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ON SOCLE-REGULARITY AND
SOME NOTIONS OF TRANSITIVITY
FOR ABELIAN p-GROUPS

P.V. DANCHEV AND B. GOLDSMITH

ABSTRACT. In the present work the interconnections be-
tween various notions of transitivity for Abelian p-groups and
the recently introduced concepts of socle-regular and strongly
socle-regular groups are studied.

1. Introduction. Early work in the theory of infinite Abelian p-
groups focused on issues such as classification by cardinal invariants.
This led initially to the rich theory known now as Ulm’s theorem
and, in some sense, culminated in deep classification of the class
of groups known variously as simply presented, totally projective or
Axiom 3 groups. Such groups are, of necessity, somewhat special.
On the other hand, there was also interest in properties of groups
that were held by “the majority” of Abelian p-groups. Within this
latter category, the extensive classes of transitive and fully transitive
groups were prominent. Recently, the present authors introduced two
new classes of p-groups which, respectively, properly contained the
corresponding classes of transitive and fully transitive groups: these
are the socle-regular and strongly socle-regular groups developed in [3,
4]. The present paper looks further at the interconnections between
these classes and some other recent notions of transitivity.

Throughout, all groups will be additively written, reduced Abelian
p-groups; standard concepts relating to such groups may be found in
[6, 10]. We follow the notation of these texts but write mappings
on the right. To avoid subsequent need for definitions of fundamental
ideas, we mention that the height of an element z in the group G
(written like hg(z)) is the ordinal « if z € p*G \ p*T'G with the
usual convention that h(0) = oo. The Ulm sequence of z with
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respect to G is the sequence of ordinals or symbols oo given by
Ug(z) = (ha(z), ha(pz), hc(p?), . . .); the collection of such sequences
may be partially ordered pointwise. Finally we recall an ad hoc notion
introduced in [3] which continues to be useful here: suppose that H is
an arbitrary subgroup of the group G. Set a = min{hs(y) : v € H[p|}
and write & = min(H|p)]); clearly H[p] < (p*G)[p]-

2. Various notions of transitivity. The notions of transitivity and
full transitivity for Abelian p-groups were introduced by Kaplansky in
[9] and became a topic of ongoing interest in Abelian group theory with
the publication of Kaplansky’s famous “little red book” [10]. Recall
that a group G is said to be transitive (fully transitive) if for each pair
of elements z,y € G with Ug(z) = Ug(y) (Ug(z) < Ug(y)) there
is an automorphism (endomorphism) ¢ of G with z¢ = y. In recent
times two addition notions of transitivity have been introduced: in [7]
a group G is said to be Krylov transitive if, for each pair of elements
z,y € G with Ug(z) = Ug(y), there is an endomorphism ¢ of G with
x¢ = y. Finally, a group G was said in [7] to be weakly transitive if,
given x,y € G and endomorphisms ¢,v¥ of G with ¢ =y, yv = =,
there is an automorphism 6 of G with zf = y. Notice in this last
concept that, although there is no explicit reference to Ulm sequences,
the existence of the endomorphisms ¢, 1 ensures that Ug(z) = Ug(y).

To avoid a great deal of repetition, we find it convenient to use the
expression GG is x-transitive to mean that G has a fixed one of the four
transitivity properties discussed above.

In [2], Corner showed that transitivity and full transitivity of a group
G are determined by the action of the endomorphism ring on the first
Ulm subgroup p“G. Following his example, we say that if ® is a
unital subring of the endomorphism ring End (G) of G and if H is
a ®-invariant subgroup of G, then

(i) @ is transitive on H if, for any z,y in H with Ug(z) = Ug(y),
there is a unit ¢ € ® with z¢ = y;

(ii) ® is Krylov transitive on H if, for any z,y in H with Ug(z) =
Uc(y), there is an element ¢ € ® with z¢ = y;

(iii) @ is fully transitive on H if, for any z,y in H with Ug(z) <
Uc(y), there is an element ¢ € ® with z¢ = y;
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(iv) @ is weakly transitive on H if, for any z,y in H and elements
o, € ® with z¢ = y and yy = z, there is a unit § € & with z6 = y.

Our first result follows exactly as in [2, Lemma 2.1] or |7, Proposition
3.8], so we state it without proof:

Proposition 2.1. The group G is x-transitive if, and only if,
End (GQ) acts *-transitively on p“G.

An immediate consequence of Proposition 2.1 is the fact that addition
of a separable summand has no influence on the transitivity properties.

Corollary 2.2. If G is x-transitive and H is separable, then K =
G @ H is x-transitive.

