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ON COMPLETELY DECOMPOSABLE AND SEPARABLE
MODULES OVER PRUFER DOMAINS

LASZLO FUCHS AND JORGE E. MACIAS-DIAZ

ABSTRACT. We generalize known results on summands of
completely decomposable and separable torsion-free abelian
groups to modules over h-local Priifer domains. Over such
domains summands of completely decomposable torsion-free
modules are again completely decomposable (Theorem 3.2)
and summands of separable torsion-free modules are like-
wise separable (Theorem 4.2). In addition, a Pontryagin-Hill
type theorem is established on countable chains of homoge-
neous completely decomposable modules over h-local Priifer
domains (Theorem 7.1). Several auxiliary results are proved
for modules over integral domains that are direct sums of finite
or countable rank submodules.

1. Introduction. All modules in this note are torsion-free modules
over integral domains R.

By a completely decomposable torsion-free module M is meant a direct
sum of rank 1 modules, i.e., of modules that are R-isomorphic to
submodules of the field @ of quotients of R. The cardinal number of
the set of summands is called the rank of M, in notation: rk M. This
is an invariant of M: the cardinality of every maximal independent set
in M.

By making use of results by Olberding [15], recently Goeters [9]
proved that over an h-local Prifer domain R summands of finite rank
completely decomposable torsion-free modules are again completely
decomposable. In Theorem 3.2 we extend this theorem to modules
of arbitrary ranks. Our approach is different from Goeters’ inasmuch
as we rely on results by Kolettis [12] on homogeneously decomposable
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torsion-free modules. Our theorem generalizes the celebrated Baer-
Kulikov-Kaplansky theorem on summands of completely decomposable
abelian groups (e.g., Fuchs [5, Theorem 86.7]).

We also generalize an old result on abelian groups stating that
summands of separable torsion-free groups are again separable (see,
e.g., Fuchs [5, Theorem 87.5]). Theorem 4.2 asserts that summands
of separable torsion-free modules over an h-local Priifer domain R
are again separable. The proof is via reduction to the completely
decomposable case.

Hill [10] established a far-reaching generalization of Pontryagin’s cri-
terion on the freeness of abelian groups by proving that the union of a
countable ascending chain of pure free subgroups (of any size) is likewise
free. This theorem is extended here to countable chains of homogeneous
completely decomposable modules over h-local Priifer domains (Theo-
rem 7.1). The hypothesis of purity had to be strengthened: we assume
that countable rank RD-submodules in the factors of the chain can be
obtained as images of countable rank submodules from the links of the
chain (they are called RD*-submodules)—a condition that is automati-
cally satisfied whenever R is a countable domain.

We also show that there is a continuous well-ordered ascending chain
with countable rank factors consisting of completely decomposable RD-
submodules between a completely decomposable module and a com-
pletely decomposable RD*-submodule, a fact that underlines the im-
portance played by countability in the theory of completely decom-
posable modules. (This phenomenon was first observed by Dugas-
Rangaswamy [4] for abelian groups.)

Some of our results are proved under more general conditions than
needed for our main results: for direct sums of finite or countable rank
modules (rather than just for direct sums of rank 1 modules). Besides
their independent interest, their proofs also reveal basic ideas on which
the results rely.

2. Preliminaries. Let M be any module over the domain R.
Following Hill, we define various families of submodules (see also Fuchs-
Salce [7]).

By an H(Yy)-family in M is meant a collection H of submodules of
M satisfying the following properties:
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H1. 0, M € H;

H2. H is closed under unions, i.e., M; € H (i € I) implies
Y ic1 M; € H for any index set I;

H3. if C € H and X is any countable subset of M, then there is a
submodule B € H that contains both C' and X and is such that B/C
is countably generated.

A G(Xg)-family G is defined similarly with H2 replaced by the follow-
ing weaker condition:

G2. G is closed under unions of chains.

