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INTEGRAL CLOSURE AND
OTHER OPERATIONS ON MONOMIAL IDEALS

VERONICA CRISPIN QUINONEZ

ABSTRACT. In this paper we give a characterization of in-
tegrally closed monomial ideals in two variables. The notion
of z- and y-tight ideals is introduced. We also present a mono-
mial version of a result of Watanabe on chains of integrally
closed monomial ideals. Using the developed techniques, we
prove results about the quadratic transforms and products in
classes of monomial ideals, and describe multiplication in two
classes of ideals in an integral domain.

1. Introduction and preliminaries. Let R be a polynomial
(localized) ring or a power series ring. The maximal (irrelevant) ideal
is denoted by m. An ideal I is called m-primary if its radical VT = m.
An ideal is simple, if it is not a product of two proper ideals.

A power product is an element z{*---z%. If a monomial ideal is

written as I = (z%y%), we usually assume that the generators are
ordered in such a way that a; < a;+1 and b; > b;4.

An element r € R is said to be integral over an ideal I in R, if r
satisfies an equation of integral independence

'+ air'™ + -+ q_1r + a; = 0 where aj € .

The integral closure of I is defined as the set of all elements in R which
are integral over I. This closure is denoted by I.

If r € R, then o(r) = max(l|r € m!). The order of an ideal I C R is
defined as o(I) = min{o(r)|r € I}. The least number of generators of
I is denoted by u(I).

In Appendix 5 of [14], which is based on [13], it is proved that in
a two-dimensional regular local ring the product of integrally closed
ideals is integrally closed. This is not the case in a three-dimensional
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regular local ring. Example (3.1) in [5] shows: if I,J C k[z,y](s,y)
are integrally closed primary ideals such that I 4+ J is not integrally
closed, then the product (I,2)(J,2) C k[z,y,2](zy,.) is not integrally
closed although (I,z),(J,z) are both integrally closed. A monomial
example in the three-dimensional case can thus be constructed taking
I = (y*,zy® 2*) and J = (y?, 2%y, z*).

Moreover, Zariski proves that any integrally closed ideal is in a
unique way the product of simple such ideals. Since then the theory
of integrally closed ideals has been frequently studied, see [3, 4, 7,
9, 10|, among others. In Appendix 5 of [14] and in [6], where
Huneke presents the main facts, the theory of contracted ideals and
the quadratic transform plays an important role.

Let I be an ideal in R. If there is an r € m/m? such that I- R[m/r| N
R =1, then I is contracted from the extension ring R[m/r].

Proposition 1.1 [6]. An ideal I is contracted if and only if u(I) =
o(I)+1.

Let m = (r,s) C R, and let I be an ideal of order I. If a € I, then
a/r' € R[m/r]. Thus we can write I - R[m/r] = r'I’ for some ideal
I' C R[m/r]. The ideal I' is called the quadratic transform of I in
Rm/r].

Among the results about contracted and integrally closed ideals,
and quadratic transforms we have Proposition 3.4 in [6], which states
that if T is integrally closed then the transform I’ is integrally closed.
It is uncertain whether the converse holds. By Corollary 3.2 in [6]
integrally closed ideals are contracted. The converse is not true, but it
is interesting to examine under which conditions the converse holds.

Throughout Section 1, it will be tacitly understood that the ring R is
either a polynomial ring k[z1,. . ., €], its localization k[z1,. . .z,]
or a power series ring k[[z1,. .., z,]] over a field k.

(T150Tn)

There are two alternative descriptions of the integral closure of a
monomial ideal, the algebraic and the one using a staircase diagram,
which simplifies the study of the integral closure.

1.1. An algebraic description of the integral closure. The
following lemma is a generalization of Lemma 7.3.1 [11]. For proof see
[2, Lemma 2.6].
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Lemma 1.2. Let I C R be an ideal, and {mz}fzzl2 a set of different
power products such that for integers s; >0 and 0 < r; < s;:

mit € I°* 7" (mg,mg, ... ,mg)"?
(1.1) my* € I*27"2(my, m3, ... ,mg)"
mg? € 1% " (my,my, ... ,mg_1)".

Then, for each 1 < i < q, there is some l; > 0 such that mé" €I,

Proposition 1.3. Let I be a monomial ideal in R. Then its integral
closure I is also a monomial ideal. In fact,

(1.2) T=(m¢& R|m is a monomial and m' € I' for some | > 0).

Proof. See proof of Proposition 2.7 [2]. Also, for somewhat different
proofs, see Propositions 7.3.2 and 7.3.3 [11]. i

It is worth noting that, in general, if a monomial m € I, then we
cannot claim that m! € I' for all [.

Example 1.4. Let I = (y?,2%) C k[r,y]. Then zy € I, and
(zy)! € I' for even [ > 2 only.

Also, if a polynomial p € I, then we cannot deduce that p' € I' for
any [ > 2.

Example 1.5. Let k be a field of characteristic distinct from 2 and
3. Consider the ideal I = (y* 2®) C k[z,y] and its integral closure
1= (y*, zy3, 2%y% 2%). We have (z2y?)? € I? and (zy®)® € I°.

Let p; = 2?y? + xy® € I\ I. For which [ does p} € I'? In other
words, we want to determine an [ such that for all 0 < ¢ <[ there is
some j such that

(13) @Y (") | (@22 (oy)' = = oy,

The equation is equivalent to the inequalities 3j—7 < < 45 —1. Fori =
0 they are satisfied by ! € {3,4}U{6,7,8}U{9,...} = {3,4}U{6,...}.
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For i = 1 they are satisfied by [ € {2,3}U{5,...}. For each following i
the intervals move one step to the left. The intersection of all allowed
I’s gives the result: p} € I' for [ > 6.