Proof. The proof for transitivity, full transitivity and Krylov tran-
sitivity follows by an identical argument to that given in [1, Propo-
sition 2.6]. Suppose then that G is weakly transitive. It suffices,
by Proposition 2.1, to show that End (K) acts weakly transitively on
p* K = p*G®0. Suppose (go,0), (91,0) € p* K and there are endomor-
phisms 6, ¢ of K with (go, 0)¢ = (41,0), (91,0)t = (go, 0). Represent-
ing ¢, as matrices in the standard way, ¢ = (? ;) and ¢ = (?;11 gi ),

we conclude that goa = g1 and g;a; = g¢ for endomorphisms «, a; of

G. Since G is weakly transitive, there is an automorphism 6 of G with
60
01y
automorphism of K and it is easy to check that (gg,0)A = (g1,0). O

gof = g1 and g160~ ' = go. The matrix A = ( ) then represents an

There are, of course, many interrelations between the various notions
of transitivity; for example, it is immediate that either transitivity or
full transitivity implies Krylov transitivity. We list a representative
sample of these connections:

Proposition 2.3. (i) A group G is fully transitive if, and only if, its
square G ® G is transitive;

(ii) If p # 2 and G is transitive, then G is fully transitive;

(iii) A direct summand of a transitive group is Krylov transitive;
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(iv) If p # 2, then G is fully transitive if, and only if, G is Krylov
transitive if, and only if, G is a summand of a transitive group;

(v) If G is Krylov transitive and weakly transitive, then G is transi-
tive and vice versa;

(vi) If G is fully transitive and weakly transitive, then G is transitive.

Proof. A proof of (i) may be found as Corollary 3 in [5]; (ii) is
a fundamental observation of Kaplansky [10, Theorem 26]. For (iii)
assume G = H @ K and that z,y € H with Uy (z) = Ug(y). But then

Uc((2,0)) = Ug((y,0)) and so there is an automorphism & = (? g)

with (z,0)® = (y,0). Hence, y = za for the endomorphism « of H
and H is Krylov transitive.

The equivalence of the first two parts of (iv) may be found in [7],
while the final equivalence is Corollary 5 in [5].

Observe that (v) follows easily: if Ug(xz) = Ug(y), then Krylov
transitivity implies that there are endomorphisms «, 8 of G with za =
Yy, yB = x. By weak transitivity, there is the required automorphism 1)
of G with z¢ = y. Conversely, G being transitive directly ensures that
G is both Krylov transitive and weakly transitive. Finally (vi) follows
immediately since full transitivity implies Krylov transitivity. a

Our next result is an analogue for Krylov transitivity of part of a
well-known result of Kaplansky [10, Theorem 26], the other part being
contained in points (ii) and (iii) above.

Theorem 2.4. Suppose G is a Krylov transitive group and that G
has at most two Ulm invariants equal to 1, and if it has exactly two,
they correspond to successive ordinals. Then G is fully transitive.

Before embarking on the proof of Theorem 2.4, we establish two
simple lemmas; recall from [10] that a group is said to have property
P(a), for an ordinal a, if for any element z € (p“G)[p] \ p*™'G there
is an element y such that both y and x + y are also of order p and
height a.

Lemma 2.5. Suppose that x € G with Ug(z) = (ag,a1,...) and
y € G[p] with Ug(y) = (ap,00,...). Then if G is Krylov transitive and
has property P(ay), there is an endomorphism ¢ of G with z¢ = y.
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Proof. If h(x +y) = ap, then Ug(z + y) = Ug(x) and so, by
Krylov transitivity, there is an endomorphism ¢ of G with x¢ = = + y.
The mapping ¢ = ¥ — 1lg then has the desired property. Suppose
then that h(z + y) > ap. Since we are assuming P(ag), there is
an element z of height ap and order p such that y — z also has
height g and order p. Now (z + z) = (z + y) — (y — z) has height
exactly «aq since h(z + y) > agp, while h(y — z) = ag. It follows that
Uc(z + 2) = (ap,a1,a9,...) = Ug(z). Thus, by Krylov transitivity,
there is an endomorphism of G mapping = to x + z and so, of course,
there is a mapping 9 :  — z. Moreover, Ug(z) = Ug(y) and so there
is an endomorphism 6 with zf = y. The composite ¢ = 10 then maps
T — y, as required. a

Our second lemma has been used previously in [7, Lemma 2.2]; its
elementary proof may be found there.

Lemma 2.6. If G is a group such that for all z,y € G with y € G|p]
and Ug(z) < Ug(y), there is an endomorphism ¢ of G mapping x onto
y, then G is fully transitive.

Proof of Theorem 2.4. It suffices to show that the conditions of
Lemma 2.6 above are satisfied. So assume that y is a fixed but arbitrary
element of G[p] and = € G with Ug(z) < Ug(y); clearly we may assume
y # 0. The proof is by induction on the order of the element x. Denote
Uc(x) by (ag, a1,...).

