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BETTI NUMBERS OF SOME SEMIGROUP RINGS

ERIC EMTANDER

ABSTRACT. We compute the Betti numbers of all semi-
group rings R corresponding to numerical semigroups of max-
imal embedding dimension. A description, in terms of the
generators of S, precisely in which degrees the nonzero graded
Betti numbers occur is given. We show that for arithmetic
numerical semigroups of maximal embedding dimension, the
graded Betti numbers occur symmetrically in two respects.

1. Introduction and preliminaries. By a numerical semigroup we
mean a submonoid S of N such that N\.S is finite. N is understood
to be the set of non-negative integers {0,1,2,...}. It is well known
that such a semigroup is finitely generated, that is, it consists of
all non-negative integer combinations of some minimal generating set
{50,815+ ,Sn}

In this paper we only consider numerical semigroups and hence by
semigroup we will always mean numerical semigroup. We denote a
semigroup S minimally generated by the elements {sg, s1,...,$,} by
S = (80,51,--- ,8n). If nothing else is said we assume sg < -+ < sp,.
Here the number n + 1 is the embedding dimension of S and is denoted
by e(S). The number s is called the multiplicity of S and is denoted
by m(S). We always have e(S) < m(S) and, if e(S) = m(S), we say
that S has mazximal embedding dimension.

Given a semigroup S = (sg,...,sn) and a field k, consider the
semigroup ring R = k[S]. This is the k-algebra k[t®; s € S], ¢t an
indeterminate, defined by

o =t g e s
If A is the polynomial ring k[zg,...,Z,], we can define a homomor-
phism
A% R
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by x; — t%i. If we put deg (z;) = s; for all s € {0,1,... ,n} the map ¢
becomes homogeneous. This grading of A will be assumed throughout
the paper unless otherwise is explicitly stated. By the standard grading
of A we mean the grading given by deg (z;) =1 for alli € {0,1,... ,n}.
Since ¢ is surjective we have a kernel ker ¢ = I, and consequently an
isomorphism R = A/I. Clearly R is a domain, so I is a prime ideal.

2. Betti numbers. Recall that the Betti numbers of R = k[S]
over A are the invariants 3;(R) = dim Tor(R, k). The Betti numbers
inherit a grading from the chosen grading of A, and we denote by
Bi.j(R) = dim Tor (R, k); the ith Betti number in degree ;.

Our results all rely on the following lemma.

Lemma 2.1. Let S = (so,...,s,) be a semigroup of mazimal
embedding dimension and R the corresponding semigroup ring. Put

A= A/(xy), and let m = (zy,... ,2,). Then

Bi i (R) = Bi j(A/m?).

Proof. Let
g. = @iA(—bgi) — @1A(—b11) — A— A/I —0
be a minimal A-free resolution of the semigroup ring A/I. Since xg

is not a zero divisor on A or on A/I, by [1, Proposition 1.1.5], the
tensored complex G. ® A/(x¢) is an A-free resolution of A/I ® A/(xy),

that is in fact also minimal. Recall that sg < -+ < s, and that z
correspond to ¢* in the isomorphism R = A/I. Since S has maximal
embedding dimension {sy,... ,s,} represents a full system of residue

classes module sg. This yields

(1) AJI® A)(z0) 2 A/(I + (z0)) 2= A/m?. O

Remark 2.2. Because of Lemma 2.1, in the results below we will
simply write 3; ;(R) for the Betti numbers, even if the computations
will be explicitly made for R/(t°0) = A/m?.
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_ In the standard grading of A it is plain that the Hilbert series is of
A/m? is

(1+nz)(1- z)"

(2) H(A/m%2) =14nz = 1"

It is well known (Theorem 4.1.13 in [1]) that the polynomial (14+nz)(1—
z)™ here may be written in the form

3) S (185 (A/m?) 2.

1,3

Since A/m? clearly has 2-linear resolution over A (that is, 8; ;(A/m?) #
0 only for j =i+ 1) when using the standard grading, we only have to
identify the coefficients from the denominator of (2) with those from

(3).

Proposition 2.3. Let S = (sp,...,Sn) be a semigroup of mazimal

embedding dimension, and let R be the corresponding semigroup ring.

Then .
1 ifi=0

Bi(R) = Z(?ill> ifi > 1.