Now, consider py = z2y? + 2> € I\ I. Is there an [ such that
(1.4) @Y | @) (@) = iy

for all 0 < 7 <[ and some ;7?7 The corresponding inequalities in this
case are j + (i/3) < | < j + (i/2). Evidently no integer [ satisfies
them for ¢ = 1. There is no [ such that (z2y? + 23)! € I' because
(z3) Y (x2y) ¢ I for all L.

Let us look more thoroughly at the difference between p; and p». Each
term in the binomial expansion p$ = Zé:o (£)(z*y*)!(zy®)®~ belongs
to I8. Clearly the outer terms belong to I°. The first mixed power
product is (z?y?)(xy?)® = (22y?)(xy?)?(xy®)?; its last factor belongs
to I® initially. The intermediate factor (zy®)? needs to be multiplied
by zy? (and not necessarily by zy®) in order to belong to I3, which
explains why this product belongs to I°.

A monomial m € I\ may satisfy an even stronger condition m! € I v
where [ < I or, roughly speaking, m € I''/! where 1 < (') e Q. In
fact, we have (z2y2)6 = (23)*(y*)® € I” and (zy?)1? = (23)*(y*)? €
I3,

1.2. The integral closure through staircase diagrams. Any
monomial ideal I in n variables can be depicted by letting the set of the
exponents of the power products in I be integral points in R™. Such a
representation is essential for all the results we are going to present.

Definition 1.6. Let z{'---z% = X? be a power product in R.
We set I'(X?) = a. Let I be a monomial ideal; then we define the
semigroup ideal I'(I) = {I'(m) | m € I, m a power product} C RZ,,.
Moreover, we define I'*(I) as the set of integral points in the convex
hull of I'(I) + RZ,,.

Remark 1.7. In this setting Proposition 1.3 states that I'(I) = {a €
Z%, | al = by + -+ b for some | and some b; € I'(1)}.



INTEGRAL CLOSURE AND OTHER OPERATIONS 363

The following result is a nice description of the integral closure.
Here we consider the whole set I'(I), instead of the I' of the minimal
generating set for I only, which is done in Proposition 7.3.4 in [11]. See
also [8] for reference.

Proposition 1.8. Let I C R be a monomial ideal. Then the integral
closure I is generated by such powers products m that I'(m) € I'*(I).
That is,

Proof. Let a € I'*(I). Then a = Y i | \a;, where a; € I'(), \; €
Q>0 and Z?zl A; = 1. Since there is an integer [ > 0 such that [\; €
Z>o for all i, we obtain (X®)! = (X22N#)l = (Xa1) ... (X20) €
I'. Thus X? € I, that is, a € T'(1).

On the other hand, if b € I'(I), then there is an integer ! such that
bl = by +---+b; where all the b;’s (not necessarily different) belong to
I'(I) (compare with Remark 1.7). Thus, b = 2221 1b;, and it follows
that b € T*(I). o

It follows directly from Proposition 1.8 that principal monomial ideals
are integrally closed.

Lemma 1.9. Let J be a monomial ideal and assume that J = ml
where m s a power product and I is a monomial ideal. Then J 1is
integrally closed if and only if I is integrally closed.

Proof. 1t is clear that I'*(I) = T'(m) + I'*(J). The result follows. O

1.3. Chains of integrally closed monomial ideals. We will show
that, given two integrally closed m-primary monomial ideals J D I,
there is a composition series between J and I, consisting of integrally
closed monomial ideals only. The result is a monomial ideal version of
Watanabe’s result in [12], but it is also a stronger result, since all the
ideals in the composition series are monomial.

We recall that a composition series of I is a chain I =1y D I;-++ D
I; = 0 such that I;/I;;; has no nontrivial subideals. The length of a
composition series of M is denoted by [(M).
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Lemma 1.10. Let S C RY, be a conver set and p € R%,\ S
a point. Then, for every x € conv(S U {p}), = # p, we have
conv (SU{z}) C conv (SU{p}).

Proof. Since x € conv (S U {p}) there is some s € S and 0 < A < 1
such that

(1.5) z=Ap+ (1= N)s.

Assume p € conv (S U {z}). Then there is an s’ € S, such that for
some 0 < p < 1, we have p = pz + (1 — u)s’. Hence, by (1.5):
(1—pNp = p(l—X)s+ (1 —p)s’. We have 1 # pl since A < 1,
but then we deduce that p € S which is a contradiction. Hence, the
assumption was false and the lemma is true. a

Proposition 1.11. Let J D I be m-primary integrally closed
monomial ideals in R. Then there is an wntegrally closed monomaial
ideal I' such that J 2 I' 2 1 and lg(I'/I) = 1.

Proof. We have lg(J/I) = |I'*(J) \ T'*(I)|. Pick an integrally closed
monomial ideal I’ such that J 2 I' D J and with minimal (positive)
length over I. We claim that lg(I'/I) = 1.

Assume the contrary. Then there are power products m; and me
such that {I'(mq), I'(m2)} € I'*(I’) \ I'*(I). Consider the integral
closure of I + (m;). Then I' = I+ (m;) by minimality of I’ and,
thus, mo € I+ (mq). That is, I'(m2) € I'*(I + (mq)). Then, by
Lemma 1.10, we have I'*(I + (m2)) C I'*(I 4+ (my)) = I'*(I'), which
violates minimality of I'. O

Corollary 1.12. Let J D I be m-primary integrally closed monomial
ideals in R. Then there is a chain of m-primary integrally closed
monomial ideals J = Iy D Iy D --- D I; = I such that Ig(I;/1;+1) =1
for every 1.

Given two m-primary integrally closed monomial ideals J C I, we
consider the set of integrally closed monomial ideals between J and
I. For any two ideals Iy and I» in this set we define their join as
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I, VI, = I; + Iy and their meet as Iy A Io = I; N I5. It is an easy
exercise to show that the intersection of two arbitrary integrally closed
ideals is also integrally closed. Hence, this set is a lattice — a partially

ordered set J_/I with 1 =J and 0 = I.