If o(x) = p, then oy = oo and we have Ug(y) = (Bo,00,...) with
Bo > ap. If By = ay, then z,y will have equal Ulm sequences and so,
by Krylov transitivity, there is a map ¢ : x — y. If By > «g, then
the Ulm sequences of x and = + y will be equal and Krylov transitivity
yields a map ¥ : « — z + y. The mapping ¢ = ¢ — 1¢ will then have
the desired property.

So now assume that x is of order p™ and that for all elements
t with o(t) < p", if Ug(t) < Ug(s) with s € G[p], there is an
endomorphism : ¢t +— s. Now the Ulm sequence of x has the form
(o, @1y« -+ ,Qp—1,00,...); note that by an identical argument to that
used in the previous paragraph, we may assume Ug(y) = (ao, 00, ... ).
It follows from the existence of the gaps in the Ulm sequences for z,y
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that the Ulm invariants fg (o), fo(an—1) are both non-zero. Moreover
if h(zx + y) = oo, we are finished since Ug(z + y) would then be
(g, @1y-. 0y —1,00,...) = Ug(z) and Krylov transitivity would yield
the required mapping.

Suppose then that h(z +y) = dp > . Then Ug(x + y) =
(60,1, -+ yQp—1,00,...) and so oy < 0y < «y, i.e., there is a gap
between ap and «;. In particular o, 1 > o + 1, so that ag and o, 1
are not successive ordinals. By our assumption on the Ulm invariants,
one of the non-zero cardinals fg(ao), fa(an—1) is not equal to 1. If
fa(ag) # 1, then G has the property P(ap) and so by Lemma 2.5,
there is the desired mapping = — y.

If fo(an—1) # 1, then G has property P(a;,_1). Furthermore, by [10,
Lemma 29], we may write £ = v + w in such a way that o(v) < o(z)
and w is normal relative to z, has order p™ and h(p"lw) = ay,_1.
By induction there is an endomorphism mapping v — y. The proof is
completed by an appeal to [10, Lemma 31]. i

By making use of ideas from [5], we can derive more information
about the inter-relationships of the various transitivity properties.
Recall that for a reduced group of length 7, the Ulm support supp (G)
of G is the set of all ordinals o < 7 for which fg(o) is non-zero.

Theorem 2.7. If G = G; ® G2 and supp (p*G1) = supp (p*G2),
then the following are equivalent:
(i) G is Krylov transitive,
(i) G is fully transitive;

(iii) G is transitive.

Proof. Under the hypothesis of the theorem, the equivalence of
(ii) and (iii) follows from [5, Theorem 1]. The implication (ii) = (i)
holds even without the additional hypothesis. Thus it remains only to
establish that (i) = (ii).

Suppose then that G is Krylov transitive. Let B denote the standard
basic group, and set H = G @ B @ B; note that it follows from Corol-
lary 2.2 that H is again Krylov transitive. Moreover, a straightforward
check shows that no Ulm invariant of H is equal to 1. It follows then
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from Theorem 2.4 that H is fully transitive. But then GG, as a summand
of a fully transitive group, is also fully transitive. o

Thus we can immediately deduce:

Corollary 2.8. If G = A® A for some group A, then G is Krylov
transitive if, and only if, it is fully transitive if, and only if, it is
transitive.

In [7] it was shown that full transitivity (Krylov transitivity) and
weak transitivity are independent notions and Corner’s original exam-
ples of non-transitive but fully transitive groups, and vice versa, show
that Krylov transitivity is independent of the notions of transitivity
and full transitivity. It would be interesting to know:

Question 2.1. Does there exist a Krylov transitive group which is
neither transitive nor fully transitive? Such a group would necessarily
be a 2-group.

The four notions of transitivity above also share the property that
subgroups of the form p’G are, in some circumstances, the key to
determining the x-transitivity of the whole group G. The following
generalizes [8, Theorems 3 and 4].

Proposition 2.9. Suppose that G/pPG is totally projective for some
ordinal 3. Then G is x-transitive if, and only if, p°G is x-transitive.

Proof. Let H = pPG and observe that if hg(r) = «, then hg(z) =
B+a. Consequently, if z,y € H and Ug(z) = U (y)(Un(z) < Un(y)),
then Ug(z) = Ug(y)(Ug(z) < Ug(y)). Thus, if G is transitive, Krylov
transitive or fully transitive, it follows easily that p°’G has the same
property. If G is weakly transitive and x,y € H are such that there
are endomorphisms ¢, of H with x¢ = y,yy) = x, then since ¢, do
not decrease heights computed in G and G/H is totally projective, it
follows from a well-known result of Hill (see, e.g., [8]) that ¢, extend
to endomorphisms ¢’,1)’ of G and, of course, z¢' = y, yy' = z. Since
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G is, by assumption, weakly transitive, there is an automorphism, ¢’
say, of G with 6’ = y. Then § = ' | H is an automorphism of H with
0 = y, as required.