Proof. From (1), (2), (3) and the equation

(1+nz)(1—2)" = 1+§nj [(—1)k (Z) +(=1)F (1\11) ]zk

k=1
+ (=1)"nz"tt

it follows that

However, it is easily seen that 7 (7:;) =n (?) — (iil) foralli > 1. O
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Remark 2.4. The Betti numbers in Proposition 2.3 occur elsewhere,
for example as the Betti numbers of certain graph algebras. We show
what we mean by giving a second proof of the proposition.

Proof. Let G be a simple graph on n vertices and with edge set £(G).
Recall that the edge ideal of G is the ideal

I(g) = (a:ia:j; {Z,_]} c 8(9)) - k[iL‘l,. .. ,a:n].

For generalities about edge ideals, see [8, Chapter 6].

One may view (via polarization, see [5] for details) the ideal m? as
the edge ideal I(G) of the simple graph G on 2n vertices {z1,... ,2,}U
{y1,-.. ,Yn} whose edge set consists of all edges on the variables z;, and
all edges of the form {z;,y;}, 1 < i < n. Also, consider the edge ideal
I(K, 1) of the complete graph K, 11 on n+ 1 vertices {z1,... , z,, w}.
We define an onto map S;/1(G) 2 Sy/I(K,11) by

Ti——=> 2, Yi—w

for all 1 < ¢ < n. Here S; and Sy are polynomial rings over k in 2n
and n + 1 variables, respectively. Clearly the ideal generated by (the
images in the quotient of) the elements y1 —y;, j > 1, lies in the kernel
which in turn must lie inside the ideal generated by (the images in the
quotient of) the y;, 1 < i < n. Hence

kero = (y1 —y;;j > 1).

It is not hard to see that the elements y; — y;, 7 > 1, form a regular
sequence on S1/I(G). Thus, using the same kind of arguments as in
the proof of Lemma 2.1, we see that S1/I(G) and S2/I(K, 1) have the
same graded Betti numbers. However, it is well known that (see [6,
Theorem 5.1.1], or more generally [4, Theorem 3.1]) that these Betti
numbers are

i+1
0 ifj#i+1. o

Bij(Knt1) = {i(nH) ifj=i+1

Recall that the Betti diagram of an A-module is the diagram
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0 . s
0 /BO,O(M) ot BS,S(M)
i | Boi(M) -+ Bssti(M)

More about Betti diagrams may be found in for example [2].

As mentioned before Proposition 2.3, the standard grading of A yields
a 2-linear resolution of R = A/m?2. This is not the case if one use the
grading given by deg (z;) = s; instead. This fact is illustrated in the
following two examples.

Example 1. Consider the semigroup S = (5,9,13,17,21). Below we
see the Betti diagram of A/m? considering the standard grading of A.

10 20 15 4

In the sequel we will collect the Betti numbers in tables of the
following form instead of using the Betti diagrams. The numbers in
the column to the right are j(8; ;(4/m?)).

i Bi| J

110 | 2(10)
2 | 20 | 3(20)
3|15 | 4(15)
4] 4| 5(4)

Example 2. We consider the same semigroup as in the previous
example but instead with the grading of A defined by deg (z;) = s;.
We get the following table:
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Bi| J
10 | 18(1) 22(1) 26(2) 30(2) ) )
20 | 31(1) 35(2) 39(3) 43(4) 47(4) 51(3) 55(2) 59(1)
(1) 52(2) 56(3) 60(3)
(1) 73(1) 77(1) 81(1)

15 | 48(1

W N | .

We now determine, in general, the degrees j for which §; ;(R) is
nonzero. Since m? is a stable ideal the Eliahou-Kervaire resolution,
see [3] for details, provides a minimal A-free resolution of A/m2. The
minimal generators of L;, the ith component of the Eliahou-Kervaire
resolution, are the symbols e(o,u) where o = (q1,... ,¢;) is a sequence
of integers satisfying

(4) 1<q; < - < ¢ < maxu,

and u a minimal generator of m?. Here max(u) denotes the maximal
index of a variable z; that divides u. For ¢ = 0 the condition (4)
is considered as void, so that the symbols of Ly are in one-to-one
correspondence with the minimal generators of m2. The Eliahou-
Kervaire resolution is in fact graded and in the standard grading of
A the degree of a symbol e(o,u) € L; is by definition deg (u) + i. Thus
in our case, in the standard grading of A, the degree of e(o,u) € L; is
2+

Remark 2.5. Note that the Eliahou-Kervaire resolution resolves the
ideal m2. Thus, in the formulas below the homological degrees are
shifted one step since we resolve A/m?.

