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ABSTRACT. Stanley decompositions of multigraded mod-
ules M over polynomial rings have been discussed intensively
in recent years. There is a natural notion of depth that goes
with a Stanley decomposition, called the Stanley depth. Stan-
ley conjectured that the Stanley depth of a module M is al-
ways at least the (classical) depth of M. In this paper we in-
troduce a weaker type of decomposition, which we call Hilbert
decomposition, since it only depends on the Hilbert function
of M, and an analogous notion of depth, called Hilbert depth.
Since Stanley decompositions are Hilbert decompositions, the
latter set upper bounds to the existence of Stanley decom-
positions. The advantage of Hilbert decompositions is that
they are easier to find. We test our new notion on the syzygy
modules of the residue class field of K[X1,...,Xy] (as usual
identified with K). Writing M (n, k) for the k-th syzygy mod-
ule, we show that the Hilbert depth of M(n,1) is [(n+1)/2].
Furthermore, we show that, for n > k > |n/2], the Hilbert
depth of M(n,k) is equal to n — 1. We conjecture that the
same holds for the Stanley depth. For the range n/2 >k > 1,
it seems impossible to come up with a compact formula for
the Hilbert depth. Instead, we provide very precise asymp-
totic results as n becomes large.

1. Introduction. In recent years Stanley decompositions of multi-
graded modules over polynomial rings R = K[Xy,...,X,] have been
discussed intensively. Such decompositions, introduced by Stanley in
[14], break the module M into a direct sum of graded vector subspaces,
each of which is of type Sx where = is a homogeneous element and
S = K[X;,,...,X;,] is a polynomial subalgebra. Stanley conjectured
that one can always find such a decomposition in which d > depth M
for each summand. (For unexplained terminology of commutative al-
gebra we refer the reader to [3].)
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One says that M has Stanley depth m, Stdepth M = m, if one can
find a Stanley decomposition in which d > m for each polynomial
subalgebra involved, but none with m replaced by m + 1. With this
notation, Stanley’s conjecture says Stdepth M > depth M.

In this paper we introduce a weaker type of decomposition in which
we no longer require the summands to be submodules of M, but
only vector spaces isomorphic to polynomial subrings. Evidently, such
decompositions depend only on the Hilbert series of M, and therefore
they are called Hilbert decompositions. The Hilbert depth Hdepth M is
defined accordingly.

Since Stanley decompositions are Hilbert decompositions, the latter
set upper bounds to the existence of Stanley decompositions, and since
they are easier to find, one may try to construct a Stanley decomposi-
tion by appropriately modifying a “good” Hilbert decomposition.

Moreover, our discussion shows that it is worthwhile to also consider
the standard grading along with the multigrading, as already suggested
implicitly by Stanley, who allows arbitrary gradings in his conjecture.
In order to distinguish multigraded and standard graded invariants,
we use the indices n and 1, respectively. All this is made precise in
Section 2. In addition, in the same section, we collect several useful
results from the literature that are proved in a concise way, some in an
extended form.

While most papers are devoted to the case in which multigraded
components have K-dimension < 1 (and in which Hilbert decomposi-
tions and Stanley decompositions coincide under a mild hypothesis),
we test our notions on the syzygy modules of the residue class field of
K[Xi,...,X,] (as usual identified with K). The Stanley depth of the
first syzygy module, the maximal ideal m = (X1,...,X,), was found
by Biré et al.: Stdepthm = [(n + 1)/2]. By the standard inductive
approach to the Koszul complex, it is then easily shown that the k-th
syzygy module M (n, k) has multigraded Stanley depth > [(n + k)/2].

Further investigations reveal a significant difference between the
“lower” syzygy modules M(n,k), 1 < k < |n/2], and the “upper”
ones. For the upper ones, one can easily determine the multigraded
Hilbert depth: if [n/2] < k < n, then Hdepth,M(n,k) = n — 1,
which is the best possible value for a nonfree module. We believe
that the multigraded Stanley depth has the same value and show
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that this holds for k¥ = n — 3 (in addition to ¥ = n — 2,n — 1).
In the lower range, it seems impossible to find a simple expression
even for Hdepth;, since the binomial sum that must be evaluated
for a precise bound (see Proposition 3.7 and Remark 3.8) cannot be
summed in closed form. The best we can offer in Section 4 (apart
from experimental values for n < 22) is asymptotic estimates for
Hdepth; M (n, k) as n becomes large. We consider two “regimes”: if k
is fixed and n tends to oo, then Theorem 4.1 provides a rather precise
asymptotic approximation, showing in particular that the lower bound
[(n 4+ k)/2] ~ n/2 has the correct leading asymptotic order, although
it is still rather far away from the true value. This changes, if both k
and n tend to co at a fixed rate: as we show in Theorem 4.5, in that
case Hdepth; M (n, k) ~ en with € > 1/2, where ¢ depends on the ratio
between k and n. In particular, again, this turns out to be much larger
than the corresponding value provided by the lower bound |(n+ k)/2]
(see Remarks 4.6 (2)).

2. Stanley decompositions and Hilbert depth. We consider
the polynomial ring R = K[Xy,... ,X,] over a field K and two graded
structures on R:

(1) the multigrading, more precisely, the Z™-grading in which the
degree of X; is the i-th vector e; of the canonical basis;

(2) the standard grading over Z in which each X; has degree 1.
All R-modules are assumed to be finitely generated.

In order to treat both cases in a uniform way, we use graded retracts of
R, namely subalgebras S C R such that there exists a graded epimor-
phism 7 : R — S with 7|.S = id. In the multigraded case, these retracts
are the subalgebras generated by a subset of the indeterminates, and,
in the standard graded case, they are the subalgebras generated by a
set of 1-forms.

Definition 2.1. Let M be a finitely generated graded R-module. A
Stanley decomposition of M is a finite family

D = (Si, i)icr,

in which z; is a homogeneous element of M and S; is a graded K-
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algebra retract of R for each i € I such that S; N Annz; = 0, and

M = @Sixi

el

as a graded K-vector space.

While M, is not decomposed as an R-module in the definition, the
direct sum itself carries the structure of an R-module and has a well-
defined depth. Following Herzog et al. [8] we make the following
definition.

