘"”") coincide. This translates into the following constraints on
the coefficients a g:

(21) Va,o/ € NV, VAN € {er,...,en}
st.a+A=a + XN e N?,
VB eA: Z Aoy Ay )\,3 = Z Aol Ay N 3+

YEA vEA

At this point multiplicativity also holds when passing from N1 to
N®) in the sense that (18) holds if « € N() and oo+ X € N,

Step 4. We claim that multiplicativity holds within N U N U N®?)
in the sense that (18) holds if a,a +X € NUN®M U NG,

We only have to check that if both o and a + X lie in N, In this
case there exists some v € {ey,...,e,} such that a + X —v € N(),
In particular, v # X. This implies that also a — v lies in N™, as that
element arises from « 4+ A\ by subtracting two different standard basis
elements, A and v. Therefore a — v in fact lies in N(1). We obtain

(@) = 9 )p(a") = (e T)p (M) (") = $(2)$(a),

as desired. Here we used the fact that multiplicativity holds when
passing from N to N®) for the outer two equalities and the fact that
multiplicativity holds within N U N(®) for the inner equality.

Step 5. We define more values of ¢ in analogy to Step 3: We
take a € N and \,p € {ey,...,e,} such that o + A € N® and
a+ X+ p e N® and define

R A B
o(z )= E Ao,y Ay XNy Qy+p2, BT
By EA

This definition makes the identity

(22) P(z>TATH) = g(2* ) p(a)

hold. We claim that the definition just given is unambiguous, i.e.,
that if o’ € N and X, € {ei,...,e,} are such that a + A + p =
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a' + X + ', the corresponding definitions of ¢(z***) coincide. For
verifying this, we first note that we may assume that p # y', since
otherwise unambiguity is trivial. By the same argument as in Step 4,
we see that a + A — p/ = a’ + X — p lies in N™. Therefore a + A — p/
in fact lies in N U N UN®), Now we distinguish three cases.

Case a. A # y'. Then by the same argument once more, o — ' lies
in N™. It follows that a — ' lies in N U N® U N(?), Therefore

(" M)g(at) = Bz*)d(a?)b(at)

O )o(a )p(a)o(a) = pa ) g (at ) o)
D ) g () g (ak) = pa* ) o)
= &

a+A+u)

Pz TATH)

X

Here we used (22) for the outer equalities and the fact that multiplica-
tivity holds within N U N U N®) for all other equalities.

Case b. X # p. This is the same as the previous with the roles of
primed and non-primed elements interchanged.

Case c. X =/ and X = p. Then o = o. As a € N, there

exists a v € {ey,...,e,} such that « —v € N. Again we get a chain of
equalities:

Pz TAMH) = (a* ) (
= ¢(z° )¢(w”)¢(mA)¢( M) = ¢ ) g (") p(a)
Pz )p(z) = gzt

Again we used (22) for the outer equalities and the fact that multi-
plicativity holds within N U N U N®) for all other equalities.

At this point multiplicativity also holds when passing from N3 to
N®) in the obvious sense.

Induction step. Note that the proof of multiplicativity given in Step 4
was completely formal, only using the fact that multiplicativity holds
within N U N and when passing from N to N, Therefore, now
that we know that multiplicativity holds within N U N® U N2 and
when passing from N to N®), we can imitate Step 4 and prove that
multiplicativity holds within N U N U N® U N®),  Analogously,
Step 5 was completely formal and can be imitated for proving that
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multiplicativity holds when passing from N®) to N4, Then we
imitate Step 4 again and prove that multiplicativity holds within
NUNDUN® yUNEC UN® | imitate Step 5 again for proving that
multiplicativity holds when passing from N4 to N®) and so on. This
proves that the multiplicativity condition (18) holds for all @ € N™ and
all A € {e1,...,en}

End of proof. We see that the B-module homomorphism ¢ : B[z] —
Bz defines a B-algebra homomorphism if, and only if, the coefficients
Gq,p, where a € N'U N® and g € A, satisfy the three conditions (19),
(20) and (21) of Steps 1, 2 and 3, respectively. Therefore, an element
¢ of ’Hilbg/k(B) is uniquely determined by the choice of elements
aap € B, for all € NUN® and all 8 € A, such that (19), (20)
and (21) hold. That choice corresponds to the choice of a k-algebra
homomorphism R® — B. o

The set N of Proposition 3 can be chosen finite. Therefore the scheme
Hilbg/k is of finite type over k, and embedded as the closed subscheme
corresponding to I into affine space with coordinates Tw,g, for o € N,
B € A. In view of the summand I2 of I®, we see that we only need
the coordinates 1, g, for « € N — A, 8 € A, for the ambient space.
The smallest possible N is A, hence a closed immersion of Hilbé/ % into
affine space of dimension #% (A)#A. The same immersion is studied
in [20, 22, 23, 24, 26, 37|. However, these articles do not use the
matrices of ¢(z®) but rather the polynomials

fo=2%+ Z dayg:vﬂ € ker ¢
BeA

(cf. (13)). These polynomials carry the same information as our matrix,
as

O if o € A,
(23) aa,ﬁ={ s Mo

—daﬁ if a € N™ — A.

The work with the polynomials f, makes syzygy criteria necessary in
the cited articles. The two summands I and I in our ideal I*
correspond to the concepts of next-door-neighbors and across-the-street
neighbors, respectively, in [22, Definition 17] and [26, Section 4]. We
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will say more about that in the next section, in which we dispose of
many of the generators of I$*. Now we focus on the Grébner functors.

Corollary 1. Let N, R and I® be as in Proposition 3. Then
the functor Hilb;ﬁk is represented by the affine scheme Hilbg/Ak =
Spec R=~*, where

R*% = R/I™#
and
=4 :IA+(Ta75;a€NUN(1),ﬁ6A,oz-<ﬂ).