Lemma 2.6. Let S = (so,...,8,) be a semigroup of mazimal
embedding dimension and R the corresponding semigroup ring. Then
Bit1,j(R) s nonzero precisely in the degrees j that may be written
(5) J=sktsi+5g +-+ s

forsomel < k<l <nandl < q < - ---<¢q; <l, and equals the
number of different ways in which this can be done.

Proof. Recall that if u = xgx;, in the standard grading the degree
of a symbol e(o,u) € L; is deg (zrz;) + 7. If we translate this via the
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isomorphism R = A/I to the corresponding A-free resolution of R in
the grading given by deg (z;) = s;, we see that the degree of the symbol
e(o,u) becomes si + s; + Sg; + -+ - + 8.

Let 5 € N. Recall that a partition of j with ¢ parts on a set
IC{1,2,...,5}, is an expression

]:x1++xl

where 1 <z; <---<z;and x € [ for all k € {1,...,i}. We denote
the number of partitions of j with ¢ parts on the set {1,2,... ,n} by
p(j,i,n). Motivated by Lemma 2.6, we define an FEliahou-Kervaire
partition of an integer j with ¢ + 2 parts on the set {1,2,...,n} to be
a partition j =k +1+ q; + --- 4+ ¢; where

()1<k<I<n
@l1<qg<---<q <l

Also, let EKP (j,7,n) denote the number of Eliahou-Kervaire partitions
of j with ¢ + 2 parts on {1,2,... ,n}.

Consider a semigroup S = (so,...,s,) of maximal embedding di-
mension with semigroup ring R. Recall that assuming sy < -+ < s,
{s0,-..,8n} represents a full system of congruence classes modulo sg.
Thus we may reindex so that s; =4 (mod s¢). We assume this is done
for the rest of this section.

If ;11,5 (R) # 0 (so that there is a partition j = sp+5;+54, +- - -+54,)
we see that there is a number m; such that j = (k+1+q+---+¢) +
mjso. This is clear since for every ¢ € {0,1,...,n}, s; may be written
as s; =1+ n;89. For a given ¢ and every degree j, denote by M, ; the
set of all such numbers m;.

Proposition 2.7. Let S = (sp,...,Sn) be a semigroup of mazimal
embedding dimension and R the corresponding semigroup ring. Then

(6) Biy1;(R)= > EKP (j —m;so,i,n).

m;EM; ;

Proof. Assume (;1 j(R) is nonzero and that j = sg+ s+ 54, +---+
s¢; = (k+1+q+ -+ q)+ mysg. Clearly every Eliahou-Kervaire
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partition of j — m;sy with ¢ 4+ 2 parts on {1,2,... ,n} will contribute
by 1 to the number §;;1,;(R). Hence, taking the sum over all elements
in Mi’j yields ,8,41’]' (R) O

Example 3. Let S = (3,5,7). We may use Lemma 2.6 directly to
find the degrees where the relations generating the ideal I lie. The
Betti numbers that keep track of this information lie in homological
degree 1, so we have ¢ = 0. Thus the degrees j are

j=5+5=(2+2)+2-3
j=5+7=(2+1)+3-3
j=T+7=(1+1)+4-3.

From the expressions to the right we see that the corresponding
Eliahou-Kervaire partitions are 4 =2+2,3=2+1and 2=1+1.

Assume we have an Eliahou-Kervaire partition k+1[4q; +- - -+¢; of j.
By subtracting h from gp.1 for every h € {1,2,...,i — 1} we obtain a

partition ¢; +---+¢, of j—k—1— (;) with ¢ partson {1,2,... ,n—i}.
The number % still satisfies 1 < k < [. This yields:

Lemma 2.8. For the number EKP (j,i,n) we have the equality

EKP (j,i,n) = > p(j—k:—l— (2>zn—z>

i+1<I<n
1<k<1

By inserting this into (6) we get

Theorem 2.9. Let S = (sg,...,8n) be a semigroup of mazimal
embedding dimension and R the corresponding semigroup ring. Then

Bisii(R) = > P(j —mjsog—k—1— (;) ,i,n—i).
i+1<I<n
1<k<l
m;jEM;,;
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To make this theorem more explicit we give, in Proposition 2.12
below, a generating series for the numbers EKP (j,,n) for fixed ¢ and
n. We will use the following two lemmas.