The only interesting property that this lattice possesses is lower
semimodularity. A finite lattice is called upper semimodular if it
satisfies the following condition: if x and y cover = A y, then z V y
covers x and y. A finite lattice that satisfies the dual condition is called
lower semimodular. Lattices of integrally closed monomial ideals are
not upper semimodular as the following shows. Consider the ideals
(y?, 2%y, z3) and (y3,zy?,2%). They both cover their meet m3, but
their join m? covers neither of them.

Let A and B be ideals. Then the following statements are true.

(1) If A and B contain some ideal C such that [(A/C) = (B/C) =1,
then [((A+ B)/A) =1((A+ B/B)) = 1.

(2) If A and B are contained in some ideal C' such that [(C/A) =
I(C/B) =1, then I(A/(ANB) =1(B/(ANB)) =1.

The first property is equivalent to upper semimodularity. The prob-
lem that may arise in the case when all the ideals are integrally closed is
that the sum of two integrally closed ideal is not necessarily integrally
closed. Thus, the lengths in the second part of (1) may be larger after
taking the closure of that sum.

The second property, equivalent to lower semimodularity, is valid also
when we restrict the subject of our interest to integrally closed ideals

only. Hence, for arbitrary integrally closed J D I the lattice ﬁ is
lower semimodular.

We conclude by presenting the main results of the paper.

In Section 2 we give a full explicit description of integrally closed
monomial ideals and the unique factorization into simple such ideals
in a two-dimensional polynomial (localized) ring or a power series
ring. All this is done using staircase diagrams from subsection 1.2.
In subsection 2.1 we introduce z-tight and y-tight ideals. Then in
Section 3 we describe the quadratic transform of z- and y-tight ideals
and state the conditions when the converse to Proposition 3.4 and
Corollary 3.2 in [6] holds. Powers and products of two classes of ideals
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FIGURE 1. The semigroup ideal I'(I) = {(0,b0), ... ,(ai, b;),...,(ar,0)}.

in an integral domain are described in Section 4. Many of the results
have been previously presented.

2. Integrally closed monomial ideals in two variables. Let R
be k[z,y], k[z,y](z,y) or k[[z,y]] over a field k. Here we present a full
classification of integrally closed monomial ideals in R. Moreover, we
show how the unique factorization of integrally closed monomial ideals
into simple ones works and give a full characterization of the simple
integrally closed monomial ideals.

If mI = J is a monomial ideal, where m is the greatest common
divisor of the generators of J, then I is m-primary or the ring itself.
The last case is trivial. Thus, by Lemma 1.9 it suffices to consider
m-primary monomial ideals in our study.

In the sequel, by I = (y*, ..., z%y%, ... %) we mean that the gen-
erators are minimal and ordered in such a way that a; < a;4+1 (and b; >
bi+1). The semigroup ideal T'(I) = {(0,bo), ..., (@i, b;),-..,(ar,0)} +
Z2, can be interpreted as the lattice points on and above the thick
lines in Figure 1. Such a representation is called a staircase diagram.

2.1. On products of monomial ideals. We start subsection 2.1
by introducing a special class of monomial ideals. This class is closely
related to lexsegment ideals. Later on we go through the graphical
conditions on integral closedness and describe them algebraically.

Definition 2.1. An m-primary monomial ideal I is called z-tight
if the power of z in every generator is exactly by one greater than of
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FIGURE 2. IJ = y°T +a"J.

the preceding generator. That is, I is z-tight of order r if and only if
I = (xiyb)T_ with by > -+ > b, =0. If J = (z%y* 7)o is an ideal
where 0 = ag < --- < as, then J is called y-tight of order s.

Proposition 2.2. Let I be x-tight of order r and J be y-tight of
order s. Then IJ = y°I + " J.

The staircase diagram of the proposition statement is in Figure 2.

Proof. 1t is clear that y*I +x"J C IJ.

There are two cases in showing that any power product in the
generating set for I.J, that is, any x*T%iy%+5-7 belongs to y*I or 2" J.

If i +j > r, then we have:
{aj —(r—4) =Zaj—(—
bi Z r—1
or
{i—i—a]- >r+ai;j o =r+aj
bi+s—j>s—(i+j—r) =s—j
Thus, zit@ybits—i ¢ g7 J.

Similarly, if i + j < r we get z'taigybits=i ¢ (gitiystbivi) C y°I. o
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FIGURE 3. A simple monomial ideal.

Remark 2.3. In fact, if an ideal can be graphically depicted as in
Figure 2, that is, an z-tight followed by an y-tight, then it is a product
of the corresponding z- and y-tight ideals.

Proposition 2.4. Let I = (z%y%)7_, be an m-primary ideal, and
assume that (a;/(bo — b;)) > (a,/bo) for all 1 < i < r—1. Then I
is a simple monomial ideal, that is, not a product of proper monomial
ideals.

In Figure 3 we show a staircase diagram of such an ideal. Notice
that none of the intermediate generators crosses the line from (0, bg) to
(ar,0).

Proof. Assume that I is a product of two ideals, say, J; =
b/l ”

(yb’,...,x“’) and Jy = (y°,...,z* ), where a' + ¢’ = a, and
b +b" = by.

First we consider the element m“’yb” € JiJs. By assumption
it belongs to the ideal I, and then the inequality (a’/(bo — ")) >
(ar/by) must be valid. Now consider z% y* € JyJo. This ele-
ment cannot belong to I, since (a”/(bg — b)) = ((ar —a')/b") <
[ar — ar((bo — ") /b0)]/b" = (ar/by). Hence, the assumption was false
and [ is not a product of two monomial ideals. O

2.2. Necessary and sufficient conditions for integral closed-
ness. Let I = (z%y)7_, with a; > a;11. We know that the integral
points in the convex hull of {(a;, b;)!_,} generate the integrally closed
ideal I. In order to find a necessary condition on a monomial ideal to be
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integrally closed, we look at conv ({(a;, b;), (@i41,bi+1)}+Z2,), the con-
vex hull of two consecutive exponents. Particularly, this area contains
the triangle defined by the vertices (a;, b;), (a;1+1,b;) and (@;11,b;41)-
If the ideal is integrally closed, then there must not be any integral
points in this triangle. Obviously, this is the case if and only if either
Aj+1 — Q5 = 1or bz — bi+1 =1.