Proof. The additional conditions defining I<? express the constraints
on the subfunctor Hilb;/A,C of Hilbﬁ/k which we discussed in the proof

of Theorem 1, in terms of the variables T, . O

Equivalently, the scheme Hilbg/A,c is the closed subscheme of Hilbﬁ/,C
defined by the ideal in R® generated by the images of all Tw,, for

a € NUN® and 8 € A such that o < 8. Note that for the ideal
defining Hilb37;, the identity

I8 = T2 + (Tap;a € €(A),B € Aya < )

holds. In other words, many of the additional conditions defining 7<%
follow from a few basic ones. (This is a consequence of Lemma 2,
applied to the ring R® of Proposition 3.)

By Corollary 1, Hilbg/Ak is a closed subscheme of an affine space of
dimension #% (A)#A. We now cut down further the dimension of
the ambient space. For this we consider the polynomial ring R,, =
ETap;a € €(A),8 € Aya = f]. Forall o € #B(A) — € (A) and all
B8 € A such that o = 8, we define elements 1, g of R,, by recursion
over « as follows:

o We start with I' = Z(A) — €(A).

e While I' # &, we take the minimal element « of I'; we find some
v e {e1,...,e,} such that « —v € Z(A), we define

(24) Top= D, TavayTyivg,
YEA
a=y+v>-p
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where Ty, 3 = 04408 if v+ v € A, and we replace I by I' — {a}.
Moreover, we define an ideal I2 C R,, by the same formulas as the
ideal I® C R in Proposition 3, applied in the case where N = A, with
the following modification: In all summands of all generators of I*, we
replace all T, g such that o € A by 04 g, and delete all T,, g such that
a > B.

Corollary 2. With the above notation, we have Hilbg/Ak = Spec R34,
where

R3% = Ry, /T2,

Proof. We first check that our recursion is well-defined. Indeed, for
all @ € B(A) — €(A), the existence of a standard basis element v
such that o — v € #(A) follows directly from the definitions. If « is
the object of consideration in one particular step of the recursion, the
element ao—v either lies in ¥ (A) or has been the object of consideration
in an earlier stage of the recursion, as & = o — v. In both cases T,,_,
is a well-defined element of R,,. Moreover, in the sum (24) we only
consider those v € A for which a — v > v, or equivalently, o > v + v.
Therefore the element v + v either lies in A or has been the object of
consideration in an earlier stage of the recursion. In both cases 14, g
is a well-defined element of R,,.

Now we return to the notation of Corollary 1 in the case where
N = A and consider the rings R and R*® = R/I=? defined there.
For simplicity we write T}, g for the images of the variables T, 53 € R
in the quotient R=*. In particular, T, g = 0 for all @ € #(A) and all
B € A such that o < 8. Furthermore, the presence of the summand
I2 in the ideal I® implies that whenever o — v and « lie in % (A), the
identity

Top =Y TocvrTyivs
YEA

holds in R=2. However, only those v € A for which a — v > 7 and
y+v > (3 make a contribution to that sum. This explains the definition
of T, 5 given in (24). As for the definition of I32, the replacement
Twop = 0up for all @ € A is clear from the presence of the summand I
in the ideal I*; and deleting all T, g such that a > 3 stems from the
equality T, g3 = 0 in R=A. The assertion follows from Corollary 1. O
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In the corollary we embedded Hilbg/Ak into an affine space of dimen-

sion
p=#{(a,8) € €(A) x Aja - B}

Note that p depends on both the shape of A and the term order <.
Example 10 below shows that, for special shapes of A, there exists a
term order < such that this upper bound is sharp. (For the standard set
of Example 10, take < to be the lexicographic order such that z; < x;,
for all ¢ > 1.) This observation motivates the subscript in the ideal
I7A ) which stands for minimal. However, it is not clear if minimality
holds in a strict sense:

Question 1. Given a standard set A, does there exist a term order
< such that p is the minimal dimension of an affine space into which
Hilbg7, can be embedded?

Question 2. Given a term order <, does there exist a standard set
A such that p is the minimal dimension of an affine space into which
Hilb37, can be embedded?

In Proposition 3 we embedded Hilbg/k into an affine space of dimen-
sion
q=d#B(A).
(This dimension is obtained when letting N = A.) For standard sets
of size d = 1, we trivially have Hilbé/,C = A"; thus, the dimension of

Hilbg/,c equals ¢g. It is not clear what happens for larger d:

Question 3. For which d € N does there exist a standard set A
such that ¢ is the minimal dimension of an affine space into which all
Hilbg/k can be embedded?

For special shapes of A, the number ¢ is certainly not the minimal
dimension which one can reach. A class of counterexamples is given
by Example 10 again (for the term order < we considered above, we
have Hilbg/ = Hilbg/Ak). Another class of counterexamples is given by
Corollary 7.3.2 of [19], which states that if n = 2 and A C N? has a
“sawtooth” form depicted in Figure 3 (for any parameters a, b and c),
then Hilbé/k is an affine space of dimension 2d.
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FIGURE 3. A standard set of sawtooth form.

FIGURE 4. A standard set A together with A() and A(2),

If N is strictly larger than A, the dimension of the ambient space
of Hilbg/k given in Proposition 3 is far from minimal, thus seeming
unnecessarily large. Alas also that presentation is useful, as it leads
to a compact formula for the coordinate change between two charts
Hilbg);, and Hilby, of Hilb . We will carry this out in Section 12
below.
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9. A smaller set of generators. For illustrating the presentation
of Hilbg/k given in the last section, we go through a few examples.
These will also serve as a motivation for Theorem 3 below, which is
a substantial improvement of Proposition 3. In all examples we only
study Hilbé/ x> and not Hilbg/Ak, as the latter arises from the former by
simply setting T, g = 0 for all a < 5.