In this paper we are interested in the rank versions of these fami-
lies. The H*(Rg)-family and the G*(Rg)-family are defined similarly
for torsion-free modules M (see Rangaswamy [16]): in these cases the
submodules in the families are required to be RD-submodules and in
condition H3 ‘countable rank’ is to be used in place of ‘countably gen-
erated.” (Recall that a relatively divisible or briefly an RD-submodule
of M is a submodule N satisfying rN = N NrM for all r € R.)

Obviously, every H*(Rg)-family is a G*(Rg)-family, but the converse
fails in general. Note that every torsion-free R-module M has a G*(Xy)-
family of RD-submodules. In fact, select a maximal independent set X
in M. For a subset Y of X, let My denote the smallest RD-submodule
of M that contains Y. It is readily checked that the set of all My is a
G*(Np)-family. However, this is in general not an H*(Xg)-family, since
the sum of two RD-submodules need not be an RD-submodule.

If the R-module M is a direct sum of submodules of countable rank,
and M = ®ycrAy with tk A, < Vg is such a decomposition for an
index set I, then the standard way of defining an H*(R)-family H of
summands in M is to consider the set of all partial summands in this
decomposition: Hj = @4cgAq with J ranging over all subsets of I.

It is well known (and easy to check) that the intersection of a finite
number of (or of even countably many) G*(R)-families is again such a
family. The same holds for H*(Rp)-families.

Next we introduce a new concept that will be needed in the sequel,

strengthening the RD-property of submodules.
Let A be a submodule of the torsion-free R-module M, and let

¢ : M — M/A be the canonical map. We say that A is a strong
RD*-submodule of M if
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1) it is an RD-submodule, and

2) each finite (and hence countable) rank submodule in M/A has a
countable rank preimage in M.

For the sake of comparison let us point out that the RD-submodule
A is balanced in M if every rank one submodule in M /A has a rank one
preimage in M. Thus the property of being ‘RD*’ lies between ‘RD’
and ‘balancedness.’

In the following list (a)—(d), A4, B will denote RD-submodules of the
torsion-free R-module M such that A < B. It is straightforward to
verify that

(a) direct summands and balanced submodules are RD*-submodules;
(b) if A is an RD*-submodule of M, then it is RD* in B as well;

(c) the property ‘RD*’ is a transitive relation: if A is an RD*-
submodule of B and B is an RD*-submodule of M, then A is an
RD*-submodule of M;

(d) let A be an RD*-submodule of M; then B is an RD*-submodule
in M if and only if B/A is an RD*-submodule of M/A.

Example 2.1. Suppose that there exists an uncountably generated
rank one torsion-free R-module A (e.g., an uncountably generated field
of quotients of certain Dedekind domains). If0 - H - F - A — 0 is
a free presentation of A, then H is RD, but not RD* in F.

Example 2.2. It is easy to see that the concept of RD*-submodule
is new only if R is uncountable, because if R is a countable domain,
then all RD-submodules are automatically RD*-submodules. In fact,
if Ais RD in M and ¢ : M — M/A is the canonical map, then every
countable rank submodule of M/A is countably generated, and the
generators are included in ¢C for some countable rank submodule C
of M.

Next we prove an easy result.

Lemma 2.3. If A is an RD*-submodule of the torsion-free R-module
M, then for every G*(Ro)-family C of RD-submodules in M/A, M
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admits a G*(Rg)-family G of RD-submodules such that
C={¢B|Begj,

where ¢ denotes the canonical projection M — M/A.

Proof. Let F be the G*(R¢)-family of RD-submodules of M and C a
G*(Rp)-family of RD-submodules in M/A. Define G = {B € F | ¢B €
C} where ¢ : M — M /A denotes the canonical projection. It is readily
seen that G is as desired. O

We say that two torsion-free R-modules, A and B, are quasi-
isomorphic (see Goeters [9]) if there exist submodules A’ < A and
B’ < B such that A’ = B and B’ = A. Quasi-isomorphism is evidently
an equivalence relation on torsion-free R-modules.