Definition 2.2. The Stanley depth Stdepth M of M is the maximal
depth of a Stanley decomposition of M. (For convenience, we set
Stdepth 0 = c0.)

In the following we will use the index n in order to denote invariants
associated with the multigrading, and the index 1 for those associated
with the standard grading. If no index appears in a statement, then it
applies to both cases.

Remark 2.3. Stanley [14] introduced decompositions as in Defini-
tion 2.1 and conjectured that

(2.1) Stdepth M > depth M

for all modules M. However, one should note that the decompositions
considered by us are more special than Stanley’s since he allows arbi-
trary gradings on the polynomial ring.

The reason for our more restrictive definition is that we want the
denominators of the Hilbert series of the rings S; to divide the denom-
inator of the Hilbert series of R.

It is not hard to see that Stanley’s conjecture holds in the standard
graded case, at least for infinite fields. It was actually proved by
Baclawski and Garsia [1] before the conjecture was made; see also
Theorem 2.7. For the multigraded case, Stanley decompositions have
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recently been investigated in several papers: Biré et al. [2], Cimpoeas
[5], Herzog et al. [8], Popescu [10] and Rauf [11].

From the combinatorial viewpoint, a module is often only an algebraic
substrate of its Hilbert function, and we may ask what decompositions
a given Hilbert function can afford.

Definition 2.4. Under the same assumptions on R and M as above,
a Hilbert decomposition is a finite family

H = (Si, si)ier,
such that s; € Z™ (where m = 1 or m = n, respectively, depending on

whether we are in the standard graded or in the multigraded case), S;
is a graded K -algebra retract of R for each i € I, and

M = @Si(—si)

iel

as a graded K-vector space.

A Stanley decomposition breaks M into a direct sum of submodules
over suitable subalgebras, whereas for a Hilbert decomposition we
only require an isomorphism to the direct sum of modules over such
subalgebras. Clearly, Hilbert decompositions of M depend only on the
Hilbert function of M. As for Stanley decompositions, we can define
depth .

Definition 2.5. The Hilbert depth Hdepth M of M is the maximal
depth of a Hilbert decomposition of M.

Weakening Stanley’s conjecture, one may ask whether
(2.2) Hdepth M > depth M,

or, equivalently,

(2.3) Hdepth M = max{depth N : H(N,_) = H(M, _)}.
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(Here H(N, ) denotes the Hilbert function of N, H(N, g) = dimg N,
for all g € Z™.) It is clear that (2.3) implies (2.2), and the converse
holds since M and N share all Hilbert decompositions. Moreover, a
positive answer to Stanley’s conjecture would evidently imply (2.2).

Hilbert series, in the standard as well as in the multigraded case, are
rational functions of type

and

Qu(Th,...,Ty)
Q-1 (1-Tn)

Hy(Ty,...,T,) =

respectively, where Qu(T) € Z[T*'] and Qu (T, ... ,T,) € Z[T1,
..., TF' are Laurent polynomials. A Hilbert decomposition in the
standard graded case amounts to a representation of the numerator in

the form
Qu(T) = Y 0,(T) (1 =T,

where g¢; is a Laurent polynomial with positive coefficients. Then the
depth of the decomposition is n — max; ¢;. In the multigraded case, it
amounts to a representation

QMHLHWZJ:§:%HL””ﬂJIU1—ﬂ%

i€l;

where the I;’s are subsets of {1,...,n}, and the polynomials g; are
nonzero and have nonnegative coefficients. Here, the depth of the
decomposition is n — max; |I;|.

Consider the following example: R = K[X,Y]|, M = K®YR/(X)®

Y R. Then

Hy(T) = Hr(T) = ﬁ

and

I (R R N 1
1-T)(1-T) 1-T» (1-T1)(1-Tz)

Hy(Ty,T) =
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It follows immediately that HdepthyM = 2 and HdepthoM = 1,
whereas Stdepth; M = Stdeptho M = 0.

The following example shows that Stdepth,M < Stdepth;M in
general. Let R = K[X,Y,Z] and M = R/(XZ,YZ,Z?). Then
StdepthsM = 0 by Remark 2.14 below, since depthM = 0 and
dimg M, < 1 for all a € Z3. On the other hand,

M2 EX]-1+k[X] Y +Ek[Y]- (Y +2)+k[X,Y]- XY?,
is a Z-Stanley decomposition. Hence Stdepth; M > 1 = Hdepth; M.

To sum up, StdepthyM =1 > 0 = Stdepths M.

A priori, it is not clear that Stanley or Hilbert decompositions exist at
all. In the multigraded case one can use a standard filtration argument.
Under much more general assumptions, M has a filtration

O:M()CMlC---CMq:M

in which each quotient M;;;/M; is isomorphic to a shifted copy
R/p;(—m;) of a residue class ring modulo a graded prime ideal p;. In
the multigraded case, this fact establishes the existence of Stanley de-
compositions, since each of the prime ideals p; is generated by a subset
Ole,... ,Xn.

Proposition 2.6. Let
0 —U—M—N—70

be an ezxact sequence of graded R-modules. If U and N have Stanley
decompositions, then so does M, and

Stdepth M > min(Stdepth U, Stdepth N).

The same statements apply to Hilbert decompositions and depth.

Proof. For Hilbert decompositions, the statement is completely trivial
since M and U @& N have the same Hilbert function. For Stanley
decompositions, it is only necessary to lift the generators in a Stanley
decomposition of N to homogeneous preimages in M. O



334 W. BRUNS, C. KRATTENTHALER AND J. ULICZKA

In the standard graded case, a filtration as above does not yield a
Stanley decomposition since the residue class rings R/p; fail to be re-
tracts in general. This failure is however compensated by the existence
of Noether normalizations in degree 1, provided K is infinite. By the
following theorem of Baclawski and Garsia [1], Stanley decompositions
exist in the standard graded case, at least under a mild restriction, and
inequality (2.1) holds. For the convenience of the reader, we include
the short proof.

Theorem 2.7. Let K be an infinite field. Then, in the standard
graded case, every R-module M # 0 has a Stanley decomposition, and

Stdepthy M > depth M.