Example 6. Consider the following standard set A and its borders:

A= {(07 0)’ (17 0)’ (07 1)’ (17 1)}7
A(l) - {(27 0), (07 2)a 27 1)’ (17 2)}7

Figure 4 shows A, drawn in thick lines; A, drawn in thin lines; and
A®)  marked by circles.

In view of the presence of I in the ideal T2 of Proposition 3, we
replace the polynomial ring k[T, g;a € AUAWM | 3 € A of that theorem
by R =k[Th ;0 € AWM 3 € A]. Then

Hilbg,, = Spec R/I*,
where T2 is the sum of the three ideals

IzA,1 = (T(1,2),(0,0) — T(0,2),(1,0)L(2,0,(0,0) — L{(0,2),(1,1) L (2,1),(0,0)
Ti1,2),1,00 — L(0,2),(1,00L(2,0),(1,0) — L(0,2),(1,1)L(2,1),(1,0)
= T(0,2),00,00> T(1,2),00,1) — T(0,2),(1,00L(2,0),(0,1)
= T0,2),(1,1)T(2,1),00,1)s T(1,2),1,1) — T{0,2),(1,00L(2,0),(1,1)
- T(o,z),(1,1)T(2,1),(1,1) - T(0,2),(0,1)) )

IQA,Z = (T(2,1),0,0) — T(2,0),(0,1)T(0,2),(0,0) — T(2,0),(1,1)T(1,2),(0,0)»
T2,1),(1,00 — T(2,0),(0,1)L(0,2),(1,0) — T(2,0),(1,1)L(1,2),(1,0)>
T2,1),00,1) — L(2,0),(0,1)L(0,2),(0,1) — L(2,0),(1,1)L(1,2),(0,1)
— T(2,0),00,00> L(2,1),1,1) — 1(2,0),(0,1)L(0,2),(1,1)
— T2,0),1,1)T(1,2),(1,1) — T(2,0),(1,0))



384 MATHIAS LEDERER

and

I3 = (T(1,2),1,0)T(2,0),(0,0) + T(1,2),(1,0T(2,1),(0,0)
= T(2,1),00,1) T(0,2),(0,0) = T(2,1),(1,1) T(1,2),(0,0)»
Ti1,2),1,00L(2,0),(1,0) T L(1,2),(1,1)L(2,1),(1,0)

+ T{1,2),00,00 — T2,1),00,1)T(0,2),(1,0)

= Ti2,1),1,1)T(1,2),(1,0> L(1,2),(1,0)T(2,0),(0,1)

(a0 T2),00 = Ti2,n),01T0,.2),01)

a,0)T(1,2),00,1) — 1(2,1),0,0)> L10,2),(1,0)L(2,0),(1,1)

( ),(1,1) + T(0,2),(

—Ti21),0,0)T,2),01,0) — Ti2,1),(1,0))-

0,1) — L(2,1),00,1)L(0,2),(1,1)

)

The ideals IZA71 and IZA72 correspond to the equalities derived in Step 2
of the proof of Proposition 3, i.e., from the multiplicativity condition
p(z°t) = ¢(z*)p(a) for o, + A € AWM. As for I, we choose
a=(0,2),A = (1,0). As for I, we choose a = (2,0),A = (0,1).

The ideal I5* corresponds to the equalities derived in Step 3 of the
proof of Proposition 3, i.e., from the unambiguity condition ¢(z***) =
P(z* ) for a,o/ € AM such that a + A = o/ + X € A®). The only
choice for that is a = (1,2), A = (1,0), &/ = (2,1), X' = (0,1).

In other words, unambiguity only has to be guaranteed at (2,2) €
A® ., That point a corner of A U AN, as we see from Figure 4.
Moreover, it arises from the only edge point of A by addition of (1,1).

Example 7. Consider the standard set A, along with its borders
AWM and A®)| as depicted in Figure 5. We define the polynomial ring
R by the same formula as in the previous example. Then

Hilbg),, = Spec R/I*,

where

I8 =I5+ + L+ 15 + 13,
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FIGURE 5. A standard set A together with A1) and A(2),

385

We do not write down the summands of I explicitly, but rather describe
them as follows: The ideals IQAJ- and I?fj correspond to the equalities
derived in Step 2 and Step 3, respectively, of the proof of Proposition 3,

according to the following values of a, A\, and o/, \’, respectively,

I$ | a=(0,5) | A=(1,0)

I8 | a=(2,3) | A= (0,1)

I3y | a=1(2,2) | A=(0,1)

15, | a=(2,2) | A=(1,0)

Ify | a=(3,2) | A= (1,0)

I | o= (5,0) | A=(0,1)
If, | a=(1,5) | A= (1,0) | o/ = (2,4) | N = (0,1)
I a=(4,2) | A=(0,1) | o/ = (5,1) | N =(0,1)

The interesting observation here is that the summands I3; and I3
correspond to the two edge points (1,4) and (4,1) of A.
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FIGURE 6. A standard set A together with A1) and three elements of A(2),

Example 8. Consider the standard set A, along with its borders
AW and AP as depicted in Figure 6. We define the polynomial ring
R by the same formula as in the previous two examples. Then

Hilbg),, = Spec R/I*,
where
I® =I5 + -+ Iy + IS + IS + IS,

The summands of I® have analogous descriptions as in the previous
example. The ideals IZAJ correspond to the 30 possible values of «, A
such that o and a + A both lie in A®). The ideals Igfi correspond to
the following values of a, A and o/, \’, respectively,

If | a=(1,2,0) | A=(1,0,0) | ' =(2,1,0) | X' =(0,1,0)
185 | o= (1,0,5) | A=(1,0,0) | & = (2,0,4) | X' = (0,0,1)
If | a=(0,4,2) [ A\=(0,1,0) | & = (0,5,1) | X' =(0,0,1)

Again the summands I?fl, I§2 and I?%s correspond to the three edge
points (1,1,0), (1,0,4) and (0,4,1) of A. The following theorem
explains this finding.
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Theorem 3. Let R® = R/I® be the coordinate ring of Hilbg/,c as
presented in Proposition 3, where N = A. Then the two summands 12A
and I?,A, respectively, of I® can be replaced by the ideals

A
I, = (Tasrg = Y TanTyins;
YEA

ac AW xe{ey,... e} st a+re AD e A) and

A _ .
I3,e = ( E Ts+>\’,7Tv+A,B - E :T6+A77TV+A’,Bv
YEA YEA

(e, \, X)) is an edge triple of A, 8 € A), respectively, in the polynomial
ring R.

