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DECOMPOSITIONS OF IDEALS INTO
IRREDUCIBLE IDEALS IN NUMERICAL SEMIGROUPS

VALENTINA BARUCCI

ABSTRACT. It is proved that each ideal I of a numerical
semigroup S is in a unique way a finite irredundant intersec-
tion of irreducible ideals. The same result holds if “irreducible
ideals” are replaced by “Z-irreducible ideals.” The two decom-
positions are essentially different and, if n(I) and N(I) respec-
tively are the number of irreducible or Z-irreducible compo-
nents, it is n(I) < N(I) < e, where e is the multiplicity of
S. However, if I is a principal ideal, then n(I) = N(I) = t,
where t is the type of S.

1. Introduction. In one of her famous papers, [8], Emmy Noether
shows that each proper ideal of a Noetherian ring admits a representa-
tion as an irredundant intersection of finitely many irreducible ideals.
Such a representation is not unique, but the number of components
is uniquely determined by the ideal. The present paper deals with
numerical semigroups, which are mathematical objects much simpler
than Noetherian rings. So it is not surprising that the results of de-
composition of an ideal as intersection of irreducible ideals are stronger.
Such a decomposition in fact, if irredundant, is unique, as can be eas-
ily proved (cf. Theorem 3.3). On the other hand, the irreducibility of
ideals in rings can also be considered in terms of fractional ideals. In a
ring R, with total ring of quotients @, a fractional ideal J is said to be
Q-irreducible if it is not the intersection of two fractional ideals prop-
erly containing it (cf. [5]). The concepts of ideal and fractional ideal in
rings have natural correspondences in numerical semigroups. In fact,
similarly to @-irreducible fractional ideals, Z-irreducible relative ideals
in a numerical semigroup can be defined. It turns out that a relative
ideal of a numerical semigroup S is Z-irreducible if and only if it is of
the form z + , for some z € Z, where 2 is the canonical ideal of S.
Theorem 4.4 shows that a relative ideal of a numerical semigroup S
is in a unique way an irredundant intersection of Z-irreducible ideals.
However, given an ideal I of S, I C S, the two decompositions as irre-
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dundant intersection of irreducible and of Z-irreducible ideals respec-
tively are essentially different. The number of components, n(I) and
N(I) respectively, can be valuated and in general n(I) < N(I) < e,
where e is the multiplicity of the semigroup. However, it turns out
that, in case of a principal ideal I, n(I) = N(I) equals the type of the
semigroup. Some similar results for rings are recalled in the last short
section.

Numerical semigroups have been the matter of my first cooperation
with Ralf Froberg and I want to thank him for introducing me in
this subject, mostly discussing and deepening the implications of the
nice report [4] he wrote several years ago with some colleagues of
Stockholm University. Working or—as I would say—“playing” with
numerical semigroups is not only fun, but it is often useful for making,
denying or proving conjectures on numerical semigroup rings or, more
generally, on one-dimensional local Cohen Macaulay rings.

2. Generalities for numerical semigroups. We fix for all
the paper the following notation. S is a numerical semigroup, i.e., a
subsemigroup of N, with zero and with a finite complement in N. The
numerical semigroup generated by dy, ... ,d, € Nis S = {d,... ,d,) =
{>r_nidisn; € N}, M = S\ {0} is the mazimal ideal of S, e is the
multiplicity of S, that is, the smallest positive integer of S, f is the
Frobenius number of S, that is, the greatest integer which does not
belong to S.

A relative ideal of S is a nonempty subset I of Z (which is the quotient
group of S) such that I + S C I and I +s C S, for some s € S. A
relative ideal which is contained in S is an integral ideal of S.

If I, J are relative ideals of S, then the following are relative ideals

too:
InJ

TuJ
I+J={i+j;iel,jeJ}
I—72J={2€Z|z+JC1I}
I-sJ=I-zJ)NnS={seS|s+JCI}.