Remark 2.5. Thus, a necessary condition on a monomial ideal to be
integrally closed is that every generator is followed by such a generator
that either its power of x is increased by one, or its power of y is
decreased by one.

Next, we will improve this condition. Assume that in an ideal
the condition in Remark 2.5 is fulfilled for each pair of consecutive
generators. Assume further that a;11—a; > 2 and b;—b;41 > 2 for some
1 < j, where ¢ and j are the greatest, respectively the smallest, index
such that the situation occurs. The integral points in the area above
and to the right of the diagonal line from (a;+1 —2,b;) to (ajy1,b; —2)
belong to the integral closure, especially the point (a;1 — 1,b; — 1).
Thus, the power product 2%+ ~1y% ~1 will always appear in the integral
closure, and an ideal, fulfilling the assumption, cannot be integrally
closed.

Thus, a necessary condition on a monomial ideal to be integrally
closed is that its staircase diagram consists of two parts: an z-tight
ideal followed by a y-tight ideal.

Proposition 2.6. Let I be an integrally closed m-primary monomaial
ideal. Then the ideal is a product of an x-tight ideal and a y-tight ideal.

Moreover, let Jy be x-tight and Jo be y-tight. Then their product J,J3
is integrally closed if and only if both J1 and Ja are integrally closed.

Proof. The first statement is a direct consequence of Remark 2.3 and
the following discussion. The second statement follows from Figure 2. O

According to Proposition 2.6 it suffices to determine which z-tight
and y-tight ideals are integrally closed, in order to give a full description
of integrally closed monomial ideals.
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We will restrict ourselves to y-tight ideals. To begin with we will
consider a special class of these ideals. In the next section we will show
that every integrally closed y-tight ideal is a product of ideals from that
class.

Let a,, > r be positive integers, and consider the monomial ideal I,
such that I'(I) consists of the integral points in the area, that is limited
by the z-axis, y-axis and the line from (0, ) to (a,,0). Then I is y-tight
and integrally closed.

In general, the values of a; in an integrally closed ideal I =
(z%y"—4)T_ are obtained using the following:
(2.1) 2 < a; <i 41, thatis, a; = [za—] :

r T T

If gcd(r, a,-) = d then, except for (0,bg) and (r,0), there are d—1 points
in I'(I) lying on the diagonal line. These points divide the staircase
diagram of I into d copies of some ideal I'. As we see later on, this
means I = (I')%.

Correspondingly, if I = (x'y%)7_, with

b b b
(2.2) (r—i)= <b;<(r—i)— 41, thatis, b; = [(7‘ —i)—o-‘ .
r r T

then I is an integrally closed z-tight ideal.

2.3. Simple integrally closed monomial ideals and factor-
ization. Let r and a, be relatively prime, and let I = (z%y"~*)7_,,
where the a;’s are determined by (2.1). Since gcd(r,a,) = 1 we have
i(ar/r) < a; for all 1 < i < r — 1. By Proposition 2.4 such an ideal is
simple. Hence, to a given rational number (a,/r) corresponds exactly
one simple integrally closed m-primary monomial ideal.

Definition 2.7. Let a and b be positive integers with gcd(a, b) = 1.
Then there is a unique simple integrally closed monomial ideal contain-
ing  and 3’ in its minimal generating set, (yb,z%). We call such an
ideal an (a,b)-block or a block ideal. Moreover, the ideal is the least
integrally closed ideal possessing z® and y®.

If a > b, then the (a, b)-block is equal to (z%y® %)2_ where i(a/b) <
a; < i(a/b) + 1 with equality only if ¢ = 0, .

If a < b, then the block ideal is equal to (ziy%)¢_, where (a—i)(b/a) <
bi —1 < (a —i)(b/a) + 1 with equality only for ¢ = 0, a.
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Proposition 2.8. Let I be an (a,b)-block and J a (c,d)-block.
Assume further that a/b < c/d. Then IJ = y?I + z°J.

The proposition states that the staircase diagram of I.J is the ideal I
translated to (0,d) and the ideal J translated to (a,0). Note also that
1J is the least integrally closed monomial ideal, containing the power
products y°+¢, 2%y? and z*°.

Proof. We prove the proposition for all three kinds of ratios a/b and
c/d.

If a/b < 1 and ¢/d > 1, then Proposition 2.8 is a special case of
Proposition 2.2.

Suppose a/b > 1. Let I = (z%y""%)o<;<, with a; = [i(a,/r)], and
let J = (z%y*)o<<s, where ¢; = [j(cs/s)] and (a,/r) < (cs/s). We
will show that IJ = y°I 4+ z°J.

Clearly y°I + z%J C 1J.

On the other hand, the ideal IJ is generated by power products on
the form
xhiteiyr i L s ifi+j5<r

a;+cj, r+s—i—j __
(2.3) T 'y - {l.ar . xai“l’cj*aryT“l’S*i*j ifi+j>r.

To prove x%iteiy™ts=i=J € ST + 2% J we will use:

(2.4) [1] + [a2] 2> [ar + 2] > [a1] + [g2] — 1
(2.5) (g1 +q2] = [q1] + [g2] — 1,
if g1 + g2 € Z but q1,¢2 ¢ Z.

Ifi+7>r, we get

cs, (2D A\ Cs
ai+cj—arzai—ar+f]?] > ai—ar—l—((r—z);]

TG -r+9%T =12 (151410 - %] - 1)

r r

o Cs- (2.5)
—ar+[(i+] _"');] = Citj—r

whence g@iteiyrts=i=i = gartn’geiri—rys=(+i=r) for some n'.
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Similarly, if i + j < r, then a®teiyts—i—7 = gn . gaitiyr—(i+) . ys
for some n.