Proof. The statement about I$ is easy to prove: If a € A, then
Toy = 0a,~; hence, Toyrp — ZveA ToyTy4rp = 0. This polynomial
can therefore be eliminated from the set of generators of I5*. In the
rest of the proof, we show that we may replace IgA by Igfe.

We define Iy to be the set of all sums a + A = o + XN € A®
where a # o' € AW and A # X € {ei,...,e,}. Remember that the
generators of the ideal I?,A correspond to equations

(25) Bz () = () d(z),

where @ + A = o/ + X' € Ty, in the following way: Equation (25)
translates into the system of equations

V’B € A : : : a/a"yal'yJ,»)\’ﬁ = aa/17a7+A,7B’
YEA

which system is then replaced by the generators

> TanTying — D TarnTyinpBEA

YEA YEA

of I£. Analogously, the generators of the ideal IZA@ correspond to
equations

(26) P(z°) = p(z™)g(2),
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where a,a + A € AW, Therefore we may assume that (26) holds for
all a,a+ A € AM, (As we have seen in the first paragraph of the
present proof, the case where « lies in A gives a trivial generator of
I$. Accordingly, equation (26) is trivial if a € A.)

Our first claim is that if (25) holds for all a4+ A = o'+ XN € ToNE (AU
AM), then (25) automatically holds for all @ + A = o’ + X € T'y. For
this we define I' = T'y — (A U AM) and prove the claim by induction
over I'. Take an arbitrary a + A = o’ + )’ € T'. First we observe that
there exists some v € {ey, ... ,e,} such that a4+ A —v lies in A, since
if all @ + A\ — v were to lie either in A or outside N™, then o + A
would lie in (A U AM), a contradiction. Asa+ XA —v=0a + X —v
lies in A®® and not in AM, the element v equals neither A nor X.
Therefore both o — v and o/ — v lie in N, hence in A(Y), It follows that
(a—v)+ X = (&' —v)+ X lies in Ty. If (a—v)+ A lies in ToNE (AUAMD),
then (25) holds for (a—v)+\ = (o' —v)+)\ by assumption. If (a—v)+A
lies in the complement, then (25) holds for (« —v) + A= (a/ —v)+ X
by our induction hypothesis, as (& — v) + A < a+ A. In both cases we
obtain

’

= p(z™ ().

Here we used (26) for the first and the last equality. Therefore (25)
holds for a + A = o’ + )/, and the first claim is proved.

Our second claim is that if (25) holds for all a + A = o' + X €
ToNE(AUAM) such that a — X = o’ — A lies in A, then (25) holds for
alla+X=ao + XN eTynN%(AUAD) with no additional restriction.
Indeed, from A # ) it follows that @« — M = o/ — A lies in N™, and
therefore either in A" or in A. In the former case we compute

P ) p(z") (™)
é(

again using (26) for the first and the last equality. In the latter case,
there is nothing to prove, as (25) holds by assumption.
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Each of the remaining o + XA = o’ + X lies in ['y N €(A U AM) and
has the property that the element ¢ = o — X' = o’ — X lies in A. This is
equivalent to (g,\, \') forming an edge triple. The theorem follows. O

Note that though I + I + I = If + I§€ + I:fe, the ideal I2A,e is
strictly smaller than I, and the ideal I?ﬁe is strictly smaller than I%.
Of course the presentations of the coordinate ring of Hilbg/Ak given in
Corollaries 1 and 2 can be reformulated in the spirit of Theorem 3.

Example 7 illustrates the third claim in the proof, and Example 8
illustrates the first claim. The theorem we just proved is a substantial
improvement of Proposition 3, as it makes the number of generators
needed for I much smaller. The concept of across-the-corner neigh-
bors of [26] uses the same idea which we used in the proof of the second
claim here. Yet our set of generators for I® of Theorem 3 is smaller
than the set of generators of the cited article.

Example 9. Let k = Z and A = {0,e1,e3} be as in Example 4.
Then 6 = {2e;,e; + e3,2e2}. We use the variables T, 5, a € A1)
B € A for presenting R as in the theorem. The ideal Iﬁe vanishes, as

there are no aw € A, X € {ey, ea} such that a+ X € AWM There are two
edge points, e; and ez, hence six generators of Igfe. They boil down to
the following five conditions on T, g:

T(2,0),(0,0) = L(1,1),(1,00L(2,0),(0,1) T T(21,1),(0,1)
= T2,0),(1,0)T(1,1),(0,1) — T(2,0),(0,1)T(0,2),(0,1)»
T(1,1),(0,0) = T(2,0),(0,1) T(0,2),(1,0) = T(1,1),(0,1) T(1,1),(1,0)»
T(0,2),0,0) = T(21,1),(1,0) + T(1,1),00,1)L(0,2),(1,0)
—T0,2),1,00L(2,0),(1,0) — L(0,2),0,1)L(1,1),(1,0)
and
T(2,0),(1,0)T(1,1),(0,0) + T(2,0),(0,1)T(0,2),(0,0)
= T1,1),1,00T(2,0),(0,0) — T(1,1),(0,1)T(1,1),(0,0) = 0,
T(1,1),(1,00211,1),00,0) + L(1,1),0,1)L(0,2),(0,0)
— T(0,2),(1,001(2,0),(0,00 — L(0,2),(0,1)L(1,1),(0,0) = 0.

