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A REFINEMENT OF
SHARPLY F-PURE AND
STRONGLY F-REGULAR PAIRS

KARL SCHWEDE

ABSTRACT. We point out that the usual argument used
to prove that R is strongly F-regular if and only if Rq is
strongly F'-regular for every prime ideal @ € Spec R, does not
generalize to the case of pairs (R, al). The author’s definition
of sharp F-purity for pairs (R, a?) suffers from the same defect.
We therefore propose different definitions of sharply F-pure
and strongly F-regular pairs. Our new definitions agree with
the old definitions in several common contexts, including the
case that R is a local ring.

1. Introduction. The notion of a strongly F-regular ring was
introduced by Hochster and Huneke in [10] because it was easily seen to
be well behaved with respect to localization (this is in contrast to weak
F-regularity). It later was discovered that strongly F-regular rings (in
characteristic p > 0) were closely related to rings with Kawamata log
terminal singularities (in characteristic 0), see [4, 7, 17]. However, the
notion of Kawamata log terminal singularities extends to pairs (R, af)
where a C R is an ideal and ¢t > 0 is a real number. Therefore, it
was natural to ask whether there is an analogous notion of strong F'-
regularity for pairs (R, at).

In [16], Takagi gave such a definition and proved that it satisfied many
properties similar to Kawamata log terminal singularities (also see [7,
19]). In fact, by using this characteristic p > 0 definition, Takagi
was able to prove remarkable results in characteristic zero for which
there are still no known characteristic zero proofs, see for example [16,
Theorem 4.1]. We now state this definition:
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Definition 1.1. Suppose that R is an F-finite reduced ring in
characteristic p > 0, a C R is an ideal and ¢ > 0 is a real number.
Then we say that the pair (R,a) is strongly F-regular if, for every
d € R°, there exists an integer e > 0 and an element a € alt®*~D]I
such that the inclusion R < R'/P", defined by 1+ (da)'/?" splits as a
map of R-modules.

The author of this note also defined a notion, for pairs, which he
called sharp F-purity (R,a’), see Definition 2.2. The reader should
also compare with the notion of F-purity for pairs as defined in [7,
16, 19]. Roughly speaking, (R, a') is sharply F-pure if it satisfies the
condition used to define strongly F-regular pairs in the case that d = 1;
see [14] for details.

Takagi’s definition of strongly F-regular pairs and the author’s defini-
tion of sharply F-pure pairs both work extremely well in the case that
R is alocal ring. Furthermore, strongly F-regular pairs have been stud-
ied largely in that context. However, there are certain ways in which
both definitions are unsatisfactory in the case that R is a non-local
ring. For example, the author expects that (R,a’) being strongly F-
regular (respectively, sharply F-pure) is a different condition than the
localized pair (Ru, af,) being strongly F-regular (respectively sharply
F-pure) for every maximal ideal m of Spec R. On the other hand, in the
classical non-pair setting, R is strongly F-regular if and only if R,, is
strongly F'-regular for every maximal ideal of Spec R. Note that Hara
and Watanabe’s definition of strong F-regularity for a pair (R, A), see
[7], does not suffer from this issue. However, I do not know if their
definition of F-purity localizes well (although the issue is somewhat
different than the one described above).

Therefore, the main purpose of this paper is to state a refined
definition of strong F-regularity and sharp F-purity for pairs, which
satisfies the above localization criterion. Our new definition for strong
F-regularity is stated below.

Definition 1.2. Suppose that R is an F-finite reduced ring in
characteristic p > 0, a C R is an ideal and ¢ > 0 is a real number.
Then we say that the pair (R, at) is locally strongly F-regular if, for
every d € R°, there exists an e > 0, and a map
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. 1/
¢ € Homp(RY", R) - (dalt®"-11) "

such that ¢(1) =1 (or equivalently, that ¢ is surjective).

The point is that the ¢ in Definition 1.2 might be equal to a sum
¢() = di((da;)'/?" )

for ¢; € Homp(RY?", R) and a; € a/t®"~DI1 whereas in Definition 1.1,
one would only consider sums with a single term. In particular, a
“strongly F-regular” pair is “locally strongly F-regular.” We also state
a better version of sharp F-purity for pairs, see Definition 3.2. In fact,
we state these definitions in greater generality: we state them for triples
(R, A, at) where A is an effective Q-divisor on X = Spec R.