The equivalence classes of rank 1 torsion-free R-modules under quasi-
isomorphism are called types. The type of a rank 1 torsion-free module
M is denoted by the symbol 7(M). The set of types admits a natural
partial order: for types ¢ and 7 we set ¢ < 7 if and only if there exist
rank 1 R-modules A and B with 7(4) = o and 7(B) = 7 such that
A is a submodule of B. The smallest type is the common type of all
fractional ideals of R, while the largest type is the type of @, the field
of quotients of R.

Just as for abelian groups, with a given type 7 one can associate
two fully invariant submodules, M(7) and M*(r), of a torsion-free R-
module M as follows:

M(r) =) {X|X < M;7(X) > 7}
and
M*(r)=> {X| X < M;7(X) > 7}

where X stands for rank one submodules. From the definition it is clear
that they are submodules of M such that M (7) > M*(r); furthermore,
M(o) < M(7) and M*(0) < M*(7) whenever o > 7.

A torsion-free module H will be called homogeneous of type T if
H(7t) = H and H*(7) = 0. Evidently, RD-submodules of homogeneous
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torsion-free modules are again homogeneous. Projective modules as
well as divisible torsion-free modules are homogeneous, and so are direct
sums of fractional ideals of R.

Kolettis [12] calls a torsion-free module M homogeneously decompos-
able if it is a direct sum of homogeneous modules (of equal or different
types). He proves that a torsion-free module M of countable rank is
homogeneously decomposable if and only if it satisfies the following
two conditions: (i) for every type 7, both M(7) and M*(7) are sum-
mands of M; and (ii) every element of M belongs to a direct summand
of M that is a finite direct sum of homogeneous modules. Using this
characterization, he proves:

Theorem 2.4 (Kolettis [12]). Summands of a homogeneously decom-
posable torsion-free R-module are themselves homogeneously decompos-
able.

3. Summands of completely decomposable modules. We
repeat the definition: a torsion-free R-module C' is completely decom-
posable if it is the direct sum of rank 1 submodules. Such a C' is ho-
mogeneous if it is the direct sum of quasi-isomorphic rank 1 modules.
It is clear that completely decomposable modules are homogeneously
decomposable.

In the study of completely decomposable modules it is crucial what
happens in the finite rank case. It is a classical theorem by Baer [1]
that a finite rank completely decomposable homogeneous abelian group
has the distinguished property that every pure (i.e., RD-)subgroup is
a summand, and hence it is likewise completely decomposable. This is
not true in general, not even for projective modules. Olberding [15]
proved that this property is shared by h-local Priifer domains R (recall:
a domain R is h-local if every non-zero element belongs only to finitely
many maximal ideals, and every non-zero prime ideal is contained only
in a single maximal ideal), moreover:

Theorem 3.1 (Olberding [15]). The following are equivalent for any
integral domain R:

(a) R is an h-local Prifer domain,;

(b) every pure submodule of a finite rank completely decomposable
homogeneous torsion-free module is a summand,
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(c) every pure submodule of a finite direct sum of fractional ideals is
a summand.

It is easy to see that in conditions (b) and (c) ‘pure submodule’
can be replaced by ‘RD-submodule’ (this strengthens the hypothesis
of the difficult implication (c) = (a)). It also follows at once that the
summands in (b) and (c) are then completely decomposable.

Using Olberding’s theorem, Goeters [9] proved that summands of
finite rank completely decomposable torsion-free modules over h-local
Prifer domains are again completely decomposable. Our present goal is
to extend this result to completely decomposable modules of arbitrarily
high ranks and to verify the analogue for separable modules (see next
section). We call a torsion-free R-module M separable (in the sense
of Baer [1]) if 1) every finite set of its elements can be embedded in
a finite rank summand of M, and 2) finite rank summands of M are
completely decomposable. (This is a slightly stronger definition than
the one used in Fuchs-Salce [7, Chapter 16, Section 5].)