Upon substituting 7(20),00,0), Z(1,1),(0,00 and T{g,2),(0,0) into the last
two equations, we see that the last two equations are trivial. Therefore
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Hilbé/k is the six-dimensional affine space with parameters 7\ o), (1,0),
T(2,0),00,1)> T(1,1),(1,0)> T(1,1),00,1)s T(0,2),(1,0)» T(0,2),(0,1)- (Note that
this also follows from Huibregtse’s result on “sawtooth” standard sets,
which we discussed at the end of Section 8 above.) In Example 4,
we chose T(2,0),(1,00 = T(2,0),00,1) = 1, T(1,1),(1,0) = T(1,1),001) = 2,
T(0,2),(1,00 = T(0,2),(0,1y = 1 for obtaining I,. This makes I, monic
for the graded lexicographic order, but not monic for the lexicographic
order where z; = 2. For obtaining I;, we replaced T(g 2),1,00 = 1 by
T(0,2),(1,00 = 0. This makes this ideal I, monic for both the graded
lexicographic and the lexicographic order.

Example 10. For A = {0,...,(d—1)e;} C N™, the scheme Hilbg/k
is the dn-dimensional affine space with coordinates Tge, g,Te, 3, - - -
Temﬁ7 for 5 € A.

We just give a hint for the proof of this: First consider the case n = 2.
For a = 0,...,d — 2, the equations ¢(z(¢+1D)) = ¢(z(*1))p(x(10)
give explicit formulas for all T{441,1),3 as polynomials in T\ ;). and
T(4,0),y,» 7 € A. In the system of polynomial equations corresponding
to the equation @(z(¢ " b)p(zM0) = ¢(2(49)p(x(*V), replace each
T(at1,1),8, for a = 0,...,d — 2, by the polynomial expression from
above. Then it turns out that the above system of equations is trivial.
The assertion follows in the case n = 2. For larger n, fix an i €
{2, ... ,n} and derive analogous formulas for T(a+1)e;,1)8 as polynomials
in T, 4 and T(40),, 7 € A. The system of polynomial equations
corresponding to the equation @(z(?-Derte))p(ze1) = @(x?®1)p(z%)
is trivial again. By Theorem 3, these equations, for i = 2,... ,n, are
all we have to study. The assertion follows for all n.

10. The universal objects. Equation (23) describes the transition
between the matrix (aqy) of a homomorphism ¢ € ’Hilbg/Ak(B) and
the elements f, of the kernel of ¢. Together with Corollary 1 and
Proposition 3, this enables us to directly write down the universal
objects.

Proposition 4. (i) Let R® be the coordinate ring of Hilbé/k as
presented in Proposition 3 or Theorem 3. Then the universal object of
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the representable functor ’Hilbg/,c is the affine scheme

UA = SpecRA[x]/(xa — Z ToprPia € NUN(1)>
peA

over Hilbg/k = Spec RA.

(ii) Let R=2 be the coordinate ring of Hilbg/Ak as presented in Corol-
laries 1 or 2. Then the universal object of the representable functor
7-Li1b§/A,C is the affine scheme

U=® = Spec R<A[a:]/(:v°‘ - Z T.p2’;a € CK(A))
BEA, B<a

over Hilbg/Ak = Spec R=A.

Proof. (i) is clear. As for (ii), the only thing we have to prove is that
for generating the ideal

(:co‘ - Z T, pz’;a € NUN(1)>,
BeA,B<a

it suffices to take all @ € €(A). However, in R=** we have T, 53 = 0
whenever o < 3. Therefore, the assertion follows from Lemma 2 (i). O

Note that the theorem gives us

UA — A" A U8 s A% A
Hilb% . * Hilb 577

respectively, as closed subschemes. Moreover, the coordinate rings of

U” and U=?, respectively, are free over R® and R=%, respectively,

by definition of the functor Hilbé/k. In particular, the morphisms
UA — Hilbg/k and U= — Hilbg/Ak are automatically flat.

Proposition 4 makes the statement precise that the scheme Hilbg/A,c 18
the parametrizing space of all reduced Grobner bases in S with standard
sets A: A point Spec B — Hilbg/A,C is a homomorphism R=* — B. In
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other words, we assign to the variables T; g values an g € B which
satisfy the structural equations (16). Then we define

fa=x%— g aa,gmﬁ.
BEA
B=a

Geometrically this means that we consider the Cartesian diagram

Spec Blz]/(fo; o € €(A)) U=a
Spec B Hilbg/,.

The structural equations guarantee that the polynomials f, are a
reduced Grobner basis. Equivalently, by Buchberger’s S-pair criterion
(see [7, Sections 2, 6[), the S-pairs of the various f, reduce to zero
modulo all f,.

11. Connectedness.

Proposition 5. There exists a morphism
g AL Xspeck Hﬂbg/Ak - Hilbg/Ak

such that

o the restriction of g to (t — 1) Xgpeck Hilbg/Ak 1s the identity; and

e for each point p of Hilbg/Ak, the restriction of g to A} Xspeck P
is a curve on Hilbg/Ak which connects p with the point defined by the
monomial ideal (x*;00 € N™ — A) C S.

In particular, if Speck is connected, then Hilbg/Ak 1s connected as well.