Conversely, suppose that p®G is x-transitive, and let z,y € G be
elements such that Ug(z) = Ug(y)(Ug(z) < Ug(y)) (there exist
endomorphisms ¢, 9 of G with z¢ = y, yyp = z); note that in the
third case one also has that Ug(z) = Ug(y). Let n,m be the smallest
integers such that p"z € pPG, p™y € p?G; observe that m < n with
equality in the first and third cases. In the case of transitivity or Krylov
transitivity of p° G, we have an automorphism (endomorphism) ¢ of H
with p"z¢ = p™y, and this extends to an isomorphism (endomorphism)
of (H,z) — (H,y) by mapping = — y. Since this is height-preserving
(not height-decreasing) in G, the aforementioned Hill’s result again
yields an extension of ¢ to G with the required property.

In the case of weak transitivity, we have a pair of endomorphisms
@, of G and their restrictions to H also interchange = and y. Hence,
there is an automorphism of H mapping z to y and, again, by the total-
projectivity of G/H, we get the desired automorphism of G sending z
to y.

Finally consider the case where H is assumed to be fully transitive.
As noted above, p"z and p"y both belong to p’G and Uy (p"z) <
Ug(p™y). So there exists an endomorphism of H mapping p"x — p™y.
This mapping extends to a mapping from (H,z) — (H,y) by mapping
x +— y. Since heights in G are not decreased and the quotient G/H is
totally projective, there exists the desired endomorphism of G mapping
T y. o

Remark 2.1. In the cases of transitivity, Krylov transitivity and
full transitivity, it is not necessary to assume that G/p°G is totally
projective in order to deduce that p?G inherits the corresponding
transitivity property.

The various notions of transitivity behave somewhat differently in
relation to the formation of direct summands: notice that a summand
of a fully transitive group is again fully transitive, but this is not true
in general for transitive or weakly transitive groups; see, for example,

1, 7).
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Proposition 2.10. Let G = H @ K, then iof G is Krylov transitive,
H is also Krylov transitive.

Proof. Suppose that G is Krylov transitive, and let x,y be elements
of H with Uy (z) = Un(y). Then the elements (z,0), (y,0) of G have
equal Ulm sequences in G, and consequently there is an endomorphism
of G mapping (z,0) to (y,0); this, of course, necessitates the existence
of an endomorphism of H mapping z to y. O

There are, however, some situations in which summands of transitive
(weakly transitive) groups inherit the transitivity property. Recall
that a homomorphism ¢ : G — H is said to be small if for every
natural number k, there is a natural number n depending on k such
that (p"G)[pF]¢ = 0. Weakening this definition, we shall say that a
homomorphism ¢ : G — H is almost small if p*G C kerp. Clearly,
every small homomorphism is almost small, whereas the converse does
not hold always. Also, if H is separable, then each homomorphism
between G and H is almost small.

Recall, see [1], that a group G is said to be of type A if U(End (G) |
p“G) = Aut (G) | p*G. Before stating our result on summands, we
derive the following lemma:

Lemma 2.11. Suppose that K = G @& H and every homomorphism
from G to H is almost small. Then, if G is of type A and ® = (? g)

is an automorphism of K, there is an automorphism ¢ of G with
¢ I1pG =alp“G.

Proof. Since ® is an automorphism of K, its restriction to p“ K is an
automorphism of p* K = p“G @ p* H. Letting bars denote restrictions

to first Ulm subgroups, we get ® = (%‘%), and the assumption of

almost smallness forces 7 = 0. Since every endomorphism of p* K must
have a matrix representation which is lower triangular, we deduce that
@ is a unit of End (p“@G). Since G is of type A, there is an automorphism
¢ of G with ¢ | p*G =a = a | p¥G, as required. ]

Proposition 2.12. If K = G & H and every homomorphism from
G to H is almost small, then if K is transitive (weakly transitive) and
G is of type A, then G is also transitive (weakly transitive).
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Proof. We consider first the situation where K is transitive. Suppose
that z,y € p“G with Ug(z) = Ug(y). Then (x,0) and (y,0) are
elements of p“K having the same Ulm sequences in K. Since K is
transitive, there is an automorphism ® = (? g) of K with (z,0)® =

(y,0). By the previous Lemma 2.11, there is an automorphism ¢ of G
with ¢ | p*G = «a | p¥G, so that z¢ = za = y. Hence End (G) acts
transitively on p“G and by Proposition 2.1 we have that G is transitive,
as required.