Proof. If dimM = 0, the assertion is trivial, since M is a finite-
dimensional K-vector space and K is a retract of R.

Now suppose that dimM > 0. Note that for every graded R-
module there exists a homogeneous system of parameters y1,... ,yq,
d = dim M, in degree 1. The essential point is that yi,... ,yq generate
a retract S of R. Since all graded retracts of S are graded retracts of
R, and since depthgM = depthrM, we can replace R by S. In other
words, we may assume that dim M = n.

If depthM = n, then M is a free R-module, and the claim is
again obvious. Suppose that depthM < n. Since dim M = dim R,
M contains a free graded R-submodule F' of rank equal to rank M.
Since depth M/F = depth M, but dim M/F < dim M, we can apply
induction. ]

In the standard graded case, Hilbert decompositions were considered
by Uliczka [16]. Among other things, he proved that

(2.4) Hdepth M =n — min{u: Qp(T)/(1 —T)* is positive}.

Here Qps(T') is the numerator polynomial of the Hilbert series, and a
rational function is called positive if its Laurent expansion at 0 has only
nonnegative coefficients.
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Our next result shows that, in the case that is certainly the most
interesting one from the combinatorial viewpoint, a Hilbert decompo-
sition is automatically a Stanley decomposition.

Proposition 2.8. Suppose that dimyg M; < land R;M; # 0 when-
ever Ry, My, Msiy # 0. Let H = (S;, 8i)icr be a Hilbert decomposition
of M, and choose a homogeneous nonzero element x; € M of degree s;
for each i. Then D = (S;,z;)icr 18 a Stanley decomposition of M.

The proof is straightforward: the supporting degrees of the vector
spaces S;x; do not overlap since dimg M; < 1 for all ¢, and all degrees
are reached.

In the general case, the choice of the elements x; is of course critical.
The next proposition gives a necessary and sufficient condition.

Proposition 2.9. Let H = (S;, $;)icr be a Hilbert decomposition of
M, and choose a homogeneous nonzero element x; € M of degree s;
for each i.

(1) The following properties are equivalent:
(a)
(b) If > icraizi =0 with a; € S;, then a; =0 for all 1.
2)

(2) In particular, D is a Stanley decomposition if for every degree g
and the family G = {i : (S;x;)g # 0} the elements x;, i € G, are linearly
independent.

D = (Si,x;)icr s a Stanley decomposition.

In fact, the type of restricted linear independence in (1) (b) is
equivalent to the fact that the subspaces S;z; form a direct sum. Then
they must “fill” M since the direct sum has the same Hilbert function as
M. That (1) (b) follows from (2) results immediately from the fact that
every linear dependence relation of homogeneous elements decomposes
into its homogeneous components.

For a special case, the following proposition can be found in [11].

Proposition 2.10. Let R and S be polynomial rings over K, and
let M and N be graded modules over R and S, respectively. Then

Stdepth M ®x N > Stdepth M + Stdepth N,

and the analogous inequality holds for Hdepth. (Here, M ®k N 1is
considered as a module over R Qg S).
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The proposition is obvious since the tensor product is distributive
with respect to direct sums. The following proposition was proved in
[11, 1.8] for the multigraded case.

Proposition 2.11.  With the standard assumptions on R and
M, suppose that ai,...,a, s a homogeneous M -sequence such that
Klas,... ,a.] is a graded retract of R. Then

Stdepth M > Stdepth M/(ay, ... ,a.) + 7,

and the analogous inequality holds for Hdepth.

Proof. Suppose D' = (S},z}) is a Stanley decomposition of M’ =
M/(a1,... ,a,). Then we lift the z} to homogeneous elements of the
same degree in M and claim that D = (S;[a1,... ,a.],2;) is a Stanley

decomposition of M.

By induction it is enough to treat the case r = 1. Let R’ = R/(ay).
First one should convince oneself that, in the multigraded case, a; is an
indeterminate that does not occur in any of the S;. Since S/ is a retract
of R, the same holds for S/[a;]; we may assume a; = X,, in this case.
In the standard graded case, we choose subspaces V; of R; such that
dimgV; = dimg (S}) and V; is mapped onto (S}); by the epimorphism
R — R' — S]. Clearly, a; ¢ V;, and so R; is again a retract.

Since Hy(T) = Hu/(T)/(1 — T) in the standard graded case and
HM(Tl, . ,Tn) = HMI(Tl, ee ,Tn_l, Tn)/(l — Tn) in the multigraded
case, our desired Stanley decomposition is at least a Hilbert decompo-
sition. (This argument proves the assertion about Hilbert depth.)

We use Proposition 2.9 to prove that it is indeed a Stanley decompo-
sition. Consider a critical relation byz;, +---+ b,x;, = 0, and expand
each b; as a polynomial in a; with coefficients in S}. Reduction modulo
ay yields that the constant terms of the b; must be zero, and we can
factor a; from the remaining terms. But a; is not a zero divisor, and
it can be canceled. This reduces the a;-degree of our coefficients by 1,
and we are done. O

Note that Proposition 2.11 implies the inequality in Theorem 2.7;
more precisely, it reduces the proof of the theorem to the case where
depth M = 0, since one can find a suitable M-sequence of 1-forms.
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Corollary 2.12. Let M be the j-th graded syzygy of a graded R-
module N. Then Stdepth M > j.

For the proof it is enough to note that every R-sequence of length j
is an M-sequence (see, for example, Bruns and Vetter [4, (16.33)]).

We use Proposition 2.11 to prove that Stanley’s conjecture holds in
the multigraded case if depth M = 1. This was already stated by
Cimpoeas [5]; however, the proof in [5] is not correct.

Proposition 2.13. Suppose that depth M >1. Then Stdepth, M >1.

Proof. Set U,,4+1 = M, Uy =0, and define
Ui={z €U :Xijaczofor some j >0}, i=1,...,n.
Then we have a filtration of multigraded modules
0=UyCcU; C- - CUpy1 =M,

so that Stdepth,M > min; Stdepth,U;;+1/U;. Moreover, U; /Uy =
U = H)(M) where m = (Xq,...,X,,) and H, denotes local coho-
mology.