For a pair (R,a'), Definition 1.1 and Definition 1.2 are equivalent
under any of the following conditions (likewise for sharply F-pure
pairs):

(i) R is a local ring, or
(ii) R is an N-graded ring, a is a graded ideal and A =0 or
(iii) a is a principal ideal, or

(iv) Hompg(RY/?", R) is a free RY/?"-module for some e greater than
zero. (This occurs, for example, if R is sufficiently local and Q-
Gorenstein with index not divisible by p).

It follows from (i) that Definition 1.2 is equivalent to requiring that Def-
inition 1.1 holds after localizing at every maximal ideal, see Corollary
5.4.

This note also corrects a minor misstatement in the author’s paper,
[13, Corollary 4.6], where the author assumed that strong F-regularity
for pairs was characterized locally. See Remark 6.8 for details.

Throughout this paper, all rings will be assumed to be commutative
with unity, Noetherian, and contain a field of characteristic p > 0.
Furthermore, all rings will be assumed to be reduced and F-finite.
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2. Why Definition 1.1 does not seem to localize well. We first
begin by reminding the reader of why Hochster and Huneke’s original
definition localizes well. It is easy to see that if R is strongly F-regular,
then Ry is strongly F-regular for every ) € Spec R. This direction also
holds for pairs (R, a’). Therefore, we will sketch the converse in the
classical non-pair setting.

For any d € R° and for each e > 0, consider the map
Dy, HomR(Rl/pe,R) — R

which is the evaluation map at d'/?° (that is, ¢ — G(d'/P")). It is
easy to see that R is strongly F-regular if and only if for every d, ®4.
is surjective for some e > 0. Since R is F-finite, this is equivalent to
requiring that (®4.)m is surjective after localization at each maximal
ideal m € Spec R.

Therefore, the only question is whether we can find a common e
so that the statement holds after localization at each maximal ideal
m C R. To this end, observe that if (®4.,)m is surjective, it is also
surjective for all e > eg (since a strongly F-regular local ring is also
F-pure).

Now, as e increases, the support of the modules R/Image (®4 )
(which is also well behaved with respect to localization), is a decreasing
set of closed subsets of Spec R. On the other hand, each point of Spec R
is not contained in Supp (R/Image (®g4,.)) for e sufficiently large. Thus,
we must have that Supp (R/Image (®4.)) = @ for e > 0 since R is
Noetherian. This implies that R = Image (®4.) for e > 0.

Consider now a pair (R,a’). Let us try to argue in the same
way we did for the original definition of a strongly F-regular ring,
see Definition 1.1. In that case, we are restricting the map ®4.
to the set S of maps ¢ : RYP° — R that can be written in the
form ¢(_) = (a'/?"_) for some ¢y € Hompg(RY?" R) and some
a € al®® =1 The problem is, the set S is not necessarily an R-
submodule (or even a subgroup) of Homg(R'/?°, R). Thus, we cannot
say that ®4.|s is surjective if and only if ®4.|s is surjective after
localizing at every maximal ideal.

Remark 2.1. While the set of the maps ¢ of the form ¢(_ ) =
¥(a*/P°_) are not necessarily a R'/P°-submodule of Hogr(R'Y?" R),
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they do generate the submodule Homp(R'/?", R)-(al*(P*~D1)1/P* This
will be useful later.

We also recall the author’s original definition of sharply F-pure pairs.

Definition 2.2 [14]. Suppose that R is an F-finite reduced ring in
characteristic p > 0, a C R is an ideal and ¢ > 0 is a real number.
Then we say that the pair (R, a?) is sharply F-pure if there exists an
e > 0 and an element a € al*®*~Y1 such that the inclusion R — R/?*
which sends 1~ (da)'/P" splits as a map of R-modules.

It is easy to see that this definition suffers from the same defect that
Definition 1.1 suffers from.

3. A “better” definition. Before we give our refined definition,
we first fix some notation.

Definition 3.1. A triple (R, A, a’) is the combined information of
(1) an F-finite reduced ring R,
(2) an ideal a C R such that a N R° # &,
(3) a real number ¢t > 0.
Furthermore, if R is a normal domain, we also consider
(4) A an effective Q-divisor on X = Spec R.

If R is not a normal domain, we assume A = 0.

If a = R (respectively, if A = 0) then we call the triple (R, A, a?)
a pair and denote it by (R, A) (respectively, by (R,a’)). Note that if
R is strongly F-regular, then R is normal, so condition (4) is not so
restrictive. On the other hand, little is lost in this paper if one always
assumes that A = 0.

Given an effective integral divisor D on X = Spec R, we use the
notation R(D) to denote the global sections of the Ox-module Ox (D).
Also note that for any effective divisor D, there is a natural map



96 KARL SCHWEDE

R — R(D). Therefore, we have natural maps

mae : Homp((R([(p° — 1)A]))/?°, R) — Hompg(R'*", R).
These maps are always injective. Of course, if A = 0, then 7a . is the
identity.