Finally, suppose that K is weakly transitive and z,y are as above
with endomorphisms 0,9 of G such that z60 = y,y» = x. Then
the endomorphisms of K, given by the matrix representations © =

60 _ (%o -
(00>, U = (0 0), have the property that (z,0)® = (y,0) and

(y,0)¥ = (z,0). Since K is weakly transitive, there is an automorphism
o= (‘:; g) of K with (z,0)® = (y,0). Appealing again to the previous
lemma yields an automorphism ¢ of G with ¢ | p*G = o [ p“G.
Thus 2¢ = za = y and End (G) acts weakly transitively on p“G, as
required. O

Our next result shows that Krylov transitive groups behave nicely
when “squared,” provided that the lattice of Ulm sequences of the first
Ulm subgroup is a chain.

Theorem 2.13. Suppose G is a group such that all elements of p*’G
have comparable Ulm sequences. Then G & G is Krylov transitive if,
and only if, G s Krylov transitive. This property may fail if there are
elements of p*G with incomparable Ulm sequences.

Proof. The necessity follows directly from Proposition 2.10; in fact,
there is no need for any assumption about p“G for this implication.
For the sufficiency, let H = G © G, and suppose z,y € p*H with
Ug(z) = U (y), where z = (z1,22) and y = (y1,y2). By assumption
the Ulm sequences of elements of p“G are comparable, so there is no
loss of generality in assuming that Uy (z) = Ug(z1), Un(y) = Ug(y1).
Since G is Krylov transitive, there is an endomorphism 0 : G — G with
210 = y;. Appealing to the comparability hypothesis again, either
Uc(y1) = Uc(y2) or Uc(y1) < Uc(y2)-
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If the first possibility arises, Ug(x1) = Ug(y2) and so there is an
endomorphism ¥ of G with 19 = y5. If A = (g 15), then A € End (H)
and zA = y.

In the second situation Ug(y1) < Ug(y2), and so we have Ug(y1 +
y2) = Ug(y1); again there is an endomorphism of G, ¢ say, with

716 = y1 +y2. Now set A = (§74%) € End (H) and zA = y.

For the second part of the theorem, recall that Corner [2, Section 4]
has constructed a transitive, but non fully transitive 2-group C with
2“C = (a) ® (b), where a and b have orders 2 and 8, respectively. Note
that C is, of course, Krylov transitive since it is even transitive and that
the elements a, 2b of 2*C have incomparable Ulm sequences. It is shown
in [7, Example 3.16] that C' @ C' is weakly transitive. However, C & C
is not Krylov transitive; if it were, it would follow from Proposition
2.3 (v) that C @ C is transitive, which in turn implies by (i) of the
same proposition that C' is fully transitive, a contradiction. u]

Question 2.2. Does there exist a non fully transitive Krylov tran-
sitive group which satisfies the above theorem? Due to [7, Proposition
2.3] such a group must necessarily be a 2-group.

Remark 2.2. In the second part of the proof of Theorem 2.13 it
is possible to show directly, arguing as in the proof of [7, Example
3.16], that there is no endomorphism of C'® C' mapping the element
(@ + 2b,0) to (a + 2b,a) although both elements have Ulm sequence
(w,w + 2,00,...). Moreover, by what we have shown above, if G is
transitive, then G @ G need not be Krylov transitive. So, is it true that
G is Krylov transitive non transitive if, and only if, G & G is Krylov
transitive non transitive?

Our next result is simply a reworking of Corner’s Proposition 2.2
in [2]: observe that in the proof there, it suffices to have Krylov
transitivity at each of the key stages.

Proposition 2.14. Let G be a Krylov transitive group such that p“G
18 a homocyclic group of finite exponent. Then
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(i) G is fully transitive.

ii) If there is a direct decomposition G = G1 ® G2 with p*G; # 0
(i =1,2), then G is transitive.

It is possible to improve somewhat on Theorem 2.7 by using the
methods of [5] and replacing full transitivity by Krylov transitivity.
Rather than adopt either extreme of leaving the task to the reader or
re-writing the proofs in their entirety, we point out the key argument
needed to replace the use of full transitivity.

Lemma 2.15. Suppose that G = Gy ® Gy and ©z € G1,y € Go
with Ug, () > Ug,(y). Then, if G is Krylov transitive, there is a
homomorphism § : Go — G with y§ = x.