Accordingly, we are now going to prove:

Theorem 3.2. Summands of completely decomposable torsion-free
modules over h-local Priifer domains are likewise completely decompos-

able.

Proof. The proof begins with the reduction to the countable rank
case. By the rank version of a well-known theorem by Kaplansky
[11], summands of modules that are direct sums of countable rank
submodules are themselves direct sums of countable rank summands.
In view of this, it is straightforward to see that it will suffice to prove
that if M = A® B is a countable rank completely decomposable torsion-
free R-module, then A is also completely decomposable.

Further reduction is possible if we make use of Kolettis’s theorem
quoted above. Indeed, a completely decomposable module being ho-
mogeneously decomposable, from Theorem 2.4 it follows that for the
proof of Theorem 3.2 we may assume without loss of generality that M
is homogeneous.

The next step in the proof is to show that the summand A of M is
separable. So, let ay, ... ,a, be elements of A. Clearly, there is a finite
rank completely decomposable summand N of M that contains all of
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ai,...,a,. The RD-submodule A’ spanned by the elements aq, ... ,a,
is by Olberding’s theorem a completely decomposable summand of N.
Thus A’ is a completely decomposable summand of M, and hence
of A. This shows that all finite rank RD-submodules are completely
decomposable summands, establishing the separability of A.

Thus A is the union of a countable chain of finite rank completely
decomposable submodules each of which is a summand of the following
ones with completely decomposable complements. It follows that A is
completely decomposable, completing the proof of the theorem. ]

4. Summands of separable modules. We start the discussion of
separability (defined above) with a general lemma that holds over all
integral domains.

Lemma 4.1. A domain R has the property that summands of separa-
ble torsion-free R-modules are again separable if and only if summands
of completely decomposable torsion-free R-modules of countable rank
are again completely decomposable.

Proof. Before proving the equivalence of the stated conditions, we
observe that either implies that summands of finite rank completely
decomposable R-modules are again completely decomposable. As
a consequence, we can argue (as in the final part of the proof of
Theorem 3.2) that countable rank separable R-modules are completely
decomposable.

Necessity follows at once by applying the hypothesis to a completely
decomposable module of countable rank noting that countable rank
separable modules are completely decomposable.

For sufficiency, assume that summands of completely decomposable
torsion-free R-modules of countable rank are completely decomposable.
Let M be a separable torsion-free R-module and M = A @ B a direct
decomposition of M. Given a finite subset S in A, we have to show
that S is contained in a finite rank summand H of A and finite rank
summands of A are completely decomposable.

Let My be a finite rank completely decomposable summand of M
containing S, and let Ag, By be finite rank RD-submodules of A and B,
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respectively, such that My < Ao ® By. There is a finite rank completely
decomposable summand M; of M that contains a maximal independent
set in Ay ® By, and hence it contains both Ay and By. Furthermore,
there are finite rank RD-submodules Ay, By of A and B, respectively,
satisfying My < A; & B;. Continuing this way, we obtain an ascending
chain

My<Ay®By<M; <A @B < <M, <A, ®B, <+ (n<w)

where M,, are finite rank summands of M, while A,,, B,, are finite rank
RD-submodules of A, B. The union M’ of this chain is a countable rank
submodule of M which is completely decomposable as the union of the
chain of completely decomposable modules M,, where every module in
the chain is a summand in each of the following ones with completely
decomposable complement. Moreover, by construction, we have

M'=A'® B' where A' =| JA,, B' = JB,.

By hypothesis, A’, B’ are completely decomposable as summands of the
completely decomposable module M’ of countable rank. Therefore, S
is contained in a finite rank completely decomposable summand H of
A’. Then H is a summand of M’, and since H < Mj, < M’ for some
k < w, H is a summand of My, so also of M, and hence of A.