Ifz € Z, 24+S = {z+s; s € S} is the principal relative ideal generated
by z and it is easy to check that I —z (z+S)=T—2={i—2; i € [}.
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Moreover, the ideal generated by zi1,...,2, € Z is
(z1+S)U---U(zn+95)

If I is a relative ideal of S, and s € S, s # 0, then Ap,(I) =TI\ (s+1)
is the set of the s smallest elements in I in the s congruence classes
mod s and is called the Apery set of I (with respect to s). In particular,
Ap.(S) is the Apery set of S with respect to the multiplicity e. Since
f is the greatest gap of S, f + s is the largest element in Ap,(S).

The following lemma corresponds to Nakayama’s lemma for local
rings. For numerical semigroups the proof is very easy.

Lemma 2.1. If I is a relative ideal of S, then the unique minimal
set of generators of I is I\ (M +1I).

Sincee+I C M +1I,then I\ (M +1)CI\(e+1I)=Ap.(I)andby
Lemma 2.1 each relative ideal I of S needs at most e generators.

Recall also that ¢t = #{(S —z M) \ S} is the type of the semigroup S.

3. Decomposition into irreducible ideals. Let I be a proper
integral ideal of a numerical semigroup S.

I is irreducible if it is not the intersection of two integral ideals which
properly contain 1.

Consider the partial order on S given by
(%) 81 = 83 <= 81 + 83 = 9, for some s3 € S

and for x € S, set
B(z) ={se€S|s =z}

Lemma 3.1. it If I is a proper integral ideal of S, then the following
conditions are equivalent:

(1) I is irreducible.

(2) I is completely irreducible, i.e., is not the intersection of any set
of integral ideals which properly contain I.
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(3) I is mazimal as an integral ideal with respect to the property of
not containing an element x, for some x € S.

(4) I = S\ B(z), for some z € S.

Proof. Conditions (1) and (2) are equivalent because I has finite
complement in N.

(2) = (3). Let H be the intersection of all the integral ideals properly
containing I. Then there is an € H \ I, so I is maximal with respect
to the property of not containing x.

(3) = (2). Each integral ideal J properly containing I contains z,
so I is not the intersection of all such ideals J and it is completely
irreducible.

(3) & (4) is trivial. o

The fact that, in any commutative monoid S, an ideal of the form
S\ B(z), for some z € S is irreducible was observed in [9].

Example. Let S = (5,6,8) = {0,5,6,8,10,—}. Here the arrow
means that each integer z > 10 is in the set. The same notation will
be used several times in the sequel. If © = 12, then B(z) = {0, 6,12}
and I = S\ B(12) = {5,8,10,11,13,—} is an irreducible ideal of S.

Lemma 3.2. If I is a proper integral ideal of S, then:
(1) The irreducible integral ideals containing I are exactly the ideals
of the form S\ B(z), with z € S\ I.

(2) The irreducible integral ideals containing I and minimal over I
are ezactly those of the form S\ B(z), with x € S\ I and © mazimal
(with respect to <) in S\ I.

Proof. (1) Let € S\ I. We show that I C S\ B(z). In fact, ifi € I,
then i € S and ¢ ¢ B(z) because otherwise i + s = z, for some s € Sj
hence x € I, a contradiction.

Conversely, if z € I, then I ¢ S\ B(z); in fact, z € B(z).

(2) It is enough to observe that, for z,y € S, we have z < y if and
only if B(x) C B(y), which is equivalent to S\ B(z) 2 S\ B(y). o

Thus, we get:



IRREDUCIBLE IDEALS IN NUMERICAL SEMIGROUPS 285

Theorem 3.3. If I is a proper integral ideal of a numerical semi-
group S and if (I —s M)\ I ={z1,...,2,}, then

I=(5\B(z))N---N(5\ B(z,))

18 the unique irredundant decomposition of I into integral irreducible
1deals.