By hypothesis, HY (M) = 0, and, by construction, X; is not a zero

divisor of U;y1/U; for i = 1,... ,n. Therefore Stdepth,, M > 1. O

Remark 2.14. The converse of Proposition 2.13 does not hold in
general, as documented by the example given in [5, 1.6].

However, it is easy to see that Stdepth M = 0 if HY (M) contains a full
graded component M, of M. For, then we must have HX (M)NS;z; # 0
for some component of the Stanley decomposition, so that H?(S;) =
H?(S;z;) # 0 for the ideal n generated by the indeterminates of S;.

This forces S; = K.

Evidently, the assumption on H? (M) is satisfied if all homogeneous
components have dimension < 1 over K, and for this case this remark
appeared already in [5].

3. The Koszul complex. In the following we want to investigate
the syzygy modules of K, viewed as an R-module by identification with
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R/m, m = (Xy,...,X,). With this R-module structure, K is resolved
by the Koszul complex

n n—1
/C(Xl,...,Xn;R):o—>/\Rn2> /\Rng...angR_}()

where the basis vector e;; A---Ae;, of /\k R", 11 < --- < ik, has degree
X;, -+ X;, (we identify monomials with their exponent vectors when
we speak of degrees). In the standard grading, the degree of e;, A- - -Ae;,,
is simply k.

Let M(n,k) be the k-th syzygy module of K. The Hilbert series
of this module can be immediately read off the free resolution; its
numerator polynomial is

(3.1) (Z) T* - <k " 1> TR L (1R

in the standard graded case, and
(32) Q(n’ k) =0On,k — Onk+1 +--- 4+ (*l)nikan,n

in the multigraded case, where o, ; denotes the j-th elementary sym-
metric polynomial in the indeterminates Ti,...,7T;,. Just for the
record, the multigraded Hilbert series of M (n, k) is given by

supp (a)| — 1\ .4 o
(33)  Hu(uw(Ths--,Tn) = > < k(_)1| >T11---Tn";
ani

here supp (a) denotes the set of indices ¢ with a; # 0. The standard
graded Hilbert series is contained in Proposition 3.7 (with s = n).

For k = 1, one has the following result.
Theorem 3.1. We have

Hdepth;m = Hdepth, m = Stdepth,m = |(n + 1)/2].

Proof. For the difficult result on Stanley depth, see Bird et al. [2]. In
order to estimate Hdepth;, one considers the numerator polynomial of

the Hilbert series,
nT — <;L>T2i--- .
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It is clear that we have to multiply by at least the power 1/(1 — T)?,

with
- {(n—)} = [(n—1)/2),

in order to get a positive rational function. Hence, by (2.4), |(n+1)/2]
is an upper bound for Hdepth;m, and the theorem follows. (See also
[16] for a direct computation of Hdepth;m.) o

The Koszul complex allows (at least) two well-known inductive ap-
proaches.

Lemma 3.2. For all n and k one has
Stdepth M (n, k) > Stdepth M (n — 1, k)
and
Stdepth M (n, k) > l—|—min{Stdepth M(n—1,k),Stdepth M (n—1, kfl)},

and the analogous inequalities hold for Hdepth.

Proof. Here and in the following we will write [iy,...,3x] for
O(ei; N -+ Ae;). Consider the submodule L of M(n,k) generated
by the elements [i1,...,ik—1,n]. An inspection of M(n,k + 1) yields

that M(n,k)/L is annihilated by X,. Thus rank M(n,k)/L = 0,
and rank L = rank M(n,k) = (Z:}) Since L is generated by ex-
actly this number of elements, it is a free submodule. Therefore

Stdepth M (n, k) > Stdepth M (n, k)/L.

Let R = K[Xy,...,Xn—1]. The natural epimorphism R — R’ that
sends X; to itself for ¢ # n and X, to 0, can be lifted to a chain map
of the Koszul complexes that sends e; to “itself” and e, to 0. This
map induces an epimorphism M(n,k)/L — M(n — 1,k), which is an
isomorphism since the modules have the same Hilbert function. This
proves the first inequality.

For the second inequality we use the inductive construction of the
Koszul complex by iterated tensor products over R (see [3, 1.6.12]):

K:(Xl, e ,Xn;R) = K:(Xl,. .. 7Xn71;R) ®R ’C(Xn,R)
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It yields an exact sequence
0 — N(n—1,k) — M(n,k) — N(n—1,k—1) — 0,
where N(n — 1, ) is the j-th syzygy module of R/(X1,...,X,_1). On

the other hand, N(n—1,j) = M(n—1,j) ®x K[X,], and the inequality
follows from Propositions 2.6 and 2.10. ]

If we combine Theorem 3.1 inductively with the second inequality,
then we obtain a significant improvement of the bound Stdepth M (n, k)
> k that one gets for free from Corollary 2.12.

Corollary 3.3. Let M(n, k) be the k-th syzygy module of K. Then

Stdepth, M (n,k) > | (n+ k)/2].

Remark 3.4. Theorem 3.1 has been generalized to ideals generated by

monomial regular sequences y1, . .. , Y, as follows: Stdepth, (y1,. .., Ym)
=n — |m/2]; see Shen [12, 2.4]. Since R/I is resolved by the Koszul
complex K(y1,...,Ym; R), a similar induction as in the proof of Corol-

lary 3.3 shows that the k-th syzygy module of R/(y1,. .. , Ym) has multi-
graded Stanley depth > n —m + [(m + k)/2]. In the induction, one
must observe that the indeterminate factors of the y; form pairwise
disjoint sets.

The upper half of the resolution poses no problems for Hilbert depth.

Theorem 3.5. Suppose n >k > |n/2]. Then

Hdepthy M (n, k) = Hdepth,, M (n,k) =n — 1.

Proof. Note that the maximal value n is excluded. It can only be
attained by a module of Krull dimension n with a positive numerator
polynomial in its Hilbert series, standard graded or multigraded. It is
therefore enough to consider the multigraded case.



STANLEY DECOMPOSITIONS AND HILBERT DEPTH 341

Now we look at the multigraded numerator polynomial, given by
equation (3.2). Consider the set Y, of squarefree monomials in
Ti,...,T, of degree u, summing up to op,. For u > |n/2] one has an
injective map Y, — Y,,_; that assigns each monomial a divisor (cf. [15,
page 35]). It follows that we can write @Q(n, k) as a sum of monomials
and polynomials of type pu(1 — T),) where p is a monomial. Exactly
those terms p(1—1T),) appear for which y is the image of ©T}, under the
injection.