From our argument it is also clear that finite rank summands of
A are summands of a completely decomposable module, so they are
themselves completely decomposable. ]

Consequently, combining Theorem 3.2 and Lemma 4.1 we can state:

Theorem 4.2. Summands of separable torsion-free modules over an
h-local Prifer domain are separable.

5. Chains of completely decomposable submodules between
completely decomposable submodules. We would like to call
attention to an interesting phenomenon: the existence of chains with
countable rank factors between a completely decomposable module and
a completely decomposable RD-submodule; see Proposition 5.2. This
has been pointed out for abelian groups by Dugas-Rangaswamy [4]
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(cf., also Fuchs-Viljoen [8]), and interestingly, it holds over arbitrary
integral domains. It provides an additional evidence that complete
decomposability is intimately tied to countability even in more general
situations.

We phrase the results more generally, for modules that are direct sums
of countable rank submodules. The completely decomposable case will
then be a simple corollary.

We require a preliminary lemma.

Lemma 5.1. Suppose B is an R-module that is a direct sum of
modules of countable rank, and A is a submodule of B that is likewise
a direct sum of countable rank modules.

(i) If B' is a summand of B such that A’ = AN B’ is a summand
of A, then A+ B’ is a direct sum of modules of countable rank.

(ii) There exist G*(No)-families A and B of summands in A and B,
respectively, such that A={ANX | X € B}.

Proof. (i) By a well-known Kaplansky result [11] already mentioned
above, summands of a module that is a direct sum of modules of
countable rank are again direct sums of modules of countable rank.
Consequently, (A+ B’)/B’' =2 A/A’ is a module that is a direct sum of
modules of countable rank. Furthermore, B’ is a summand of A + B/,
thus A+ B' = B' @ A/A’ is likewise a direct sum of submodules of
countable rank.

(ii) Fix decompositions of A and B as direct sums of countable rank
modules, and let A’ and B’ denote the H*(Xg)-families of direct sums of
subsets of these summands in A and B, respectively, The first and the
second entries in the pairs (A’, B') with A’ = ANB' (A’ e A',B' € B')
yield the desired G*(Xg)-families .4 and B, respectively. o

We can now verify:

Proposition 5.2. Suppose A is an RD*-submodule of the torsion-
free R-module B such that both A and B are direct sums of countable
rank submodules.
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(i) For some ordinal T, there is a continuous well-ordered ascending
chain

(1) A=By<B;<--<B,<---<B,=B

of RD-submodules between A and B such that each B, is a direct sum
of submodules of countable rank and Byy1/B, is torsion-free of rank
<Ny, for every o < T.

(ii) If A and B are completely decomposable, then the B, can be
chosen to be completely decomposable as well.

Proof. (i) Select G*(Xp)-families A and B of summands in A and
B, respectively, as stated in Lemma 5.1 (ii). In view of Lemma 2.3,
we can find in B a G*(Xg)-family G of RD-submodules B’ such that
A + B’ is always an RD-submodule of B. The intersection BN G is
evidently a G*(Rg)-family, from which we extract a continuous well-
ordered ascending chain 0 = By < B} < --- < B, < .-+ < B. =B
such that all B],,,/B/ are of countable rank. Next we form a chain
(1) with the RD-submodules B, = A+ B, (6 < 7). Lemma 5.1 (i)
guarantees that chain (1) will have the desired property, since

Boy1/Bs = By /[Byy1 N(A+ B)| = B, 1 /[(By1 NA) + By

is a surjective image of B, ,/B..

(ii) In case both A and B are completely decomposable, then the
summands A’, B" in Lemma 5.1 (i) can be chosen such that all the
modules A/A’ and B’ are completely decomposable. Then the modules
B, of the preceding paragraph will be completely decomposable. a

6. Chains of finitely decomposable modules. The classical
Pontryagin theorem on torsion-free abelian groups states that the union
of an ascending sequence of finite rank free groups is free whenever
each group in the sequence is pure in its immediate successor. This
important theorem has been generalized by Hill [10]: the union of an
ascending sequence 0 = Ap < A; < -+ < Ap < -+ (n < w) of free
abelian groups (of any size) is free provided that for each n < w, A,
is pure in A, ;. Our next goal is to establish an analogous result for
homogeneous completely decomposable modules over an h-local Priifer
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domain (Theorem 7.1). (A similar result on valuation domains was
proved by Rangaswamy [16].) In this section, we prove a preparatory
result (Theorem 6.3) that might be of independent interest. It is
phrased in more general terms than needed in what follows in order to
emphasize a main point that makes things work for countable unions.