The following lemma describes, for any integer [, the bivariate gener-
ating series

G(z,y) = pln,k,DyFa".
n>0
k>0

Lemma 2.10. Given a positive integer [, the bivariate generating
series G(z,y) of the numbers p(n, k,1) is given by

1
1—yxi’

l
™ Gy =]

If we consider the above generating series for fixed k, we have the
vertical generating series

Gk(l‘) = Z p(na kv l)xn
n>k
We may use the vertical generating series to rewrite G(z,y) as

(8) Gla,y) = 3 Grla)y™.

k>0

Lemma 2.11. With k fixed and the notations as above, we have

k

Proof. 1t is easy to verify that G(z,zy)(1 —yz't1) = G(z,y)(1 —yz).
From this and equation (8) we get that

z(1 — k-1
1—zk

Gk(a:) = - kal(aﬁ),

which proves the assertion by induction. O
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In light of Proposition 2.7 and Lemma 2.8 our interest lies in the
coefficients of G;(z) = I, (1 —gitn=i=1y /(1 — 2%) (we use | =
n — i) that stand before powers of z with exponents of the form
okl (2) where 1 < k < [ < n. Considering the double sum in

Lemma 2.8 we see that the maximal value the expression j—k—1— (;)

2

let o, ; denote the number k+1—i—2 = (j—i—(;)—2)—(j—k:—l—(;)).

Observe that aj,; does not depend on j. Using this we obtain the
generating series for the numbers EKP (r, 4, n):

takes there, is j—i— ( : ) —2. For each pair k, [ of summation indices, we

Proposition 2.12. The generating series for the numbers EKP (j,1,
n), i and n fized, is given by

Sarptinn 0 5 gz

, ) 1—a
j>0 i+1<I<n r=1

Proof. We have added generating series of the summands that occur

in Lemma 2.8 giving them an additional “weight,” « 2 , SO
that the coefficient before 27 in the sum counts precisely EKP (j,,n).
]

Example 4. Consider the semigroup S = (3,5,7) from Example 3.
We showed there that 81 10(R) = £1,12(R) = B1,14(R) = 1. If we do
the same kind of computations but with ¢+ = 1 instead we get

=54+5+5=(2+2+2)+3-3
j=54+5+T=(242+1)+4-3
j=54+T7+T=02+1+1)+5-3
J=T+7+T=(1+1+1)+6-3.

Counsidering the right hand side expressions we see that only the middle
two degrees j are in fact Betti degrees. We have 3 17(R) = f2,19(R) =
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1. Computing the generating series from the above proposition (with
i=1and n =2) gives

> EKP (j,1,2)2’ = z* + 2°.

Jj>0
The exponents 4 and 5 here correspond to the Eliahou-Kerviare parti-
tions4=2+4+14+1land 5=2+2+1.

We may also confirm the fact that pds(R) = 2: Consider the
following computations

j=5+5+5+5=(2+2+2+2)+4-3
j=5+5+5+7=(2+2+2+1)+5-3
j=5+5+T+7=(2+2+1+1)+6-3
J=5+T+T+7=@2+1+1+1)+7-3
j=T+74+7+7=(1+1+1+1)+8-3.

Non of the expressions on the right hand side give Eliahou-Kervaire
partitions, hence B3(R) = 0.

3. Arithmetic semigroups. We no longer assume that the minimal
generators of S satisfy s; = ¢ (mod sg). Consider the sets M; ; from
Proposition 2.7. If |M; ;| = 1 for every ¢ and j, the description of
the Betti numbers can be made more explicit. We call a semigroup
S ={(s0,...,8n) arithmetic if s; = sy + id for all i € {0,...,n}, where
d is some integer 1 < d < so with ged (d, sg) = 1.

For n = 3, the following results are included in more general results
by Sengupta, [7]. In [7] minimal resolutions for all monomial curves in
A*? defined by an arithmetic sequence are given. Hence the information
about the Betti numbers below can be obtained from these resolutions
in the case where n = 3.

Proposition 3.1. it Let S = (sg,...,s,) be an arithmetic semi-
group of maximal embedding dimension and R the corresponding semi-
group ring. Assume s; = so + id for every i € {0,1,...,n}. Then the
following holds.