This leads to a Hilbert decomposition in which the summands are
of type R and R/(X,) (with appropriate shifts). More precisely, the
decomposition is given by

(K[F{),X™),

where

e F; runs through the subsets of {1,... ,n} with k£ + j elements, j
even,

e XFi is the product of the indeterminates dividing Fj,

o I/ = {1,...,n} if T is not in the image of the injection, and
F! ={1,...,n}\ {p} if TF" is the image of TF:“{P},
e K[F]] is the polynomial ring in the indeterminates X,, ¢ € F. O

One can try to convert the Hilbert decomposition indicated in the
proof of Theorem 3.5 into a Stanley decomposition by the following
method. To simplify notation, we denote the element [iy,...,ix] by
wg where G = {i1,...,ix}. We call these elements generators and the
products pwg, g a monomial in R, monomials. In the multigraded
structure of the Koszul complex, the degree of pwg is uX (where we
again identify a monomial with its exponent vector).

For each pair (K[F}],F;) in the decomposition, we now choose a
monomial h; = pwg such that pX¢ = X, Let us call h; the
hook of (K[F!], X¥%). In the total set of monomials that we obtain
by multiplying h; by the monomials in K[F}] and collecting over all ¢,
each multidegree appears with the right multiplicity (because we are
starting from a Hilbert decomposition). The crucial point is to make
these monomials (of the same degree) linearly independent over K.
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Note that each hook produces a given multidegree at most once. Fix a
multidegree, and consider all hooks that contribute to it. Each of them
has the form pweg, and it is enough to make the family of generators
wg associated with the given multidegree linearly independent over R
(Proposition 2.9).

For a given monomial p in R, let the squarefree part sqf (1) be
the product of the indeterminates dividing p. Clearly, a generator
is associated with a given multidegree v if and only if it is associated
with sqf (v) (since all hooks are squarefree). This observation reduces
the test for linear independence to the squarefree degrees.

To prove the desired linear independence, we use the following simple
criterion: if we can order a family (wg)geg in such a way that
GiU---UGp, 2 Gy U--- UGy for all m, then the family G is
linearly independent.

Let us now consider the special case n = 5, k = 2. One has
Stdepth,, M (5,2) > 3 by Corollary 3.3, but in fact Stdepth,M(5,2) =
4, as we will see now. Following [15, page 35|, we obtain an injection
Y;s — Y5 if we go through the monomials x4 in Y3 lexicographically
and choose for each u the lexicographically smallest divisor that is
still available: 123 — 12, 124 — 14, ..., 345 — 34. Furthermore
12345 — 1234.

For the squarefree monomials of degree 2, there is only a single choice
of hooks, namely the corresponding generator, and this leads to no
problem in degree 3: if the total degree of a squarefree monomial is 3,
then there are exactly two generators associated with it, and they are
automatically linearly independent.

Now we come to total degree 4, and the choice of hooks becomes criti-
cal. Consider 1234. There are exactly 6 monomials of this multidegree.
Of these two are already in use, namely 13[24] = X7 X3[24] (24 is the
image of 245 in our injection) and 12[34] (345 — 34). Since 14[23] is
linearly dependent on the first two over K, it is also excluded, and we
choose 34[12] as the hook of 1234. It is “good,” since [24], [34], [12] are
linearly independent over R.

Further choices: 1235 — 23[15], 1245 — 25[14], 1345 — 45[13],
2345 — 45[23]. Again we get linearly independent families of generators
for each squarefree multidegree of total degree 4.
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The generators associated with multidegree 12345 are [15], [14], [13], [23].
They are linearly independent, and we are done.

Using Lemma 3.2, one obtains that
(3.4) Stdepth M (n,n —3) =n—1

for n > 5. We believe that Stdepth M (n,k) =n — 1 for all £ > |n/2].
It suffices to show this for n odd, k = (n—1)/2. The general statement
would follow by induction.

In the lower half of the Koszul complex the situation is much more
complicated, and it seems impossible to give a precise, simple expression
even for Hdepth;. The proposition below provides a trivial upper
bound.

Proposition 3.6. Let k < |n/2]. Then

n—~k
Hdepthy M (n, k) <n — .
epthy M (n, k) <n {k—i-lw
Proof. Simply consider the quotient of the second, negative term in
the numerator polynomial by the first term. ]

Naively one might think that the proposition gives the correct value as
it does in the case k =1 (and for k£ > |n/2]). A computer experiment
confirms this value for n < 22. However for n = 23 it fails for k£ = 3,4, 5.
As we shall see in the next section, the upper bound in Proposition 3.6
is very far from the truth, see Theorems 4.1 and 4.5. As a preparatory
step, we prove the following result, which, in combination with (2.4),
forms the key for proving these theorems.

Proposition 3.7. Let Qn 1 be the numerator polynomial of the Z-
graded Hilbert series of M(n,k). Then

(3.5)

OQ_%)S = fj (“”(ZJ—) @; (:_D <Ssij>> itk
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k-1 ,. . )
j+0\[(n—s—7—L—1\(s+j+¢ itk
(3.6) " ( ! )( s )( PO )i

£=0

Proof. By (3.1), equation (3.5) is true for s = 0. For the induction,
one observes that the term in the inner sum is the degree j value of the

Hilbert function of the free module of rank (Z:f) over the polynomial

ring in s —t + 1 variables. In other words, its sum over j is the Hilbert
series of this module. Multiplication by 1/(1 —T') increases the number
of variables by 1. Thus the multiplication by 1/(1 — T') replaces s by
s + 1 in these terms, as desired.

In order to complete the proof of (3.5), it remains to show that
1 = (n—s ;
—1)7 Titk
Fr (i)
7=0
:i (<1)] n—(s+1) n n—(s+1) itk
= E+3j E—1

After the replacement of n — s by n this is the case s = 1, and the easy
verification is left to the reader.