By a finitely decomposable torsion-free R-module we mean a module
that is the direct sum of finite rank submodules. We call an RD-
submodule A of the torsion-free R-module M ultra-balanced if A is a
summand in every RD-submodule C' of M that contains A as a finite
corank submodule. (Ultra-balanced subgroups of abelian groups have
been introduced and discussed by Chao [2]. Ultra-balanced submodules
are of course balanced.) The meaning of ‘ultra-balanced projective’
is evident. It is straightforward to check that the ultra-balanced
projective modules are precisely the summands of finitely decomposable
modules. They are not necessarily finitely decomposable, not even for
abelian groups; this is demonstrated by an example of Corner [3]: a
countable finitely decomposable torsion-free abelian group that is the
direct sum of two indecomposable groups of countable rank.

We now state the crucial lemma (some arguments are similar, e.g.,
to [16, Lemma 5.2]).

Lemma 6.1. Assume that the R-module M 1is the union of an
ascending chain

(2) 0=My<M < - <M, <--(n<w)

of torsion-free submodules such that
(i) each My, admits a G*(No)-family D,, of direct summands, and
(ii) for each n < w, M, is an RD*-submodule in M.

Then there exists a G*(Ro)-family B of ultra-balanced submodules of M
such that for all n < w and for all A € B we have

(a) AN M, € Dy; and
(b) A+ M, is an RD-submodule in M.

Proof. Assume (2) satisfies hypotheses (i) and (ii). First of all, we
claim that the collection

B,={A€D, | A+ M;isRD in M, (k <n)}
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is a G*(Ng)-family of summands in M,,. By hypothesis (ii), M,, has
a G*(Ng)-family G (k < n) of RD-submodules such that its members
project onto RD-submodules of M,, /M, (see Lemma 2.3). It is readily
checked that

B,=D,NGiN---NGy_1

is as desired.

The next step is to show that the collection
B={A<M|ANM, € B, for each n < w}

is a G*(Xg)-family of RD-submodules in M. For details, we refer to
the proof of [6, Lemma 1.7]. It follows easily that the G*(Xp)-family
B of RD-submodules will have properties (a) and (b). For example, to
check condition (b) just observe that the RD-property is transitive and
A=U,(ANM,).

It remains to show that the submodules in B are ultra-balanced in
M. Suppose A € B, and let C' be an RD-submodule of M such that
A < C with C/A of finite rank. Pick a maximal independent set
S ={c1,...,¢k} in C mod A. There is an index n such that S C M,.
By (b), A+ M, is an RD-submodule in M, and the same is true for
A+(M,NC) = (A+M,)NC. This RD-submodule contains both A and
S; consequently, A + (M, NC) =C. By (a), M, N A is a summand of
M,,, say, M,, = (M,,NA)® B. Therefore, M,,NC = (M,NA)®(BNC),
whence

C=A+(M,NnA)+(BNC)=A+(BnQO)

follows. Since ANBNC = AnNnB = AnBN M, = 0, we have
C =A@ (BNC). Here BN C is a finite rank RD-submodule of M,
so A is a summand of every submodule of M in which it is contained
with finite corank, i.e., A is ultra-balanced in M. i

The countable rank version of Theorem 6.3 is proved separately as
our next lemma.

Lemma 6.2. Assume (2) is a chain of torsion-free R-modules of
countable rank such that

(a) each M, is finitely decomposable;
(b) M, is an RD-submodule of My+1 for each n < w.