We omit the proof of this, just noting that it follows the lines of the
well-known construction of curves in Hilbert schemes. What is needed
for the proof is found in the first few pages of [3], in [8, Section 15.8]
and in Lemma 2 above. A crucial part is the existence of a linear map
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¢ : Z™ — Z such that £(a) > £(B) for all « € A®M and 8 € A such
that T, 3 # 0 in the ring R;®. This is guaranteed by [3, Chapter
1, Section 1], or [8, Exercise 15.12]. Upon writing A}, as Speck[t], the
ring homomorphism R=% — k[t]®; R=* corresponding to g sends each
Ty, to t4@)-4O)T, ,

Can we carry this construction over from Hilbg/Ak to Hilbﬁ/ i Here is
one obvious case in which we can. We say that A is a corner cut if there
exists a linear map ¢ : Z" — Z such that ¢(a) > £(8) for all o € N
and all 8 € A. If < is any term order, we define a new term order <, by
first grading the elements of N™ with respect to the weight ¢ and then
using < as a tie-breaker. If A is a corner cut and £ is the corresponding
linear map, then obviously Hilbg/k = Hilb;/ekA . In particular, Hilbg/k
is connected.

However, the condition on A being a corner cut is very restrictive.
Let us replace it by a slightly weaker condition. We say that A a weak
corner cut if there exists a linear map £ : Z™ — Z such that £(a) > £(8)
for all « € N™ and all 8 € A.

Example 11. Remove from the set {a € N"; |a| < r} any subset S
of {a € N";|a| = r}; then the remaining set A is a standard set. A is
a weak corner cut but not a corner cut.

In order to show connectedness if A is a weak corner cut, we need
some more notation. Consider the functor

Hilbss : (k-Alg) —> (Sets)

S/k
5., [¢:Bl]=Qin Hilbg),,(B) such that ‘
ker ¢ is homogeneous w.r.t. ¢

Upon using the notation of Proposition 3 and Theorem 3, we see that
'Hilbg/’f; is representable by the affine subscheme Hilbg/’i of Hilbg/,C

defined by the ideal (T, g5 € AUAWM B € A l(a) # £(B)) in the
coordinate ring R2.
Proposition 6. (i) Hilbg/’f; s an affine space.

(i) If A is a weak corner cut and Speck is connected, then Hilbg/k
s connected.
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Proof. As for (i), we refer to [26, Theorem 5.3|, where the same
statement is proved. As for (ii), we start with the same construction
as in Proposition 5: We define a ring homomorphism R® — k[t] ® R®
by sending each T,z to te("‘)_é(ﬂ)Ta,g and obtain a morphism g :
A} Xspec Hilbgy, — Hilbg),. If p is an arbitrary point in Hilbg/y,
then g((t),p) is a point in the closed subscheme Hilb;fk’é of Hilbg/Ak.
Then the assertion follows from (i). o

The weak corner cut property is not necessary for Hilbﬁ/k to be
connected. If n = 2, orifd < 7, then Hilb‘é/k is known to be irreducible.
In these cases all open subschemes Hilbé/k, regardless of the shape of A,
are irreducible, thus connected. References for the case n = 2 include
[13], [32, Theorem 18.7] and [18, Theorem 8.11]. The original reference
for the case d < 7is [31]. The authors of [6] prove that the upper bound
d < 7 for irreducibility of Hilbg /1 is sharp. More precisely, Theorem 1.1

of the cited paper states that, for d < 8, the scheme Hilb‘é /1, 18 reducible
if, and only if, d = 8 and n > 4. In that case there exists a component of
dimension 8n — 7 in Hilb% /1, which consists of local algebras isomorphic
to homogeneous algebras with Hilbert function (1,4,3). Therefore the
candidates for A such that Hilbﬁ/,C might be connected are those in N*
with Hilbert function (1,4,3). These are found in the following list:

Ay ={0,e1,€e9,€e3,e4,€1 + €2,€1 +€3,€2 + €3},

Ay ={0,e1,e2,€3,€4,e1 + €2,€1 + €3,2€1},

Az = {0, ey, e2,€3,€4,€1 + €2,€1 + €3, 262},

Ay ={0,e1,eq,e3,e4,e1 + €3,2€1,2e3},

As ={0,e1,e9,€3,€4,€1 + €2,2€1,2e3},

Ag = {0, e1, €9, €3,€4,€1 + €3, 2€3, 264},

A'r = {0, €1, €2, €3,€4, 261, 262, 263}.
However, it is easy to see that all these sets are weak corner cuts.
Moreover, it is easy to see that all standard sets of dimension n > 5
and size d = 8 are weak corner cuts or corner cuts. Therefore the
question whether or not Hilbé/k is connected concerns those A of

dimension n > 3 and size d > 9 which are not (weak) corner cuts,
for instance

A= {0,61,261,361,62,262,362,63,263} C N3.



GROBNER STRATA IN THE HILBERT POINT SCHEME 395

For all A in question, the presentation of the coordinate ring of Hilbg/,c
given by Theorem 3 is much too large for testing connectedness of
Hilbg/k by computational means. It is not known to the author if any

of the Hilbﬁ/k in question is connected or not.

12. Changing the charts. Let A and II be two standard sets of size
d. We embed them into standard sets A C N C N" and Il C M C N".
The union N UM is a standard set containing both A and II. We write
the coordinate ring of Hilbﬁ/  as in Proposition 3, with IV replaced by
NUM:

RA =k[Thp;a e NUMU(NUM)Y, B e A]/TA.
We write the coordinate ring of Hilbg/  in an analogous way, replacing
the matrix T = (T,,g) of indeterminates by a matrix of new variables
U= (Une):

RY = k[Upg;a € NUM U (NUM)W ¢ e 1)/ 1M
We decompose the indexing set of the rows as follows:

NuMuNuM® =@Aanmm)[[a-m]JJa-a)]]e-

Accordingly, we decompose the matrix 7" into the blocks

ANII A-1II
ANII E 0
p_ A-I[ 0 E
I-A T3 Tsy |’
p Ty Ty2

and the matrix U into the blocks

ANII II-A
ANII E 0
g= A-I| Uxn Usz
I-A 0 E
p Uy Uy
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where F is the identity matrix. The symbols to the left of the rows and
above the columns of 7" and U indicate the sets by which the respective
submatrices are indexed.