In order to establish the second form (3.6), we rewrite the inner sum
in (3.5) as follows:

i(n—t)(s—t—i—j)

p k-1 s—t

5(_1)k_1 —n4t+k—2\(s—t+j

P k-1 s—t

(71),%1’95 —s—j4t—1\[s+j+k-n—1\[s—t+j
¢ k—0-1 s—t

{=0

n—s—j—l—1\=(s+j+L—t\[s—t+]

()BT
t=1

—~(n—s—j—L—1\[j+¢ Z s+j+0—t

= k—0—-1 14 —~ j+e

N

T ok
R

(]

Il
T
- O

~
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_kzl(n—s—j—é—l> (j+€> <s+j+£)
—~ k—0—1 14 jH+e+1
Here, to arrive at the second line and at the last line, we used special

instances of the Chu-Vandermonde summation (cf., e.g., [7, Section 5.1,
(5.27))). O

Remark 3.8. In hypergeometric terms (cf., [13] for definitions), the
inner sums (over ¢ and ¢, respectively) in (3.5) and (3.6) are 3 Fx-series,
namely

n—1\[(s+j—-1 1-sk—mn,1

(k—l)( s—1 >d§[1j&1n’%
(n—s—j—=1\(s+J
B k—1 s—1

1—k1+j,1+j+s

X3F2[ 2+_],l+y—n+s ,1:| .
There are no summation formulas available for these 3F5-series, and
therefore one cannot expect that they can be summed in closed form.
Indeed, by looking at special values of k and s, respectively, by
applying the Gosper-Zeilberger algorithm in order to find a recurrence
for these series and subsequently applying the Petkovsek algorithm to
the recurrence (cf. [9]), one can prove that these series cannot be further
simplified. It is for this reason, that, given k and n, it is difficult to
find the smallest s such that all the coeflicients in the polynomial (3.5)
(respectively in (3.6)) are non-negative, that is, to find the Hilbert
depth of M (n, k) for the standard grading (cf. (2.4)).

If we combine Proposition 3.7 with (2.4), then we obtain a mono-
tonicity property for the Hilbert depth of the syzygy modules M (n, k).

Corollary 3.9. For all k one has
Hdepth; M (n, k) < Hdepth; M (n, k + 1).

Proof. For s fixed, the quotient of the negative terms on the right-
hand side of (3.5) is smaller than the quotients of the corresponding
positive terms. ]
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4. An asymptotic discussion. In view of the apparent impossi-
bility (addressed in Remark 3.8) of finding a compact expression for
Hdepth; M (n, k), the next best result that one can hope for is asymp-
totic approximations of Hdepthy M (n, k) as n becomes large. This will
be the subject of this final section. Our results, given in Theorems
4.1 and 4.5 below, show that the general bounds in Corollary 3.3 and
Proposition 3.6 are far from the truth for large n, that is, they can be
substantially improved. We shall discuss two “regimes” for large n. In
the first part of this section, we let k£ be fixed, while n tends to co. On
the other hand, in the second part, we let both £ and n tend to co at
a fixed rate.

4.1. The case of fixed k and large n. The theorem below provides
rather precise asymptotics for Hdepth; M (n, k) for the case where k is
fixed and n tends to co.

Theorem 4.1. For a fized positive integer k, we have
(4.1)

1 1
Hdepthy M (n, k) = 3 + 5 (k—1)nlogn
1 [(k—1
+ - uloglogn~l—o r loglogn |,
4 logn logn

as n — oQ.

Proof. By Theorem 3.1, we know that (4.1) is correct if £ = 1. We
may therefore assume that k£ > 2 in the sequel.

In all of this proof, we let k be fixed and

L L G Tniosn [(k—1)n
(4.2) s=gn—3 (k—1)nlogn — ¢ Wloglogn,

as n — 0o,

where ¢ is a fixed positive real number. We shall prove that the quotient
of

I o (85 [ e [
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and

4 (:53)

is (asymptotically) less than 1 for some j if § > 1/4, and larger than
1 for all j with 0 < j < n—s—Fkif § < 1/4. Clearly, in view
of Proposition 3.7 and (2.4), this would establish the assertion of the
theorem.

In order to establish this claim, we proceed in several steps. In the
first step, we show that, for large n, the summands in the sum (4.3)
can be bounded by a constant times the term for £ = k — 1, so that it
suffices to prove the above claim for the quotient

ao ()00 G5)
U+t D(s+j+k)T(n—s—j—k+1)
(k—1)! T(s) I'(n—s+1)

Here, (j+1)—1 is the standard notation for shifted factorials (Pochham-
mer symbols),

G+Dr1=0+D0G+2)---G+kEk-1),

and I'(z) denotes the classical gamma function (cf. [13]).

In the second step, we consider the right-hand side of (4.5) as a
continuous function in the real variable j, 0 < j < n — s — k, and
we determine the (asymptotic) value of j for which the expression (4.5)
is minimal. Finally, in the third step, we estimate (4.5) as n — oo for
this value of j. The conclusion will be that it will be less than 1 if
d > 1/4, while it will be larger than 1 if § < 1/4.

Step 1. The quotient of the (¢ + 1)-st and the ¢-th summand in (4.3)
equals
(4.6)

(G++1) (k—¢-1) (s+j+0+1)

+1) (n—s—j—4£—-1) (J+£+2)
for which we have
(G++1) (k—¢—1) (s+j7+£+1)
(l+1) (n—s—j—€-1) (j+£+2)
j+1 1 (s+1) 1
>
“(k=1)(n—s—-1) (j+k) ~ 2k(k—1)

, 0=0,1,...,k—2,
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for n large enough, where we have taken into account our choice (4.2)
of s. Hence, all the summands in (4.3) are bounded by a constant times
the term for £ =k — 1.