If ¢/d < 1, then the proof is a modification of the case a/b > 1, and
we are done. a

We use the result to show the main result of this section, which will
be a generalization of Proposition 2.8. By assigning to any positive
rational number ay/b; with ged(ag,br) = 1 an (ag,b)-block, we
get a one-to-one correspondence between ascending chains of positive
rational numbers and integrally closed (z, y)-primary monomial ideals.

Theorem 2.9. Let (Iy)i<k<n be a sequence of (a,bi)-blocks such
that ar /by, < ag41/bk+1- Then the product is the integrally closed ideal

n

(2.6) ﬁ Iy =) atvyPer,
k=1

k=1

where

k—1 n
(27) A=) aw, Bin= ) by and A =B,,=0.
k=1 k'=k+1

Conversely, any integrally closed monomial ideal can be written
uniquely as a product of block ideals and some monomial.

Proof. To prove (2.6) we use induction on n. For n = 2 the theorem
is equivalent to Proposition 2.8.

Assume the theorem is true for some n = p > 2. Then we have

(2.8)

p+1 p

p
ind. hyp.
=L ] 2o > attyPrr (L)
k=1 k=1 k=1

p
{Proposition 2.8} A. B b
= > ateyPre(yPre D + 2 T, )

k=1

Ay, B A B
(.’L‘ ky k,p+bp+lIk+m k+aky k,pIp+1)

p
=1

k



INTEGRAL CLOSURE AND OTHER OPERATIONS 373

p
= < g l-AkyBk,p+bp+l_[k> +1-Ap+appr,pIp+1
k=1

p—1 B B 0} p+1
A B p,p=DPp+1,p+1= Ay, B
+§ T k+aky k,pIp+1 bt E gy Pkl [
k=1 k=1
p—1
Ap+ar, B
+ § gARTaky k:,pIp+1‘
k=1

We need to show that the second sum in the last row in (2.8) is
contained in the first sum, which is our claim (2.6) for n = p + 1.

Pick some 1 < k < p — 1, and assume that b,;; < bg41. Then
we compare the kth term in the second sum, that is, the ideal
gAetacyBes [ = gAenigbenitBenio [ with the (k + 1)th term in
the first sum, that is, the ideal z4*+1yBrttpt1 [ ) = gAr+1yBrriptbpia,
Tp41. Since (agt1/bky1) < (apt1/bp+1) and bpyq < iy, it is easy to
see that yor+1 (ybe+1 gop+1) C ybr+r (ybrer gak+1) is valid.

If bpy1 < bpyr for some 1 < k < p — 1, then we look at
the sequence {k + 1,...,k + j} of the minimal length, such that
bpr1 < bg41 + -+ + br4j, and consider the ideals :EA’“"'“kyBk’PIp_H
and zAr+1yBrrieti [y o g ARty Brriet Ly

Look at the staircase diagram in Figure 4. The ideal depicted with
thick lines is fully contained in the sum of the ideals depicted by thin
lines. Thus, each term in the second sum of the last row in (2.8) is
contained in the first sum, that is, Hii I, = ZZ‘S Ak yBrri1 [} and
we have proved the first part of the theorem.

Now let I = (y°,...,z%) be an integrally closed monomial ideal.

Define (aj,b— by) € T'T as such a point, that there are no other points
that belong to I'T below or on the line between (0,b) and (ay,b — by).

Then for £ > 1, let (a1 + -+ agt1, b6 —by — - — bk+1) € I'l be
the point that satisfies the same condition but for the line between
(a1 +---+ag,b—by—---—bg)and (a1 +---+agt+1,b—b1 — -+ —brt1)-

Determined in such a way and considering that I is integrally closed, we
have GCD (ag,br) = 1. The corresponding (ag, bg)-blocks are unique
and their product is equal to I by the first statement of the theorem. O
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Yy
I
Ipia
Bryip1 T
Bio 1 iy
Biyjpt1
Akt Agtj x
FIGURE 4.

FIGURE 5.

Example 2.10. Consider the integrally closed ideal I = (y!!, zy'?,
22y?, w3y7, 20y8, 285, a8y, 293, 23y? 27y, 2?°).  The staircase of
this ideal is in Figure 5.

The points constructed by the procedure described in the second part
of the proof of Theorem 2.9 are: (0,11), (3,7), (6,5), (9,3) and (20, 0).
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Thus, I = 11131, where I} = (y*, xy®, 2%y?, 23), I, = (y?, 2%y, 2®) =
I3 and I, = (y3, z%y?, 28y, ='1).

3. The quadratic transform and contracted monomial ideals.
Let (R,m) be equal to k[z,y](s,,) or k[[z,y]] over a field k. We give
an explicit description of the quadratic transform of z-tight and y-tight
ideals and show that if the quadratic transform is integrally closed then
the ideal itself is integrally closed.

3.1. Transforms of z-tight and y-tight ideals. Let m = (a, b).
Then there is an isomorphism R[m/b] = R[a/b] = R[z]/(bz — a) since
{a, b} is a regular sequence.

Let I, = (:viybiﬁzo be an ideal of order r, not equal to any power
of m. If p € I, then p/y" € R[z/y], and we may write IR[z/y] =
y" ((z/y)iyb ), = y"(I,)', where (I,)" is an ideal in the ring
R[z/y]. We will call (I;)" the transform of I, in R[z/y]. Note that
if i +b; = (i + 1) + by for some i, then the generator zi+1ybi+1 is
superfluous in the minimal generating set of I’. The only maximal
ideal in R[z/y] containing (I,))" is n, = (z/y,y).