Proof. Using Lemma 3.2 (2), it is enough to show that, if [ is an
integral proper ideal of S and z € S, then z is maximal in S\ I (with
respect to =) if and only if z € (I —g M) \ I. In fact, = is maximal in
S\ I if and only if z ¢ I and z +m € I, for each m € M, that is, if
and only if x € (I —g M)\ I. O

We denote by n(I) the number of components of the unique irredun-
dant decomposition of an integral ideal I of S into integral irreducible
ideals, which by Theorem 3.3 equals #{(I —s M)\ I}.

Example. Let S = (5,6,8). If I = (6,15) = {6,11,12,14, —}, then
(I —s M)\I ={10,13}. SoI = (S\B(10))N(S\ B(13)) is the unique
irredundant decomposition of I into integral irreducible ideals.

The following corollary was proved in a different way in [1, Theorem
4.2].

Corollary 3.4. If I =i+ S is a proper principal integral ideal of S,
then
I'=(S\B(z1))N---N(S\ B(zt))

is the unique decomposition of I into integral irreducible ideals, where,
for h =1,...,t, xp is mazimal in Ap;(S). Moreover, the number t of
components equals the type of the semigroup S.

Proof. By Lemma 3.2 (2), we have to consider the components of the
form S\ B(z;,) where z, is maximal in S\ (i+S) = Ap;(S). Observing
that

(((+8)—sM)=((+5)-zM)=i+(S—zM)
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we have that x is maximal in S\ (i +.5) = Ap;(S) if and only if
zh € ((i+8)—s M)\ (i+8) =i+ (S—z M)\ (i+59),

that is, if and only if xp—i € (S—zM)\S. Moreover, #{(S—zM)\S} =
t is the type of the semigroup S. O

Example. Let S = (5,6,8). The type of S is 2, in fact, (S —z
MY\'S = {7,9}. I =5+, then (I —s M)\ I = {12,14}. So
I = (S\ B(12))N(S\ B(14)) is the unique decomposition of I into
integral irreducible ideals.

4. Decomposition into Z-irreducible ideals. A relative ideal I
of a numerical semigroup S is Z-irreducible if it is not the intersection
of two relative ideals which properly contain I. Of course, if I is a
proper integral ideal of S which is Z-irreducible, it is also irreducible.

Lemma 4.1. IfI is a relative ideal of S, then the following conditions
are equivalent:

(1) I is Z-irreducible.

(2) I is completely irreducible, i.e., is not the intersection of any set
of relative ideals which properly contain I.

(3) I is mazimal as relative ideal with respect to the property of not
containing an element z, for some z € Z.

Proof. Let m be the smallest element of I with respect to the natural
order of Z. Then all the relative ideals of S containing I, except a finite
number, also contain S — (f + 1 — m). So the relative ideals minimal
over I are finitely many and (1) is equivalent to (2). For the equivalence
between (2) and (3), the same argument for the equivalence between
(2) and (3) in Lemma 3.1 can be applied. o

The relative ideal 2 of S maximal with respect to the property of not
containing f, the Frobenius number of S, is called the canonical ideal
of S. Thus, setting B(f) ={z2€Z| 2= f} ={f —s;s € S}, we have

Q=Z\B(f) ={f -z z€Z\ S}
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Calling an integer z symmetric to = if z = f — xz, () consists of the
integers which are symmetric to the gaps of the semigroup, and we
have S C Q C N.

By Lemma 4.1 the only Z-irreducible relative ideals of S are the
relative ideals maximal with respect to the property of not containing
z + f, for some z € Z, i.e., just the translations z + €2 of 2. Thus, we
have the following fact (cf. [1, Proposition 3.5] for a different proof):

Proposition 4.2. Let J be a relative ideal of S. Then J is Z-
irreducible if and only if J = z + Q, for some z € Z.