(i) The nonzero Betti numbers ;11 ;(R) lie in degrees j that are
of the form (i + 2)sg + m;d. The integer m; is uniquely determined



398 ERIC EMTANDER

by j and m; has an Eliahou-Kervaire partition with i + 2 parts on
{1,2,...,n}.

(ii) Bit1,j(R) equals the number of Eliahou-Kervaire partitions of m;
with © + 2 parts on {1,2,... ,n}.

(iii) The minimal and mazimal degrees, jmin and jmax, respectively,
for which B;11,;(R) is nonzero are

Jmin = (i +2)s0 + (1+ (757))d

Jmax = (i +2)s0 + ((i +2)n — (";2>)d.

(iv) Bi+1,;(R) is nonzero in every degree j = (i+2)so+m;d for which

1+ (’f) <my; < (i+2)n— (";2>.

Remark 3.2. Part (iv) of the proposition says that there is a certain
kind of symmetry in the Betti numbers. Namely, if s; = sg + id for
every i € {0,1,... ,n}, then §;41 ;(R) is nonzero in every dth degree j
between two specific degrees jmin and jmax-

Proof. (i), (iii) and (iv) follow directly by considering (5), so let us
prove the second assertion. Let m; be the unique number for which
Jj = (i+2)sg+m;d. By mapping the partition j = sx+s;+84, + - - +5q,
to the Eliahou-Kervaire partition k + 1 + ¢ + --- + ¢; of m;, we
obtain not only an injection, but in fact a bijection between the set
B;1,; consisting of partitions j = s + 51 + 54, + -+ + 54, of j and
the set of Eliahou-Kervaire partitions of integers with ¢ 4+ 2 parts on
{1,2,...,n}. O

Example 3.3. A simple example of an arithmetic semigroup is
S = (5,9,13,17,21). In this case the number d from the definition of
arithmetic semigroup equals 4. Another example is S = (5,6,7,8,9)
where d instead equals 1.

Proposition 3.4. Let S = (sg,...,S,) be an arithmetic semigroup
of mazimal embedding dimension and R the corresponding semigroup
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ring. If j1,...,jr are the degrees in which B;y1,;(R) is nonzero, then

(9) /Bi+17jk (R) = ﬂi+11jr—k+1 (R)v
for every 0 < k <r.

Proof. Define a map ¢ on the set of generators of S by s; — sp,—i41,
0 < i < n If e(o,u) is a generator of L; corresponding to the
sequence o = (qi,...,q;) and the minimal generator u = zyz; of m?2,
1 <k <1 < n, we consider the set

M, = {Sk7sl78q17 e 73%'}'

Here all but possibly two elements are distinct, and ¢ maps M, ,
to a set ¢(Myy) = {B(sk), d(s1),d(8q,),---,P(sq;)}, that in turn
correspond to some other generator of L;. In light of Proposition 3.1
and the fact that ¢ preserves, but reverses, all relations s; < sy,
St, 8y € My, the proposition follows. u]

Thus, if S is arithmetic of maximal embedding dimension equation
(9) tells us that the contributions to 3;(R) from its graded components
Bit1,j(R) are symmetric relative to the nonzero degrees j.

Note that for arithmetic semigroups of maximal embedding dimen-
sion, there are two kinds of symmetries in the Betti numbers. One
described just above, and one in Remark 3.2. It is natural to ask for
which other semigroups both these symmetries hold.

Example 3.5. Let S = (5,7,9). Below are the Betti numbers of
A/I using the grading of A given by deg (z;) = s;. Clearly the Betti
numbers are symmetric in the sense of Proposition 3.4, but not in the
sense of (iv) in Proposition 3.1.

i | 6
1] 3 |14(1) 25(1) 27(1)
2 | 28(1) 30(1)

Example 3.6. The symmetry in the Betti numbers in Proposi-
tion 3.4 does not hold in general. Consider for example the semigroup
S =(5,11,17,18,19). Below are the Betti numbers of A/I.



400 ERIC EMTANDER

i | Bi J

1]10|22(1) 28(1) 29(1) 30(1) 34(1) 35(1) 36(1) 37(1) 38(1)

2120 |39(1) 40(1) 41(1) 45(1) 46(2) 47(3) 48(2) 49(1) 52(1)
53(2) 54(2) 55(2) 56(1)

3|15 |57(1) 58(1) 59(1) 63(1) 64(2) 65(3) 66(2) 67(1) 71(1)
72(1) 73(1)

4| 4 | 76(1) 82(1) 83(1) 84(1)
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