Thus, the transforms of the ideals I,, I, in the respective localized

rings are:
(5o ]
(L) (e /9).0) " v e

s—j
(Y . Yy
(Iy)/(z,( /z)) T <xa] ! <_> > n R|:_:| :
Y x 2 ]z (y/2))

By Proposition 2.2 the product of an z-tight and a y-tight ideal is
equal to I = I, I, = (z'y*t% g"+%y*~J) and its order is r+s. For the
computation of its transform we may consider the ring R[m/(z + y)].
Then we can write I as the product of (z + y)"™* and the ideal

(e (@) )
r+a; s—j
() ) )
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The two maximal ideals containing I’ are n; = (z/(z + y),z + y) and

ny = (z+y,y/(x+y)).
(3.2)

= {(Epres) w3 <nity]

o= (e ()l 25] a8

Obviously, the two localized rings, as well as the transforms in them
in (3.1), are isomorphic to the ones in (3.2).

Remark 3.1. The quadratic transforms of the ideals we have described
can be taken in a ring R[m/(cz + dy)| for almost any c,d € k. The
resulting transforms and the maximal ideals containing them will also
be the same up to isomorphism.

For example,

i b;
I _ z bi—r+i Y : m
(L) _<<cx+dy> (cz + dy) <cx—|—dy> > mR[cx—i—dy}

for any d # 0 and any c. The unique associated maximal ideal will be

i xX i .
o= (——,cx+d d (L), = dy)® ),
n <c:c+dy’cx+ y> and (I,)y, <<cm+dy> (cz+dy) >

If the given ideal is some power of m, then the transform must be
done in the ring R[m/(cz + dy)| with both c and d being nonzero.

We have proved the following proposition.

Proposition 3.2. Let I, be an x-tight ideal in a two-dimensional
ring R. Then the quadratic transform of I, in the ring R[m/pl] , where
p1 # z, has one unique associated mazimal ideal n, = ((x/p1),p1)- The
quadratic transform of a y-tight ideal I, in R[m/pg] , where py # x, has
the unique associated mazimal ideal ny = (p2, (y/p2)).

Further, let I = I,I,. The quadratic transform of I in R[m/pg],
where ps ¢ {z,y}, has the associated ideals ny = ((x/p3),ps) and
ng = (ps, (y/p3)). Moreover, (I;)y, = (I')n, and (Iy)y, = (I')n, -
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3.2. Contracted monomial ideals. We have from Huneke [6]
that an ideal I is contracted if and only if u(I) = o(I)+1 (Proposition
2.3), and that an integrally closed ideal is contracted (Corollary 3.2).
Proposition 3.4 states that if I is integrally closed, then its quadratic
transform is integrally closed. Finally, if I in Proposition 3.4 is simple
and m-primary, then I' ’R[m/ a] is simple (Proposition 3.5).

We can easily see that any x-tight or y-tight ideal is contracted.

It is not known whether the converse to Proposition 3.4 above is valid.
We show that this is the case if the transform I’ is monomial. We prove
the result for the case when I’ is a block and I is y-tight. If I is z-tight
the proof is similar.

Proposition 3.3. Let I C R be a y-tight ideal, and let I' be its
quadratic transform in the ring R[m/p], where p # y; assume I' is a
simple integrally closed ideal. Then I is a product of some power of the
mazimal tdeal m and a simple integrally closed monomial ideal.

Proof. Without loss of generality we consider the extension ring
R[m/x] = Rly/z| = R[z]/{zz —y). Let I = (z%y"~")i_y; then the
transform is I’ = (2% *2z" ")I_,. The assumption yields that I’ is

either z- or z-tight. Our goal is to show that
(3.3) I =mm ! (gar=l yr=1)

with ged(a, — [,7 — ) = 1 for some [, that is, a; = 7 for all i <[ and
a;—1< (i—=1)(ar —1)/(r =1)+1 < a; for all i > [+ 1 and with equality
only if ¢ = r.

I’ is z-tight: Let I’ be minimally generated by <mjzdj>§:0. Then the
following hold for the a;’s:

a; —1=0 forall0<:<Il=r+dy

(3.4) o . .
a;—i=j forall: suchthat d; <r—i¢<dj_;—1.

I’ is assumed to be integrally closed and simple, so by Definition 2.7 we
have d; —1 < (s — j)(do/s) < d; for all 1 < j < s — 1, which combined
with (3.4) gives

do

(35) (=)L <r-i<(s-(G-1)%L,
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do 1 do= 1

S €z ap = l ar=Il+ T
(do+s)

FIGURE 6. I' and I if I' is z-tight.

valid for all corresponding [ +1 < i < r — ds_;. Moreover, (3.5) is
valid for j =sand i <r—1,since 0 =ds <r—i<ds_1—1, and is
equivalent to

(3.6) jol<s—(r—i)— <j.
dy

Applying (3.4) on (3.6) and using s = a, — r yields

a, — 1
r—1

(3.7) ai—1<(i—=1) +l<a; forall I+1<i<r-—1.
Thus, the ideal I precisely a product of m! and an (a, — I, —1)-block.

I' is z-tight: Similarly, we show that a; —1 < (i —)(a, — 1)/(r — ) +
| <a; wherel =7 —s,and I = m'(a, — [,7 —[). O

Corollary 3.4. Let I be a y-tight ideal of order r and its transform
an (a,b)-block, (zb,x). Then I = m"~b(yb patb),

If I is z-tight of order v and I' = (zb,2%). Then I = m"~%(yetd o).

Proof. If I is y-tight, then the formula (3.3) together with (3.4) and
its analogue for z-tight I’, yields the result. The statement for an z-
tight ideal follows if one proves Proposition 3.3 for an z-tight ideal in
the same way we did. O
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Proposition 3.3 shows that if the transform I’ is a simple integrally
closed monomial ideal and the order of I is given, then it is possible
to determine the y-tight ideal I. Moreover, this I is unique. It is
also possible to determine I if its quadratic transform is any integrally
closed monomial ideal.