The notation
Image (mae) - (Jl/pe>
= Image (Homp((R([(p° — 1)A1))*", B)

— HomR(Rl/pe,R)> : (Jl/pe)

will be used to denote the R'/P*-submodule of Homp(RY?", R) ob-
tained by multiplying the R'/?“-submodule

Image (ﬂ-A,e) c I—IOInR(-Rl/p(E ) R)

by the R'/P°-ideal J'/P°. It is important to note that the elements of
this new submodule are still elements of Homp(RY?", R).

Definition 3.2. Suppose that (R, A, a’) is a triple.

e We say that (R, A, a?) is locally strongly F-regular if, for every d €
R°, there exists an e > 0, and a map ¢ € Image (7 ) (dal*P*~D1)1/P"
where ¢ : R/P° — R is surjective.

e We say that (R, A,a") is locally sharply F-pure if there exists an
e > 0,and amap ¢ € Image (7 )-(al!®* =D /P where ¢ : RV/P° — R
is surjective.

We now state several equivalent definitions.

Lemma 3.3. Suppose that (R, A, at) is a triple. Then the following
are equivalent:

(a) The triple (R, A, a') is locally strongly F-regular.

(b) For every d € R°, there exists some e > 0 and some ¢ €
Image (7a.c) - (dal*®*=VN/P that splits the natural map R — RY/P".
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(c) For every d € R°, there exists some e > 0 and some ¢ €
Image (ma.0) - (a8 "DN/P" such that ¢(d/?") = 1.
(d) The map,

e 1/p¢
Image (ma) - (da“(p _1)]> — R,

which evaluates an element ¢ at 1, is surjective for some e > 0.
Furthermore, the following are also equivalent:
(a') The triple (R, A, a?) is locally sharply F-pure.

(b') For some e > 0, there exists a ¢ € Tmage (7a,c) - (alt®*~D1)1/P*
that splits the natural map R — RYP°.

(") For some e > 0, there exists a ¢ € Image (7 ) - (a/tP"—DT)L/P°
such that ¢(1) = 1.

(d") The map,
€ 1/ €
Image (ﬂ-A,e) . (a’—t(p 71)]) p N R,

which evaluates an element ¢ at 1, is surjective for some e > 0.

Proof. Note first that condition (b) certainly implies condition (a).
Conversely, if ¢ € Tmage (7a ) - (dal*®*=D1)1/P° is surjective, then
there exists an z € R such that ¢(z'/?") = 1. But then the map
(¢ - 2'/P°) sends 1 to 1 and so condition (b) is satisfied. We will leave
the equivalence of (b), (c¢) and (d) to the reader as they are similarly
straightforward. The equivalence of (a’) through (d’) is essentially the
same. O

In Section 5, we will prove that if R is local, then (R,A,at) is
locally strongly F-regular (respectively, locally sharply F-pure) if and
only if the localized triple (Rq,Alspec RQ,atQ) is strongly F-regular
(respectively, sharply F-pure) for every @ € Spec R. This justifies
the “locally” strongly F-regular terminology. However, the author feels
that it would be better if the word “locally” was removed from future
work (but that Definition 3.2 was still used). Regardless, in this note,
because there are two definitions, we will use the word “locally” to
distinguish the new version.
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Remark 3.4. Definition 3.2 can easily be generalized by replacing a
with a graded system of ideals a,, see [5, 13]. We won’t do this here
however.

Question 3.5. Is there an example of a pair (R,a') that is locally
strongly F-regular (respectively, locally sharply F-pure) but not strongly
F-regular (respectively, sharply F-pure)?

It seems that such an example may be difficult to construct (as there
would be infinitely many conditions to check).

4. The “better” definition behaves well with respect to lo-
calization. In this section, we show that locally strongly F-regular
(respectively, locally sharply F-pure) triples can be characterized lo-
cally. First however, we need a lemma.