A necessary and sufficient condition that the union M of the chain be
finitely decomposable is
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(*) for every finite set S of elements in M there exist an index n and
a finite rank submodule C' of M containing S such that C is a summand
of M, for all m > n.

Proof. Necessity is easy: if M is finitely decomposable, then it must
have a finite rank summand C containing a given finite set of elements,
and C' is necessarily a summand of each M,, in which it is contained.

For the proof of sufficiency, assume the stated condition. Select a
maximal independent set ag, a1, ... ,an,,... of M. We construct a chain
Co £Cy £--- <0, £ -+ of submodules satisfying the following
conditions:

(o) ag,ai,...,a, € Cy, for each n < w;

(B) Cy, is a finite rank summand of all M, for all m > 4, for some
%

(V)io<ip <--- <dp <-ee
Hypothesis (*) guarantees that such a chain does exist. Clearly, C,, will
be a summand of C, 11, because it is a summand of M;, ,, containing
Crn+1; say, Cpy1 = Cp, @ Bp41. Then M will be the direct sum of Cj

and the B,,’s all of which are of finite rank. Consequently, M is finitely
decomposable. u]

Observe that the proof of the preceding lemma establishes the neces-
sity of the condition (*) in the following theorem.

Theorem 6.3. Let (2) be a chain of torsion-free R-modules. Suppose
that

(a) each M, is finitely decomposable;
(b) M, is an RD*-submodule of M,11 for each n < w.

A necessary and sufficient condition that the union M of the chain be
finitely decomposable is condition (*) in Lemma 6.2.

Proof. Assuming (*), let D,, denote an H*(RXg)-family of summands
in a fixed direct decomposition of M, as a direct sum of finite rank
submodules. We appeal to Lemma 6.1 to conclude that there is a
G*(Ro)-family B of ultra-balanced submodules of M such that ANM,, €
D,, and A + M,, is an RD-submodule in M for every A € B and for
every n < w.
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By transfinite induction we construct, for some ordinal p, a continu-
ous well-ordered ascending chain

(3) 0=Np <Ny <-+-<Nyg<-+ (a<p)

of submodules of M such that, for each o < p,
(i) N, is finitely decomposable;
(ii) N4 € B;
(iii) N4 is a summand in Ny41;
(iv) for a finite subset S of N,, N, has a finite rank summand C

of M that contains S and is a summand of M,, for all m > n, for a
suitable n;

(v) Ng+1/Ng is finitely decomposable of rank < Ry;
(Vi) M = Uge Ny

It will suffice to discuss the step from N, to Nyy1 for @ < p. So
suppose that, for some ordinal § < u, the submodules N, have been
defined for all o < B satisfying (i)—(v). Pick a countable independent
set ag,ai,...,an,... modulo Ng in M, and proceed to construct a
chain Cy < C; < --- < Ck < --- satisfying conditions («)—(y) for the
chosen elements a,. Moreover, in order to satisfy (iv), we require that
the Cy be such that

(0) Cr, N M;, € B;, for each k < w.

This can be achieved if we increase the Cy by including an appropriate
finite rank summand of Ng. Then Ng N Cy = X}, will be a summand
of Ng, say, Ng = X}, @ Pj. Furthermore, by (ii) Ng is ultra-balanced
in Ng + Ck, so Ng/P;, = X}, is ultrabalanced in (Ng + C)/P, whence
Cr = X @Y}, follows for a suitable finite rank submodule Y; of M.
Similarly, we obtain Cyy1 = Xg4+1®Ygt1. Manifestly, these Yy, (k < w)
form an ascending chain modNg, and we set

N1 = |J (N5 @ Ya).
k<w

In order to verify (v) for index /3, we show that Y} is a summand of
Y41 mod Ng. We argue as follows. Write Ci41 = Ci @ Dy, for k < w.
As Dy, is of finite rank, we have Ng + Dj, = Ng @ V}, for some finite
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rank module V;, (again by the ultra-balancedness of Ng). In addition,
Ng® Y41 = Ng + Cry1 = Ng+ Cy, + D, = (Ng + Dy,) + Cy,
=(Ng® Vi) + X+ Y =Ng+ Vi, + Y.