Example 3.5. Let I = (z%y% %)% | be a y-tight ideal of order 6,
and consider its transform in the ring Rly/z] = R[w]/{zz — y) to be
I' = (25,223, 2222 2tz 2%) = (2%, 2) (2, x)(2?, 222, 2*)—a product of the
blocks (1,2), (1,1) and (3,2).

Since I’ = (2% *257%) we need to solve a number of linear equations,
keeping in mind that a; —i < a; 4, — (i +1). For example, %1~ 12° is a
generator and then a; = 1; since %27 22* € I’ we must have as —2 = 1,
and so on.

Thus, the unique solution is I = (y°, zy®, z3y*, z4y3, 25¢%, 2%, 211) =
m-(y2, 22y, 23)(y, 2%)(y?, 23y, 2°)—the product of the maximal ideal and
the blocks (3,2), (2,1) and (5,2).

The following result is the converse of Proposition 3.4 [6].

Proposition 3.6. Let I be y-tight, and assume that the quadratic
transform I’ is integrally closed. Then I is integrally closed.

Moreover, let the order of I be equal to v and I' = [];_, (z%, ).
Then

(3.8) I= msz:ﬂ o H (ydk, gertdi),

i=1

Correspondingly, if I is an x-tight ideal of order r and its quadratic
transform I' =[]\, (y®, z°*) is integrally closed. Then I is integrally
closed and equal to

n n
(3.9) I =m" 2o o [ (gt o).

i=1

Proof. Let I = (x%y" %)"_, and its transform I’ = (z% 27 %) C
R[y/x]. The transform is I' = [[j_ (2%, zo) = > xCrzDrn(zdk, gox)
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. k-1
with C), = Zk’:l Ck’, ka = ZZ’:k—i—l dir and C7 = Dnm = 0, by as-
sumption and Theorem 2.9.

For all ¢ such that » —4 > Dy ,,, we have a; = 4. So one factor in I is
mT_DO,n‘

Any term 2C%zPkn{zdk zer) in I’ is equal to £CkzPkin(gpi—i=Chyr—i=Di.n)
= (2% '2"*) for all ¢ such that » — Dy_1, < ¢ < r — Dy,. Let
j=1—(r— Dg_1,); then for all 0 < j < dj, we get the equality
(3.10)

(oo 70 — (@00 2a 1 T HDR 1O =iy (g0 e )

By (3.7), we know that for all » — D1, < i < r — Dgpn, we have
a;—1< (i_('f'_Dk—l,n))(Ck + dk)/dk+(T—D07n)+Ck+ ( 227:11 dk/) <
a;. The messy expression becomes clearer, if we look at Figure 7.

Since B B B B
Ck _ Ck+1 koo k+1

dr, ~ di+1 ek +dr ~ Crp1+digr’

with equality on one of side if and only if there is equality on the other,
we have determined the shape of I:

n

I = mr—DO,n . H <ydk,.’,l7ck+dk>.
k=1

Hence, the ideal I is a product of blocks and is therefore integrally
closed.

If T is z-tight, then using the same methods we can deduce (3.9). O

Let I be a contracted monomial ideal of order 7. We may assume
that I is m-primary. Then I = (z%y% )o<;<, and there is an [ such that
o(z%y”) = a; + b = r. Since the given set of generators is minimal,
we havea; > a1 +1>--->landr—aq=b; > bj41+1>--->r—L
Hence, a; = [ and I is the product of an z-tight ideal of order [ and a
y-tight ideal of order r — [.

Proposition 3.7. Let I be a contracted monomial ideal and assume
that its quadratic transform I' is integrally closed. Then I is integrally
closed.
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Y
rd
z
1
I
D(),n T . Do,n T -
—_— <ydk , kaer}c)
[ \F BN
Dyt Dt
k,n Ch k.n Ck+dk o .
Ck x r—= DO,’n (r=Do,n)+ z
Cr+(ZE Y di)
FIGURE 7.

Proof. If I is x- or y-tight, we apply Proposition 3.6.

If I is the product of an z-tight and a y-tight ideal, then we consider
I' ¢ R[m/(x + y)]. The transform I’ is assumed to be integrally closed,
then so are all its localizations. Hence, according to Proposition 3.2 and
using the notations from it, the ideals (I)s, and (I;),, are integrally
closed monomial ideals. Moreover, n, C R[m/y] and n, C R[m/z] are
the unique maximal ideals containing I/ and I; respectively. Thus,
both I} and I, must be integrally closed. Then both I, and I, are
integrally closed by the previous proposition, and the result follows. O

4. Powers and products of ideals. In subsection 2.3 we saw that
the [th power of a simple integrally closed monomial ideal I can be
depicted as [ copies of the ideal I. Moreover, if ordered in the right
way, the product of a family of integrally closed monomial ideal can be
depicted as the ideals one after the other. In a way this property can
be extended to certain kinds of ideals in an integral domain.

4.1. Dividing generators, I. Let R be an integral domain and
F(R) its field of fractions. Let «, 3 € F(R); then we say that « divides
B, denoted by «|f, if there is a p € R such that a-p = 3.

Proposition 4.1. Let R be an integral domain and I = (rg,... ,r,) C
R an ideal where

(41) ri=r;qo; =ro(ar---a;) with o € F(R) and o;laiyr.
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Then for any non-negative integer [, we have

l 111 -1
I' = (rog,rg "T1,---,70Ty
101 -1
12 TL, T T2yeee  T1Ty —ye-n
(4.2) l -1 -1 .1
o Th s T s - s Te1Tn > T

:<rl.7trf+1|0§i§n—1and0§t§l>.

K3

Remark 4.2. Pick some r; and r;; where i < i. We have rjr; =
(Ti+1/ai+1) Ty 10 = ri+1ry,1(ai//ai+1). Then the condition Q41
o yields 741771 | 77y That is, (riry) C (rigarii—1). O

Proof. The inclusion (r; ‘r!,;) C I' is valid naturally.