We want to emphasize that, differently from the case of irreducible
integral ideals, we have essentially (i.e., modulo translations) a unique
Z-irreducible relative ideal in a numerical semigroup, the canonical
ideal 2.

The following are well-known properties of the canonical ideal (cf,
e.g., [1]). In the next proposition and for all the rest of the section, if
1, J are relative ideals, the notation I — J always means I —z J.

Proposition 4.3. (1) For each relative ideal I of S, Q—(Q—1I)=1.
In particular Q — (—-5)=Q-Q=2_5.

(2) If I C J are relative ideals of S, then #{J \ I} = #{(Q2 —-1)\
(Q—J)}.

(3) For each set {Ip}nem of relative ideals of S,

Q- ﬂ[hz U(Q—Ih).

heH heH

(4) The cardinality of a minimal set of generators of  is the type t
of S.

For the decomposition of a relative ideal into Z-irreducible ideals we
get:

Theorem 4.4. (1) Each relative ideal J of S is in a unique way an
irredundant intersection of Z-irreducible relative ideals.
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(2) The number of components of such decomposition equals the
cardinality of a minimal set of generators of Q — J, which is also equal

to #{(J — M)\ J}.

Proof. (1) Suppose I is a relative ideal of S minimally generated by
Tlyeee yip, I = <i1,... ,’ih> = (i1+S)U---U(ih+S) then

h
QO-1=0-J@G+9)=
j=1 J=1

DL

(Q—(i; +9))

ij),

HD;—

which, by Proposition 4.2, is a decomposition into Z-irreducible relative
ideals.

Moreover, the intersection is irredundant: if M., (Q2—i;) C (Q— i),
then, applying Proposition 4.3 (3),

i € Q— ( —lk CQ ﬂ —z] U(ij+S)’
j#k j#k

which is a contradiction with the minimality of the set of generators
for I. Finally, observe that each relative ideal J is of the form Q2 — I,
in fact Q — (2 —J) = J.

(2) We have seen above that the number of components for an
irredundant decomposition of J = 2—1I equals the number A of minimal
generators of I = Q — (2 —I) = Q — J, which applying Lemma 2.1 and
Proposition 4.3 (2), is

Q= D\ Q= T)+ M)} =#{(Q - (= J) + M)\ J}
=#{((Q-(Q-J) - M)\ J} =#{(J -M)\J}. @O

Example. Let S = (5,6,8) and consider the ideal J = (6,15)
{6,11,12,14,—}. We have (J — M)\ J = {9,10,13}, I = Q — J
(—4,—-1,0) and so

J=Q+4H)N(Q+1)NAQ

is the unique irredundant decomposition of J as intersection of Z-
irreducible relative ideals of S.
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By Theorem 4.4, we also get another characterization of the canonical
ideal €2 and its translations:

Corollary 4.5. Let J be a relative ideal of S. Then J is Z-irreducible
if and only if #{(J — M)\ J} = 1. In that case J = Q + z, for some
z€Z,and (J—M)\J={f+=z}.

Proof. The first part follows from Theorem 4.4 (2). For the second
part we know, by Proposition 4.2 that J = 2 + 2, for some z € Z.
Moreover, f+z ¢ Q4+ z, because the Frobenius number f is symmetric
to0 € Sandso f ¢ Q. Finally, f+2z € (Q42)—M because f+M C Q. O

In particular, if J = ¢+ S is a principal relative ideal, since
#{((A+5) = M)\ (i + 5)} = #{(S - M)\ S}

and #{(S — M)\ S} is the type of S, we get:

Corollary 4.6 [1, Proposition 4.4, (ii)]. If J is a relative principal
ideal of S, then the unique decomposition of J as intersection of Z-
irreducible relative ideals has t components, where t is the type of S.