Proof. Consider the elements (z,y) and (0,y) of G. Since their Ulm
sequences are, respectively, the infima Ug, (z) A Ug, (y) and Ug, (y) A
Ug, (0), it follows that they are both equal to Ug,(y). By Krylov

transitivity, there is a matrix ® = (g Z;) with (0,y)® = (z,y) which

gives yd = x as required. O
Proposition 2.16. If G = G; & Gs is Krylov transitive, G5 is
transitive and supp (p*G1) C supp (p“G2), then G is transitive.

Proof. The proof is based on Lemma 2 in [5]. In the proof of
Lemma 2, two applications of full transitivity are made. The first such
is actually based on elements aj,bs with equal Ulm sequences, and
it is immediate that Krylov transitivity will suffice for the argument
there. The second application of full transitivity occurs at the bottom
of [5, page 1607] but it is easily seen to involve the set-up invoked in
Lemma 2.15 above. Consequently, this too will carry over to the Krylov
transitivity situation.

The final stage of the proof is carried out in an identical fashion to [5,
Proposition 2]. However, the appeals to full transitivity can be replaced
by the argument of Lemma 2.15. o

We now give an example that indicates that Question 2.1 may be
rather difficult.
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Example 2.17. If G = Cy ® Cy where C; (respectively C5) is a non
transitive, fully transitive 2-group (is a transitive, non fully transitive
2-group) as constructed by Corner [2], then G is not fully transitive
and it is Krylov transitive if, and only if, it is transitive.

Proof. That G is not fully transitive is immediate since the summand
Cs is not fully transitive. One implication is trivial. Note then that
the group 2¥Cy is elementary while 2°Cy = Z(2) & Z(8) and so
supp (2C4) C supp (2¥C3). If G is Krylov transitive, then since Cs is
transitive, it would follow from Proposition 2.16 that G is transitive. O

We remark that it can be shown directly that the group G above is
not fully transitive.

We close this section with a generalization of a problem due to [2].

Question 2.3. Are Krylov transitive groups with finite first Ulm
subgroup weakly transitive?

Notice that it follows from [7, Corollary 3.11] that this is true for
groups of type A (even without the assumption of Krylov transitivity);
reversely, by a simple modification of the argument in [7, Corollary
3.13], one can show that the converse does not hold.

3. Socle-regularity and strong socle-regularity. In [3, 4] the
notions of socle-regularity and strong socle-regularity were introduced;
the question of whether or not a summand of a socle-regular group
is again socle-regular, was left unanswered in [3]. We can now answer
this in the affirmative. Notice that the same problem was settled in the
negative for strongly socle-regular groups in [4]. Recall the definitions:
a group G is said to be socle-regular (strongly socle-regular) if for all
fully invariant (characteristic) subgroups F' of G, there exists an ordinal
o (depending on F') such that Fp] = (p*G)[p]. It is self-evident that
strongly socle-regular groups are themselves socle-regular, whereas the
converse is not valid (see [4]).

Proposition 3.1. A summand of a socle-reqular group is again
socle-reqular.
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Proof. Let G = A ® B be a socle-regular group; we show A is also
socle-regular.

Let F be an arbitrary fully invariant subgroup of A, and set C =
(zy: @ € Flp],y € Hom (A, B)). Note that C is an elementary group.
We claim that (i) C§ < F[p] for all 6 : B — A and (ii) C8 < C for all
B € End (B).

Assuming for the moment that we have established these claims,
consider the subgroup Fp]® C of G. If A = (? g) is an arbitrary

endomorphism of G (with the usual conventions), then (F[p] ® C)A <
(F[plac + C6, Fply + CB). Clearly Flpla < F[p] by the full invariance
of Fin A and F[p]y < C by definition, so that the claims above yield
(Flp]o C)A < Fp]®C, i.e., F[p]®C is fully invariant in G. Now G is
socle-regular, so there is an ordinal T such that Fp]|® C = (p"G)[p] =
(p"A)[p]® (p" B)[p]. It follows that F[p] = (p” A)[p], and since F' was an
arbitrary fully invariant subgroup of A, we have that A is socle-regular,
as required.

To establish the first claim, note that if ¢ € C, then ¢ = > z;7y; for
some z; € F[p], v; : A — B. But then ¢6 = > (2;v;)0 = > zi(7:0) and
76 € End (A). Thus z;(v;) € F[p] since the latter is fully invariant in
A.

For the second claim, it suffices to note, using the same notation
as above, that v;8 € Hom (A4, B) so that ¢ = > z;(y;8) € C by
definition. ]

As noted above, it was shown in [4] that summands of strongly-socle-
regular groups need not be strongly socle-regular. However, we do
have the following elementary classification showing that socle-regular
groups are precisely the summands of strongly socle-regular groups.