I' is generated by the elements of the form rf - - - rl» where Sroli=
l. Assume [j < [, in some generator, then by Remark 4.2 I' is
contained in the ideal, where this generator is replaced by the product
ploti .. rf{ff“o rin=lo_ (If Iy > l,,, then we replace the generator by a
product where r,, is eliminated.) Now, depending on min(lo+I1,{,—lo),
we replace this product with another, in which either ry or r, is
eliminated. Continuing in such a way, we see that I' is contained in
the ideal, in which the generator 7 - - - 7l» is replaced by 7! or itk 11
for some i and t. Repeating the procedure for all generators of I', we
see that I' C (rl»ftrf+1>, where 0<i<n—1land 0 <t <. O

(2

Note that I' itself satisfies the condition (4.1) on I in Proposition 4.1.

Let R now be equal to k[z,y], k[z,y](s,y) or k[[z,y]]. We will prove
that a monomial ideal in R satisfying the condition (4.1) factors quite
simply.

Suppose I = (m;)_y = (z4iyBi)?_ satisfies (4.1). We may as-
sume that I is m-primary, that is, A9 = B, = 0. Then «o; =
A=A JyBioa=Bi — gai [ybi - Gince a;|a;y1 we have a; < a;41 and
bi Zbi+1 fOI‘alllSiSn—l.

Proposition 4.3. Let I = (z4iyB\"  C R, and let a; = A; — A;_y
and b; = B;_1 — B;. Assume a; < a;+1 and b; > bj1. Then

n

(4.3) I=]J@", z*).

i=1
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I3
I =11
O —\—\—\
T
FIGURE 8.
Proof. For all 0 < k < n we have Ay = Zle a; and By, = Z?:kﬂ b;.

Clearly yPo, z4» and z4*yB* belong to [}, (yb, z%).

On the other hand, the ideal [}, (2%, y") is generated by the mono-
mials mZIEH‘“yZies bj, where R U S is a partition of {1,... ,n}. But
> ik Qi Zl | a;, and > jesbi > 2gj41 bj- Hence, this generat-
ing monomial belongs to I. Since the chosen monomial generator was
arbitrary, the proof is finished. ]

Example 4.4. Let I} = (y3,z ) and I, = (y,z*). Then I = L1, =
(y*, 2%y, 2%). We have I' = ((y*)!*(x?y)") + ((2y)'~*(z°)") by Propo-
sition 4.1, and I = (22ty3U-0+l) 1 (g2+4tyl=t) by Proposition 4.3.
Figure 8 shows the staircase diagram for [ = 3.

Let (I;) = ({(z%,y%)), where a; < a;4+1 and b; > b;11, be a family of
ideals. Proposition 4.3 states that in the product [[; I; = (z4iyP¢) the
differences A;;1 — A; increase and the differences B; — B decrease.
Moreover, we have proved the following result in two different ways.
The Ith power of [], I; = (z?yPi) is such that the first { differences
of two consecutive powers of x are equal to A; — Ay and the first [
differences of two consecutive powers of y are all equal to By — By. The
next [ differences of two consecutive powers of = are equal to As — A;
while the corresponding [ differences for y are equal to B; — Bs, and so
on. See Figure 8.
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4.2. Dividing generators, II. In this section we consider ideals
with the condition (4.1) being reversed.

Proposition 4.5. Let R be an integral domain and I = (rg, ... ,r,) C
R an ideal with

(44) ri=ri1fi =ro(Br---B;) with B € F(R) and Bit1] fBi.

Then for any non-negative integer [ we have

1 1oi-1 -1
(4.5) I' = (1, T1ye e s Ty Tn—1,
-1 -2 1—2
TG TnyTg T1Tns.ev sTo  Trne1Tny.--
-1 -1 -1 1
B LY S T R Y SO )

= (rp trirt | 0<i<mnand 1<t <)

n

l
_ I—t t—1
—E rg Ty 1.
t=1

Remark 4.6. For any r; and ry with 1 <7 <4’ <n — 1 we have

Tir41 Bi
riri = (ri—15:) - (BZ > =Ti_iTi+1 <5 : )
i1 i

That iS, <T’i'f‘il> Q <T'i—17'i’+1> since ,Biq_l‘ﬁir | ,61

Proof. Clearly, (rh~trirt=1) C I'.

n

Assume 2?2—11 l; > 2 for some generator m = [[, i, Then
there are j < j' such that l;, l;; # 0. Assume that [; < .
Then, by Remark 4.6, I' is contained in the ideal, in which the
product 7 -- -r;’:llﬂjr;ﬂﬂ o -r;’}'_ljr;i:’f+lj ---rln replaces m. We
then replace any pair of factors in H?:o ri by a pair of outer factors

(if such exist) until 277—11 [; <1. Then I' C <T(l)_t7*irt_1>. o

Now let R be the polynomial or regular local ring in two variables.
Let I = (m;)7, = (z4:yPi)"_; C R satisfy (4.4). We may assume that
I is m-primary. Define a; = A;— A; 1 and b; = B;_; — B; as previously.
Then 3; = :c‘”/yb" with a; > a;41 and b; < b;41. The differences of
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IQ

FIGURE 9.

two consecutive powers of x decrease, and the differences of powers of
y increase. Moreover for any 1 < k < n we have

k k+1 n
Ap :Zi=1ai > Dimy G S > Dim1 G :An
Bo—Br Yk b Ty, T T XL Bo

1=

The equality occurs if and only if all the a;’s and the b;’s are constants.
Then I = [](y%,z%) by Proposition 4.3. If a; > a;;1 or b; < b, for
some 4, then Ay /(By — Bg) > (A,/Bp) for all 1 <k <n —1. Hence, I
is simple as monomial ideal by Proposition 2.4; see Figure 3.

By (4.5) we have I' = zt4ny(=t)Bo]  The staircase diagram is the
ideal I repeated [ times. In Figure 9 we can clearly see that generally
I' does not fulfill the condition on I.
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