Proposition 7. Let A C N and I1 C M be standard sets.
(i) Hilbﬁ/k n Hilbg/k is the open subscheme

Spec R® — V (det (Ts2)).

(ii) The gluing morphism ¥a n which identifies the intersection as
an open subscheme of Hilbﬁ/k with an open subscheme of Hilbg/k 18
given by the homomorphism

E 0
Ur—T=U-
<T31 T32>

between the coordinate rings.

Proof. We only prove the first assertion, as the proof of the second
is similar. Take a k-algebra B and a homomorphism which lies in
both Hilbg/k (B) and Hilbg/k(B). This homomorphism is represented
by two surjections ¢ and ¢, respectively, such that there exists an
isomorphism ¥ making the following diagram commutative:

Baz" Blz] ¢, Bz
Bz® Blz] ® , Bz®

For all a € IT — A, consider the elements f, € ker ¢ of equation (12).
From the commutative diagram above it follows that

o7 — ¢ ifacllNA,

(27) (%) = _ZﬂeAda,Bxﬁ ifaell - A.

Indeed, the first line is immediate; as for the second line, if a € IT — A,
then ¢(z* + 3 gcp da,pz’) =0, ie,

U(2%) = (¢ (2%) = $(2%) = = Y dapd(e’) = =Y dapa’.

BEA BEA
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As for the inverse of ¥, we define the polynomials

o = % + Z eapr’ € ker ¢’
pen

in analogy to (12) and obtain

-1z — x® ifaellNA,
(%) = —ZBGAeaﬂxﬂ ifae A-T1L

The given homomorphism lies in both Hilbg/k and Hilbg/ i if, and only
if, the linear map (27) is invertible. We see that this condition is
equivalent to the matrix

(da,ﬁ)aean,ﬁeAfn

being invertible. o

Note that this implies that Hilbg/k N Hilbg/ i 1s the open locus where
the matrices

E 0 E 0
T" = , and U =
<T31 T32> o <U21 U22>

are inverse to each other. This is also proved in [20, subsection 2.2].

Consider the matrix of indeterminates T = (T, g) from the above
discussion. The rows and columns of that matrix are indexed by
elements of N, which are ordered by the term order <. By Corollary 1,
Hilbg/Ak is the closed subscheme of Spec R® on which T is a lower
triangular matriz with respect to <. We obtain:

Corollary 3. The intersection Hilbg/A,c ﬂHilbg/k is the locally closed
subscheme of Hilbg/k in which

o UD is the inverse of TZ, and

e T is a lower triangular matriz with respect to <.

It is thus tempting to suspect that whenever Hilbg/Ak N Hilbg/ % 1S not
empty, the boundary in Hilbg ), of Hilbg/; N Hilbg, contains HilbgJ;.
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Indeed, if U is lower triangular, then in particular its submatrix U5
is lower triangular; “the inverse of a lower triangular matrix is a
lower triangular matrix,” thus on the intersection Hilbg/k N Hilbg/k,

equation THUY = E would assert that both T and UM are lower
triangular. Moreover, “the product of two lower triangular matrices is
lower triangular”, thus on the intersection, equations 7' = UT" and
U = TU" of Proposition 7 would assert that both T and U are lower
triangular.

However, the first quoted assertion only holds for square matrices
in which rows and columns are indexed by the same totally ordered
set. This is not the case for T and U, whose rows and columns are
indexed by A and II, respectively. (The second quoted assertion is true
for all products AB of matrices A and B indexed by subsets of a totally
ordered set such that the indexing set of the columns of A equals the
indexing set of the rows of B.) Moreover, if T' and U were both lower
triangular in a point of the intersection, then that point would lie in
both Hilb;A,C and Hilb;r;c, in contradiction to Theorem 2. Therefore
the heuristics of the last paragraph do not prevail. The most we can
hope for is that for all standard sets A and II of size d, we have

(28) aHilbg/k (I’IIHZ);/A,C n Hllbg/k) = or
Oy (Hilb3/ N Hilbg,) O Hilbg,
as was indicated above, where d4(B) denotes the boundary in A of B.

If this was true, the decomposition (14) of Theorem 2 would be a
stratification in the following technical sense: Let X be a topological
space and Y; C X, for ¢ C Z, be locally closed subsets such that

(29) x=]]v

Then (29) is called a stratification if for all ¢ € Z, there exists an
Z(¢) C Z such that

(30) =[] v,
JEZL()

where the bar denotes the closure. The connection between condition
(28) and (14) being a stratification is established by the following result:
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Lemma 5. Let X be a topological space, X = U;ezX; an open cover
and Y; C X; closed such that (29) holds. Then (29) is a stratification
if, and only if, for all i,j € I, we have either Ox,;(Y; N X;) = @ or
8Xj(Yi ij) DY;.

Proof. First we show the “only if” direction. By (30), we have
oxY; = HjEZ(i)—{i} Y;. We obtain

Ox,(YinXp) = (0xYi)n X, =[] Y¥;nXs.
JET()—{i}

Upon counsidering j = k, the claim follows.