Example. Let S = (5,6,8). S is of type ¢t = 2. The principal ideal
8+ has the following unique irredundant decomposition as intersection
of Z-irreducible relative ideals of S

8+S8=0B8+0)[)6+Q)

Given a proper integral ideal I of a numerical semigroup, we want
to estimate and compare the two natural numbers n(Il) and N(I),
i.e., the number of components of the irredundant decomposition of
I as intersection of irreducible integral ideals and Z-irreducible relative
ideals respectively.

Combining Corollaries 3.4 and 4.6 we get:
Corollary 4.7. If I is a proper principal integral ideal of S, then

where t is the type of S.
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Remark. The converse of Corollary 4.7 is not true as the following
example shows. Let = (4,5,7), which is a semigroup of type 2,
and consider the integral ideal I = (7,8,9) = {7,8,9,11,—}. Since
(I—-sM)\I=(I-M)\I={4,10}, we have n(I) = N(I) =2, but I
is not principal.

Proposition 4.8. If I is a proper integral ideal of S, then
1<n(I)<N(I)<e
where e is the multiplicity of S.
Proof. The second inequality is because (I —g¢ M)\ I C (I — M)\ I
(cf. Theorems 3.3 and 4.4 (2)) and the third is because N(I) equals the

cardinality of a minimal set of generators of 2 — I which is a relative
ideal of S and hence needs at most e generators. ]

Remark. Observe that n(I) = N(I) = e can be realized in each
numerical semigroup S. In fact for any integral ideal I of S of the form
{a,a+1,—-} =(a,a+1,...,a+e—1), witha > f+ 1+ e, we have
#{I-sM)\I} =#{(I-M)\I} ={a,a—1,...,a— e+ 1}; thus,
n(I)=N(I) =e.

Recall that, if S = (d; = e,ds,...,d,), the blowup of the maximal
ideal M is the semigroup B(M) = (e,ds —e,... ,d, — e), which is the
smallest semigroup containing M — e.

Corollary 4.9. Let J be a relative ideal of S. Then the following
conditions are equivalent:

(1) N(J) =e.
(2) Q@ — J needs e generators.
(3) 2 — J is an ideal of B(M).

Proof. The equivalence (1) < (2) follows from Theorem 4.4 (2) and
the equivalence (2) < (3) is proved in [3, Proposition §]. O

Consider now some particular cases. If I = M is the maximal ideal
of S, then M is trivially irreducible as integral ideal. That agrees with
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Theorem 3.3, in fact M = S\ B(0), since (M —g M)\ M = S\ M = {0}.
On the other hand:

Proposition 4.10. The mazimal ideal M of S is Z-irreducible if and
only if S = N. If S # N and Q is minimally generated by z1,... , z,
then

M=Q-z)Nn---NQ—2z)N(Q— )
is the unique irredundant decomposition of M into Z-irreducible ideals.
In particular, N(M) =t + 1.

Proof. If S = N, it is easy to see that M = Q+1 is Z-irreducible. Let
S # N. Arguing as in the proof of Theorem 4.4, we have to look for a
minimal set of generators of Q— M. By Lemma 4.5, (Q—M)\Q = {f},
thus (2— M) is minimally generated by z1,... , z:, f and the conclusion
follows as in the proof of Theorem 4.4. In particular, N(M) > 2 and
M is not Z-irreducible. O

Example. S = (5,6, 8) has canonical ideal 2 = (0, 2) and Frobenius
number f =9. Thus,

M=Qn(Q2-2)N(2-9)

is the unique irredundant decomposition of M into Z-irreducible ideals.

IfI =C={f+1, f+2,—}is the conductor of S, then (C—M)\C =
{f,f—1,...,f+1—¢e}. This is a set with e elements, which agrees
by Theorem 4.4 with the fact that @ —C =N = (0,1,...,e — 1) is a
relative ideal minimally generated by e elements. Thus N(C) =e. On
the other hand, by Theorem 3.3, n(C) equals the number of elements
of {f,f—1,...,f+1— e} which are in S. Hence:

Proposition 4.11. If C is the conductor of S, then
1<n(C)<e—1<N(C)=e.