We claim that the last sum is actually a direct sum, and prove this
by comparing ranks. If we denote the ranks of Y, Yi41, Ve by 7, s,1,
respectively, then these are also the ranks of Cj,Ck41, D modulo
Ng, so from Cjiy1 = Cy @ Dy, we obtain s > r 4 t. This suffices
to conclude that Ng + Vi + Y, = Ng @ Vi, @ Y}, which implies that
Yit1 = Yi @ Vi mod Ng, as desired. The proof can be finished by the
same argument as in the proof of Lemma 6.2. o

7. A main result. We are now prepared for the proof of a main
result (a somewhat weaker form was included in the Ph.D. thesis of the
second author [13]). It generalizes the Pontryagin-Hill theorem from
free abelian groups to homogeneous completely decomposable modules
over h-local Priifer domains.

Theorem 7.1. Let R be an h-local Priifer domain and M a torsion-
free R-module that is the union of a countable ascending chain (2) of
submodules such that, for every n < w,

1°. M, is a homogeneous completely decomposable R-module of fixed
type T;

2°. M, is an RD*-submodule of M, 1.

Then M 1is completely decomposable of type T.

Proof. Condition (a) of Theorem 6.3 is satisfied by assumption 1°.
The stated necessary and sufficient condition (*) in this quoted theorem
holds because of Theorem 3.1, so our claim is immediate. a

The following example will show that Theorem 7.1 fails even for
abelian groups if the condition of homogeneity is dropped. We use
the symbol Z/p3° ---p° to denote the set of all rational numbers in
whose denominators only powers of the primes p1,... ,p occur.

Example 7.2. Let pi,p2,...,Pn,... be a list of distinct primes.
Define

Ay =1, Ay =Z/p° ® L/py,
Ay = Z/pT°ps° © Z/p°ps” © Z/p3°ps° @ L/p3 s, - -
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where from A,_; we pass to A, by replacing each summand by
two copies of the direct sum of the summand after adjoining to the
denominators one of p*° for the next two primes p in the list. In this
way we get an ascending chain 0 < A; < Ay < -+ < A, < -+
of completely decomposable abelian groups if we use the diagonal
embeddings (e.g., A7 — Ay is induced by identifying 1 € Z/p?°
with (1,1) € Z/ps°p & Z/p°ps° and 1 € Z/py with (1,1) €
Z/p5°p @ Z/p*p3°). Then each A, will be a pure subgroup in the
following group in the chain. In order to justify our claim that the
union A = U, <A, is not completely decomposable, assume by way
of contradiction that A is completely decomposable and J is a rank
one summand of A. Then J is also a summand in the first link A,, of
the chain in which it is contained. The rank 1 summands of A4,, are
fully invariant in A,,, so J must be one of the summands in the given
decomposition of A,,. Manifestly, J has to be a summand in A,
as well, but the construction shows that this is not the case. Thus, A
cannot be completely decomposable.

Finally, we would like to apply our results to projective modules over
integral domains R.

We consider the case when the projective modules over R are finitely
decomposable. It is generally known that projective modules are direct
sums of countably generated modules. Over a domain they are finitely
decomposable if and only if they are direct sums of finitely generated
modules. Rings over which the projective modules are direct sums of
finitely generated modules are characterized by McGovern-Puninski-
Rothberg [14] for all associative rings. The integral domains for which
this holds include all Prifer domains.

Theorem 7.3. Assume that projective modules over the integral
domain R are direct sums of finitely generated submodules. Then the
union of a countable ascending chain (2) of projective R-modules M,
subject to condition (b) is again projective if and only if condition (*)
of Theorem 6.3 holds.
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