As for the “if” direction, we have

Y; = Vi [J oxYi = Y; [ [ Ujezdx, (¥i N X;) DYiH( Il YJ’)‘

JET'(3)

Here the last inclusion comes from our hypothesis, Z’(i) being the set
of all j such that Ox,(Y; N X;) # &. If this inclusion was strict, a j
would exist such that dx,(Y; N X;) 2 Y;. Take a point z from the
difference. Then in particular z lies in dxY;. Moreover, by (29), a k
exists such that € Y. Therefore x lies in (0xY;) N X = Ox, (YiNXy).
In particular, that set is not empty; thus, & lies in Z'(7). It follows that
the inclusion above is not strict. o

Let us return to the situation we studied above, i.e., the decomposi-
tion (14) of Theorem 2. Denote by S the set of all standard sets of size
d. Then the decomposition (14) is a stratification if, and only if, for all
Ae€S,

(31) Hilbg, = [[ Hilbg),
eS(A)

where union is taken over all A in

S(A) = {II € S; Hilbg; N Hilbgj; # @}

Here is a negative result on the question wether or not (14) is a
stratification.
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Proposition 8. If < is the lexicographic order on S and dim Hilbg/k, >
dn, then the decomposition of Theorem 2 is not a stratification. In par-
ticular, if n =3 and d > 102 or n = 4 and d > 25, the decomposition
of Theorem 2 is not a stratification.

Proof. We order the variables such that x; > --- > z,, and consider
the standard set A = {0,...,(r — 1l)e,} C N™. Remember that
by Example 10, Hilbﬁ/k has dimension dn. Furthermore, Hilbg/k =

Hilbg/Ak, asa > [ foralla € N*—A and all 8 € A in the lexicographic
order. We claim that

(32) VII € S : Hilbg/, N Hilbgf; # 2.

For proving that, we use a few schemes introduced and discussed in
[29, Section 5]. The first is

Hilbg), = ((AR)* = A)/S.,

where for i = 1,...,r, we denote by (a:gi),... ,a:g)) the coordinates

on the i-th copy of A™ in the product; where A = U#]—V(x?) —
azgj) ,msf) - :csf)) is the large diagonal in the product; and where
S, is the symmetric group acting on the product in the obvious way.

Hilbg’/ok is an open subscheme of Hilb‘é /k» and the functor associated to

the scheme Hilb‘é’/ok is given by

HibLO (B) = { closed subschemes Z C A% such that }
S/k p: Z — Spec B is finite étale of degree d |’
where p is the restriction to Z of the projection A% — SpecB. (In
contrast to that, the functor Hilbg/k sends a k-algebra B to the set
of all closed subschemes Z C A’ such that the restriction of the
projection p = A% — Spec B is finite flat of degree d. Finite flatness
of p: Z = Spec B[z]/I — Spec B translates to local freeness of the

B-algebra B[z]/I. Therefore, the additional requirement in Hilb%?

Sk i
unramifiedness.) Moreover, we use the subscheme

Hilbg " = Hilbg), N Hilbg),
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of Hilb’;’/ok and its analogue for II instead of A. The functor associated
to that scheme sends a k-algebra B to the set of all étale p : Z =
Spec B[z]/I — Spec B such that I C B[z] is monic with standard set
A. (As Hilbg/,c = Hilbg/Ak, the functor equivalently sends a k-algebra
B to the set of all étale p : Z = Spec B[z]/I — Spec B such that B[z]|/I
is free with basis z2.)

We fix a homomorphism from & to a field &’ having at least d elements
and a bijection {0,...,d — 1} — B, where B C k' has d elements.
That induces a bijection {0,...,d — 1} — B™, whose restriction to
IT induces a bijection II — C, where C C B™ C (k') has d elements.
Let I C k'[z] be the ideal defining C'. Then Corollary 10 of [27] says
that the ideal I is monic with standard set II. Therefore { = k'[z]/I
is a k'-rational closed point of Hilbg}}c. We shall prove that & lies in

the closure in Hilbg’/ok of Hilbg/Ak’O. Then ¢ will also lie in the closure

in Hilb§ , of Hilbg/y, and (32) will be proved.
For this we denote by

™ (AR)? — A — Hilbg),

the canonical morphism. As Hilbg/A,C = Hilbﬁ/ %, and therefore Hilb;/Ak’0
is an open subscheme of Hilb‘;’/ok, it follows that W’l(Hilbg/’z) =
(A7)? — A — A for some closed A C (A})¢. (In fact, A is the scheme
associated to the ideal (2, —xJ ;i # 7), but we will not need that here.)

Remember that we have to show that for all open U C Hilb‘é’/ok such

that £ € U, we have U ﬂHilb;/Ak’O # . Let n be an element of m—1(¢).
(The choice of n corresponds to the choice of a labeling of the elements
of E.) It clearly suffices to show that for all open V C (A7)? — A
such that n € V, we have V N ((A7)? — A — A) # &. Upon writing
V = (Ap)4 — A — A, for some closed A’ C (AT)?, it follows that
VN((AR)4—A—A) = (A})Y— A— A— A'. That intersection is empty
if, and only if, AU AU A’ = (A7)?. But this is impossible as all three
summands are closed subschemes of (A7)? and strictly smaller than
the ambient scheme.

Now that (32) is proved, we conclude as follows: If the decomposition
in question was a stratification, (32) would say that S(A) = S.
Moreover, each Hilbg/nk, being a subscheme of the closure of Hilbg/Ak,
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would have a dimension at most dn. Therefore by Theorem 2 and (31),
the dimension of

Hilbg,, = [ Hilbgj, = [[ Hilbg), = Hilbg/,.
nes nes(A)

would be dn. This proves the first assertion of the proposition. As for
the second assertion, we know from (1) of [21] that dim Hilb‘é/k > dn
ifn=3and d > 102 or n = 4 and d > 25. O

The last proposition raises some interesting questions. The good
component 94 /i of Hilb% /i is the schematic closure of the subscheme

Hilb’é’/ok. (As for the construction of gg/k, see [10, 39].) In particular,

gg/k is of dimension dn; thus, the argument we used in the last
proof does not work if we replace the full Hilbert scheme by the good
component.

Question 4. Is the decomposition

gg/k = H(gg/k N Hﬂbg/Ak)v
A

induced by the decomposition of Theorem 2, a stratification?
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