If n(C) = 1, i.e., if C is irreducible (this happens for example in a
semigroup of the form S = (e,e +1,...,2e — 1)), then the maximal
distance N(C) —n(C) = e — 1 is realized.
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5. Rings. In this section R is assumed to be a ring with total
ring of quotients @, R # @, such that each regular ideal (i.e., an ideal
containing a nonzerodivisor) is generated by its set of regular elements.
As usual, I : J means {z € Q | zJ C I}, for I, J fractional ideals of R
and [ :g J=(I:J)NR.

If (R, M) is a Noetherian local ring and I is an M- primary ideal, it
is well known that the number n(I) of components of an irredundant
decomposition of I are

n(I) = Ig(I :r M/I) = dimp,pSocle (R/I).

In particular this holds for each regular ideal, if R is one-dimensional,
and Theorem 3.3 can be seen as an analogy of that for numerical
semigroups.

For a ring theoretic result similar to Theorem 4.4, we have to consider
local rings (R, M), of total ring of quotients @), where a completely Q-
irreducible fractional ideal exists. Following the terminology of [5],
a completely Q-irreducible fractional ideal is a fractional ideal that is
not an intersection of any set of fractional ideals properly containing it.
This concept is close to that of an m-canonical ideal. An m-canonical
ideal of a ring R is a fractional ideal w such that w : (w : I) = I,
for each regular ideal I of R. It turns out that if (R,M) is a (not
necessarily Noetherian) local ring possessing an m-canonical ideal w,
then w is completely @-irreducible and each completely @Q-irreducible
ideal is of the form zw for some regular element z € @ (cf., e.g., [2,
Proposition 2.1]).

It is well known that if (R, M) is a Noetherian local ring, which has
an m-canonical ideal, then R is one-dimensional. In particular, each
analytically unramified one-dimensional local ring, e.g., the ring of an
algebraic curve singularity, has an m-canonical ideal.

The following result appears in [2]. For convenience of the reader, we
include here the proof which is the multiplicative version of the proof
of Theorem 4.4 for numerical semigroups.

Proposition 5.1. Suppose that the local ring (R, M) of total ring of
quotients Q) has an m-canonical ideal w. Then:

(1) Each regular fractional ideal J of R is an irredundant intersection
of completely Q-irreducible fractional ideals.
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(2) The number N(I) of components of an irredundant decomposition
of J is finite if and only if the ideal (w : J) is finitely generated and in
this case

N(I) = lg(J : M/J).

Proof. Let {in} be a (non necessarily finite) set of regular elements
of @. Then:

ZihR: Zih(w Tw) = Z(w viylw) = w e ﬂi;lw

where, for the last equality, a property of the canonical ideal is applied
(cf., [7, Lemma 2.2 (e)].

Now, each regular fractional ideal of J of R is of the form w : I, in
fact w: (w : J) = J, and, by the above equalities, I = > i, R if and
only if w : I = Nij'w. It follows that {is} is a minimal system of
generators for I = w : J if and only if the decomposition J = m’glw
into @Q-irreducible fractional ideals is irredundant and that I = w : J is
finitely generated if and only if such an irredundant decomposition has
finitely many components N(.J).

Moreover, if N(J) is finite, it equals the cardinality of a minimal set
of generators of w : J which is

lRw:J/(w: J)M) =lgp(w: ((w: J)M/J) =I1r(J : M/J). o

Remark. Observe that if the ring R of Proposition 5.1 is Noetherian
(and thus necessarily one-dimensional) then w : .J is finitely generated
and a minimal set of generators has at most e elements, where e is
the multiplicity of the ring (cf., [6]). Thus, if I is a proper integral
regular ideal of R, then, with the notation above, similarly to numerical
semigroups we have

1<n(I)=Ig(I:g M/I)<Ig(I:M/I)=N(I) <e.
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