Corollary 3.2. The following are equivalent for a group G:
(i) G is a summand of a strongly socle-regular group;

(ii) G is a socle-regular group;

(iii) the square G ® G is strongly socle-regular;

)

(iv) the square G @ G 1s socle-regular.
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Proof. The implication (i) = (ii) follows from Proposition 3.1, while
(ii) = (iii) was established in [4, Theorem 3.6]. The final implication
(iii) = (i) is immediate. The equivalence (ii) <= (iv) was obtained
in [3, Theorem 1.4]. O

The following extends [4, Proposition 3.3 (i)].

Corollary 3.3. Any summand A of a strongly socle-reqular group is
strongly socle-regular if End (A) is additively generated by Aut (A).

Proof. Suppose G = A® B is a strongly socle-regular group. Applying
Proposition 3.1, we deduce that A is socle-regular. Since Aut (A)
generates End (A), in view of [4, Proposition 2.5] every characteristic
subgroup C' of A is fully invariant in A and hence has the required form

Clpl = (1*A)lp]. o
Socle-regularity and strong socle-regularity do coincide under certain
circumstances.

Proposition 3.4. Suppose that G = A @ B with p"A = p"B, for
some non-negative n. Then G is socle-regular if, and only if, G s
strongly socle-regular.

Proof. One implication is clear and does not depend on the additional
hypothesis on G. Conversely, suppose that G is socle-regular; note that
it is immediate that p™G is also socle-regular. Then, p"”G is isomorphic
to the square of a fixed group, p™ A, and consequently its endomorphism
ring is additively generated by its automorphism group. Furthermore,
it follows from Corollary 3.2 above that p™G is strongly socle-regular.
That G itself is strongly socle regular follows from [4, Proposition
2.6 (iii)]. mi

It was shown in [3, Theorem 0.3] that fully transitive groups were
socle-regular and in [4, Theorem 2.4] that transitive groups were socle-
regular (indeed they are even strongly socle-regular). It is, perhaps, not
surprising then that Krylov transitive groups share the same property.

Proposition 3.5. If the group G is Krylov transitive, then G 1is
socle-reqular.



316 P.V. DANCHEV AND B. GOLDSMITH

Proof. Let F be a fully invariant subgroup of G, and let oy =
min(F'[p]), so that h(y) > ap for all y € F[p]. Clearly F[p] < (p*°G)[p].

Conversely, suppose that € (p*°G)[p], so that Ug(z) = (a, 00, ...)
for some o > . Choose a fixed, but arbitrary, z € F[p] such that
h(z) = ap. If @ = «ap, then Ug(z) = Ug(z) and so, by Krylov
transitivity, there is an endomorphism ¢ of G with z¢ = x. Hence
z € (Fp])¢ < Flp], since F is fully invariant in G. If o > «y, then
h(z + z) = ag and so Ug(z + z) = (ap,00,...) = Ug(z). Again, by
Krylov transitivity, there is an endomorphism ¥ with z¢ = x + z. But
then ¢ — 1¢ is an endomorphism of G and z(¢ —1g) = (x +2) — 2z = x,
forcing « € F|[p] since the latter is fully invariant in G. Thus in either
case (p*°G)[p] < Fp], as required. O

Remark 3.1. There is, however, no possibility of extending the above
proposition to strong socle-regularity: in [4, Example 3.5] a fully
transitive, and hence Krylov transitive, group is exhibited which is
not strongly socle-regular. Moreover, the above proposition cannot be
reversed. In fact, there even exists a strongly socle-regular group which
is not Krylov transitive. Indeed, the group C, discussed in the second
part of the proof of Theorem 2.13, has been shown in [3, Example] to
be socle-regular. Hence its square C' @ C' is also socle-regular, whence
by Corollary 3.2 (iii) it is strongly socle-regular but is not Krylov
transitive.

The class of weakly transitive groups is not, however, contained in
the class of socle-regular groups:

Proposition 3.6. There exists a weakly transitive group X which s
not socle-regular.

Proof. Let T be a separable group such that End (T) = J, @ E4(T)
where J), is the ring of p-adic integers and E(T') is the ideal consisting
of all small endomorphisms of T'; such groups are easy to find, the first
example being due to Pierce [11]. Let B be a basic subgroup of T', so
that T/B is divisible of rank A > 1, say. Now construct a group X
such that X/p“X = T and p“X is elementary of rank \; for instance,
use the pullback construction of [12, Lemma 44.1].

Then End (X/p“X) = J, ® Es(X/p*X) and hence End(X) =
Jp ® Eg(X), where Ep(X) is the ideal of thin endomorphisms of X,
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see [2]. In this situation every thin endomorphism is actually small,
see [2, Lemma 7.2]. Note that if ¢ is small, (p“X)¢ = 0.