Step 2. The reader should recall that k is fixed, s is given by (4.2),
and that we consider large n. It is a simple fact that the product

IF(s+j+k)T(n—s—j—k+1)

occurring in (4.5) attains its minimum when the arguments of the
gamma functions are equal to each other, that is, for j = ((n +1)/2) —
s — k. It is then not difficult to see that this implies that, as a function
in j, the expression (4.5) cannot attain its minimum at the boundary
of the defining interval for j, that is, at j = 0 or at j = n — s — k.
(The term (j + 1)k—1 cannot compensate the difference in orders of
magnitude of (4.5) at j = ((n+1)/2) —s—k and at j = 0, respectively
at j = n — s —k.) Therefore, in order to determine places of minima
of the function (4.5) (in j), we compute its logarithmic derivative with
respect to 7, which we shall subsequently equate to 0. Let ¢(z) denote
the classical digamma function, which, by definition, is the logarithmic
derivative of the gamma function. Using this notation, the logarithmic
derivative of (4.5) is given by

k-1
1

E m+¢(8+j+k)*¢(n*57jfk+l).

im1

Let us for the moment write s = (n/2) — s1, where s; = o(n), for short.
Then, equating the above logarithmic derivative to 0 means to solve
the equation

k—1
1 n n
4.7 E— - — i+ k) — — —j—k+1)=0
(4.7) i:1j+i+¢<2 81+]+> ¢<2+31 j +>

for j. For our purposes, it will not be necessary to determine solutions j
exactly (which is impossible anyway), but it suffices to get appropriate
asymptotic estimates.

For the following considerations we need the first few terms in the
asymptotic series for the digamma function (cf. [6, 1.18 (7)]):

1 1
(4.8) w(m)—logw—%%—O(P), as & — 0o.
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If we suppose that j ~ an as n — oo, where « > 0, then, using (4.8),
the limit of the left-hand side of (4.7) as n — oo can be computed: it
equals

(1/2) + «
(1/2) -«
a contradiction to the equation (4.7). Hence, we must have j = o(n)
as n — oo.

log #0,

Let us, for convenience, write j = s; + j1. Then (4.7) becomes

k—1
1 n n
4.9 E D UEE—— —+h+k)— ——jh—k+1)=0.
(4.9) Lyt 1/J<2 J1 ) ¢<2 W) )

Using (4.8), the estimate
log <g+j1 +k> zlogg + log <l+

2(j k 2
:1Ogﬁ+M+O<3—12
2 n n

20 4

), asn — 0,

and an analogous estimate for log((n/2) —j1 —k+1), the left-hand side
of (4.9) is asymptotically

k—1 1 471 J%)
4.10 — + 0 - + = +0| = ).
( ) s1+n <(51 +Jl)2> n (n2

If the equation (4.9) wants to be true, then the asymptotically largest
terms in (4.10) must cancel each other. If we suppose that j; <
v/n/logn, then, taking into account that s; ~ (1/2)4/(k — 1)nlogn,
the term (k—1)/(s1+41) would be asymptotically strictly larger than all
other terms in (4.10), a contradiction. On the other hand, if we suppose
that j; > {/n/logn, then the term 4j;/n would be asymptotically
strictly larger than all other terms in (4.10), again a contradiction.
Hence, we must have j; ~ ay/n/logn for some o > 0. If we substitute
this in (4.10) and equate (asymptotically) the first and the third term
in this expression, then we obtain o = —(1/2)vk — 1.

In summary, under our assumptions, the value(s)! for j which mini-
mize the expression (4.5) is (are) asymptotically equal to

1 1 1
(4.11) j0:§ (k—l)nlogn<1—1—+o< >>, as n — oo.

ogn logn
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Step 3. Now we substitute (4.2) and (4.11) in (4.5) and determine
the asymptotic behavior of the resulting expression. For the term
(jo + 1)g_1, we use the estimation

log ((jo + 1)k+1) = log (jgl (1 * O(%o)))

1
=(knbgm+o(f>
Jo

1 1 1
= (k- 1)<510gn+ 510g10gn+ §log(k— 1) —log2>

+o(1).

In order to approximate the gamma functions in (4.5), we need Stir-
ling’s formula in the form

1 1
logT'(z) = (:v - 5) logz —z + 2 log(27) + o(1),

as r — 00.

(4.12)

Writing, as earlier, s = (n/2) — s1, application of (4.12) to the term
['(s) gives

0= (3 o5 o) - (-0

4 %log(%’) +o(1)

_ <g _ 81> + élog(%’) +o(L).

The terms I'(s+j+ k), I'(n—s—j—k+1) and I'(n — s + 1) are treated
analogously. If everything is put together, after a considerable amount
of simplification, we obtain
G+ Vs (s+j+k=1)! (n=s—j—k)

(k—1)! (s —1)! (n—s)!

— exp ((k _1) <% - 25) loglog n + & (k — 1) log(k — 1)

(4.13)

—(k—1)log2 —log ((k —1)!) + 0(1)), as n — oo.
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We can now clearly see that the right-hand side is <« 1 if § > 1/4, and
> 11if § < 1/4. This completes the proof of the theorem. mi

Remark 4.2. The alert reader may wonder whether the estimation
given by the right-hand side of (4.1) provides a lower or upper bound
for Hdepth; M (n, k). We shall now show that (at least for k& > 4) it is
indeed an upper bound, that is, for fixed k¥ > 4 and large enough n, we
have

Hdepth; M (n, k) < %n + %\/ (k—1)nlogn
(4.14) 5 Dn

L e Dn
—4/ ———— loglogn.
4 logn §08

To see this, we return to (4.6), which expresses the quotient of the
(£+ 1)-st and the ¢-th summand in (4.3). Using this expression, we see
that, for j = jo (cf. (4.11)), this quotient is asymptotically equal to

k—f0—-1
f+1

as n — oo. If we denote the ¢-th summand in the sum (4.3) by t, then

this implies that
k—1
te = tk_1<( , > + 0(1)).

Thus, we infer that the sum in (4.3) is asymptotically equal to
k—1 k—1
k—1
Si=oay ((F,1) +ow)
£=0 £=0

(e

If we combine this with (4.13), in which we computed the asymptotics
of the quotient of ¢;_; and (4.4) with s given by (4.2) and j = jo,
then we obtain that the quotient of the sum (4.3) and the binomial
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coefficient (4.4), where s is given by (4.2) with ¢ specialized to 1/4 and
j = Jjo, is equal to

1
exp (§(k —1)log(k — 1) —log ((k — 1)!) + o(l)), as n — oo.
It is not difficult to show that, for £ > 4, we have
1
5(/g —1)log(k — 1) —log ((k — 1)!) < 0.