We claim X is weakly transitive (by Proposition 2.1 it is enough
to check this on p“X): if z,y € p*X with 2¢ = y and y¢ = z for
endomorphisms ¢, ¢, then ¢ = r + ¢1 and ¢ = s + @2, where each p;
is small. This forces 7, s to be mutually inverse p-adic integers with
xr =y, ys = x, so X is certainly weakly transitive.

Finally, we assert that X is not socle-regular. Consider any proper
subgroup F of p* X. Since p**1X = 0, F = F[p| # (p®X)[p] for any «.
However, F' is fully invariant since endomorphisms of X act on p* X as
scalar multiplications. Thus X is not socle-regular, as claimed. a

By virtue of Proposition 3.5 and [7] there is an abundance of socle-
regular groups that are not weakly transitive. However, it would be
interesting to know whether or not there exists a strongly socle-regular
group which is not weakly transitive.

In light of Proposition 2.12, the following is not too surprising.

Proposition 3.7. If G = K @ H is strongly socle-regular where K is
of type A and each homomorphism between K and H is almost small
(in particular, either H is separable or Hom (K, H) = Small (K, H)),
then K 1s strongly socle-reqular.

Proof. Suppose that C is an arbitrary characteristic subgroup of K.
If Cp] € p* K, then applying Proposition 1.1 (ii) from [4] we get that
Clp] = (p*K)[p|] for some natural ¢, and we are done. So, we may
assume that C[p] < p* K. Assume that we have shown that C[p] & {0}
is characteristic in G. Then, by strong socle-regularity, we will have
Clp] ® {0} = (p”G)[p] = (" K)[p] ® (p” H)[p] for some 7 > w, insuring
that Cp] = (p” K)[p] as required.

It suffices then to show that C[p] @ {0} is characteristic in G. If
® = (‘:; g) is an arbitrary automorphism of G, then C[p]y = 0 since v
is, by assumption, almost small. Thus (C[p] @ {0})® = (C[p]a @ {0}).
It follows from Lemma 2.11 that there is an automorphism ¢ of K with
¢ | p*K = a | p*K, and this clearly yields the desired result since C[p]
is a characteristic subgroup of K. ]
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It was shown in [3] ([4]) that socle-regularity (strong socle-regularity)
of a group G is inherited by the subgroups p*G for all a. It is clear that
the converse cannot hold in general, but it was shown in [4, Proposition
2.6] that strong socle-regularity “lifts” from a subgroup p*G to G
provided that G /p®G is totally projective and o < w?; we do not know
if the ordinal restriction is necessary. It is, of course, possible to modify
the argument in [4. Proposition 2.6] to show directly that an analogous
result holds for socle-regularity. However, with our classification of
socle-regularity in terms of strong socle-regularity, we can easily deduce
the result. Our first observation has no ordinal restriction.

Proposition 3.8. Let G/p*G be totally projective for some ordinal
a. Then the implication (b) = (a) holds, where

(a) G s socle-regular if p*G 1is socle-regular;

(b) G is strongly socle-regular if p*G is strongly socle-regular.

Proof. Suppose p*G is socle-regular. Then, in view of [4, Theorem
3.6], p*(G @ G) = p*G @ p“G is strongly socle-regular. Observe that
(GoG)/p*(GeG) = (GaG)/(p"G®p*G) = (G/p*G) & (G/p*G)
is totally projective, whence by hypothesis G & G is strongly socle-
regular. It follows again from [4, Theorem 3.6] that G is socle-regular,
as asserted. O

As an immediate consequence of Proposition 3.8 and [4, Proposition
2.6 (v)], we have the following strengthening of [3, Theorem 1.7].

Corollary 3.9. Suppose G/p*G is totally projective for some ordinal

a < w?. Then G is socle-reqular if, and only if, p*G is socle-reqular.

Next, we show that the converse of Proposition 1.8 from [3] does not
hold.

Example 3.1. There are socle-regular groups A and B, with each
homomorphism between them being small, such that A & B is not
socle-regular.

Proof. Let A, B be 2-groups with 2* A = 2¥ B = Z(2)®Z(8) as in Cor-
ner’s construction [2] of transitive but not fully transitive groups. It is
easy to arrange that the groups A, B have the additional property that
Hom (A, B) = Hom,(A, B) and Hom (B, A) = Hom,(B, A). Now con-
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sider the group G = A® B and its subgroup H = (2¥ 4)[2]® (2* 1 B)[2].
The latter is fully invariant in G because any endomorphism of G acts
diagonally on H since the cross homomorphisms, being small, act triv-
ially on the components of H. However, an easy check shows that H
cannot be of the form (2°G)[2] for any «. O
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