In view of (2.4), this implies (4.14). We expect the same to be true
as well for K = 2 and £ = 3, but we did not perform the necessary
asymptotic calculations using longer asymptotic series.

4.2. The case of large n and k. In this part, we consider the
case where both £ and n tend to oo at a fixed rate, say k = fn + o(n)
with 8 > 0. We shall see that then Hdepth; M(n, k) ~ (1 — y)n, where
v < (1/2) — B. (See Theorem 4.5 for the exact definition of v, and
Remarks 4.6 (2) for a graph of v as a function in 3.) Note that this
estimate is an (asymptotic) improvement of Corollary 3.3, which only
yields Hdepthy M (n, k) > ((1/2) + (8/2) + o(1))n.

Again, our starting point is (2.4) in combination with Proposition 3.7.
We begin by providing an asymptotic estimate for the isolated binomial
coefficient in (3.5).

Lemma 4.3. Let k = fBn+ o(n), j = an+ o(n) and s = yn + o(n),
where o, B and vy are positive real numbers not exceeding 1. Then, as
n — o0, we have

w19 (229) = (aramm—azs =)

X asymptotically smaller terms.

Proof. This is a simple consequence of Stirling’s formula (4.12). i

Next, we provide an asymptotic estimate for the inner sum in (3.5).
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Lemma 4.4. Let k = Bn+ o(n), j = an+ o(n) and s = yn + o(n),
where o, B and vy are positive real numbers not exceeding 1. Then, as
n — o0, we have

wo LG - (Gt

t=1

x asymptotically smaller terms.

Proof. The summands of the sum on the left-hand side of (4.16) are
monotone decreasing in ¢t. In particular, they are bounded above by the
summand with ¢ = 1. Stirling’s formula (4.12) applied to this summand
yields the approximation given on the right-hand side of (4.16), and
since the number of summands is s ~ n, the approximation given
there is also valid for the whole sum. O

Theorem 4.5. Let 3 be a positive real number with 3 < 1/2. For
k = Bn + o(n), we have

(4.17) Hdepthy M (n,k) = (1 = y)n+ o(n), asn — oo,
where 7y is the smallest nonnegative solution of the equation

(o + 7)a+’¥(a + ,B)OHFB(I —a—f3— ’7)17"*5*7
040455»}/‘7(]_ — B)lfﬁ(l _ 7)177

(4.18) =1,

with

(1-28—2y+/(1-28-27)2 - 83y).

a =

o~ =

Remarks 4.6. (1) Our computer calculations show that there is always
ezactly one solution to (4.18). More precisely, as a function in +, the
left-hand side of (4.18) seems always to be a monotone increasing
function. In view of the daunting expression that one obtains by
substituting the indicated value of « in (4.18), we did not try to prove
this observation since this is also not essential for the assertion of
Theorem 4.5.
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0.5

0.4

0.3

0.2

0.1

FIGURE 1. The value v as a function in S.

(2) It is not difficult to see that the value v in Theorem 4.5 satisfies
v < 1/2— . Indeed, except for B close to 0 or close to 1/2, this is so by
a large margin, as the graph in Figure 1 shows. As we already remarked
at the beginning of this part, this yields a considerable improvement
over the bound implied by Corollary 3.3.

Proof of Theorem 4.5. We proceed in a manner similar to the proof
of Theorem 4.1. First, we form the quotient of (4.16) and (4.15), which
is asymptotically

(a+2)" (@ + )" (1= a = f— 7)1\ "
aBhyY (1= Bt P(L—y)t
x asymptotically smaller terms,

(4.19) <

as n — oo. In view of (2.4), we need to find the smallest v such that
the base of the exponential in (4.19) is larger than 1 for all o with
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0 <a<1—p8—~. Hence, we should next consider this base,

(@ +7)*(a+B)* (1 —a—B -yt~
a® By (1= B)tP(L—y)t7 ’

and, given (8 and vy, discuss it as a function in ae. More precisely, our goal
is to determine the value(s) of a for which f(«) attains its minimum.
In a subsequent step, we shall have to find the smallest possible 7 such
that this minimum is at least 1.

Our first observation is that both

(1-B-—y'F
O e Ce

fla) =

F(0) =

and
1

(=B =7 P75y

are at least 1. For f(1 — 8 — ) this is totally obvious since §, v and
1— B —~ are numbers between 0 and 1, while for f(0) this follows from
the facts that f(0)|y=0 =1 and that f(0) is monotone increasing in 7.
Consequently, for given 8 and v, the minimum of f(«) is either at least
1, or it is attained in the interior of the interval [0,1 — 8 — 4]. In order
to find the places of minima in the interior of this interval, we compute
the logarithmic derivative of f(«),

f1-p-7) =

(4.20) % log f(a) = log

and equate it to 0. This equation leads to a quadratic equation in «
with solutions

(1-28—-2y+V/(1-28—27)2—83y).

o~ =

(4.21) o=

Since, from (4.20), we see that the derivative of f(a) is +00 at a = 0
and at @ = 1 — 8 —~, the smaller of the two solutions in (4.21) must be
the place of a local maximum of f(«), while the larger solution must
be the place of a local minimum (if they are at all real numbers).

Finally, we must find the smallest 7 such that the minimum of f(a),
for o ranging in the interval [0,1 — 8 — 4], is at least 1. In particular,
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the above described local minimum must be at least 1. Hence, we must
substitute the larger value given by (4.21), ay say, in (4.19), and restrict
our search to those values of v, where the result is at least 1.

Now, if we do this substitution in (4.19) (the reader should observe
that the result is exactly the left-hand side of (4.18)) and set v = 0,
then we obtain

1

1
f(a0)|7:0 = 2 (1 — ,8)17ﬁ S 2 (1/6)1/6 =0.72...< 1.

Hence, the smallest v such that the minimum of f(«), for « ranging
in the interval [0,1 — 8 — 7], is at least 1 is indeed the solution to the
equation (4.18). u]

ENDNOTES

1. It could be proved, using estimates for the derivative of (4.7) with
respect to j, that, for n large enough, there is a unique zero of (4.7),
and hence, a unique j which minimizes (4.5). Since we do not really
need this fact, we omit its proof.
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