Lemma 4.1. Suppose that we have maps:

1/p° 1/p*

¢ € Image (7a.c)- (art(ptl)]) , ¥ € Image, (7a q)- (aTt(pdﬂﬂ)

Then ¢ o (Y/P°) is contained in

e 1/ dte
Image (TA etd) (art(” +d*1)]> "

Proof. Tt is sufficient to check this for some ¢ of the form ¢(__) =
¢’ (x'/P°_) where ¢/ € Tmage (7a ) and z € al*®*=DI. This is because
of two facts:

(1) Every element of Image (ma )+ (a/tP"=D1)1/P" is a sum of elements
of the form ¢;(_) = ¢72~(:p]1-/p _) for ¢} € Image,(ma.) and z; €
alte =11

(2) A composition of a sum of maps with a map (i.e., (¢1+p2)o0tp*/P%)
is a sum of compositions of maps (i.e., ¢1 0 Y1/P° + ¢ 0 h1/P%).
Likewise, we may assume that ¢ is of the form ¥(__) = ¢’ (y"/ pd_) for
some ¢ € Image (4 4) and some y € alt(®" =11,
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Now, ¢ (/7" (¢! (y1/7" _)VP") = ¢/ (/" (2/7"y 17" ). But
we have that

gL /Pyl /Pt = (g2t /T

1/ptte

c (apdw(peA)]a[t(pd—l)])

- (a"t(pdﬁ—eil)] ) 1/pite |

Therefore, it is sufficient to show that ¢’ o (¢/')!/P° € Image (TA d+te)-

If A =0, we are done, so we may assume A # 0 and that R is a
normal domain. Therefore, it is sufficient to check this at height one
e+d, R)
are rank 1 reflexive RY/?*""_modules. However, at a height one prime
Q € SpecR, the pair (Rq,Alspec R,) can be identified with a pair
(Rg, (f)1/™) where nA is integral and f is a local defining equation for
nA at Q. Then the argument follows as in the case above, also see [17,
Proof of Lemma 2.5]. o

primes of R since the modules Image (7 ¢+q) and Hompg(R'/?

Remark 4.2. Suppose that (R, A, a?) is locally sharply F-pure (re-
spectively, locally strongly F-regular), due to the existence of some
¢ € Tmage (ma ) - (P =DN)V/P® with 1 € ¢(RY/P") (respectively, with
1 € ¢(d*/?°RY/?"))). Lemma 4.1 implies that for every n > 1, we can
find

ne 1/pne
¢, € Image (TA pe) - (a(t(p —1)])

with 1 € ¢,,(R?P"") (respectively, with 1 € ¢, (d'/?"" RY/P"")).

Theorem 4.3. A triple (R,A,at) is locally strongly F-regular
(respectively locally sharply F-pure) if and only if (Rg, A\specRQ,th)
is locally strongly F-regular (respectively, locally sharply F-pure) for
every ideal Q) € Spec R.

Proof. This may be obvious to experts, but because the original
definition seems to lack this property, we prove it carefully here. First
we note that the direction (=) is straightforward and not substantially
different from the classical non-pair setting. Thus we only prove the
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(<) direction. Suppose that for each @ € Spec R, (Rq, Alspec Rq» 06)
is locally strongly F-regular (respectively, locally sharply F-pure). Fix
ad € R° (or set d = 1, if one is checking the sharply F-pure case).
By Lemma 3.3 (d), we see that for each @ € Spec R, there exists an
eg > 0 so that the map which evaluates at 1,

. 1
E.,,q : Image (WAVEQ)Q . (daft(p 0_1)1>Q — Ro,

is surjective. But then for each @), this holds in an affine neighborhood
Ug of Q. We can cover X = Spec R by a finite collection of such neigh-
borhoods Uy, ... ,U, with corresponding surjective evaluation maps
E.,u,. Of course, the particular e;’s associated to each neighborhood
may vary. However, Lemma 4.1 implies that if E., y, is surjective, then
50 is Fpe,,u, for every n > 0. Thus, increasing the e; if necessary, we
can find a common e that works on all U;. But then we are done, since
a map of R-modules is surjective if and only if the corresponding maps
on a finite affine cover of Spec R are surjective. u]

5. Cases where the two definitions agree. In this section,
we prove that the two definitions agree in the cases (i) through (iv)
mentioned in the introduction. We first do conditions (iii) and (iv).

Proposition 5.1. Suppose that (R,A,a') is a triple. Further
suppose that either:

(a) a is a principal ideal, or
(b) Image (7a.¢) is a free R*?"-module for some e > 0.

Then (R, A, a") is strongly F-regular (respectively, sharply F-pure) if
and only if it is locally strongly F-regular (respectively, locally sharply
F-pure).

Proof. First assume we are in case (b). We claim that if Image (7a )
is cyclic as an RYP°-module for some e > 0, then Image (Ta n) is
also cyclic as an RYP"“-module for all n > 0. In the case that
A = 0, this is essentially an exercise in applying the adjointness
of ® and Hom, see [15, Lemma 3.9]. In the case that A # 0, R
is normal and so one can reduce to the one dimensional case and
argue in essentially the same way, see [15, Corollary 3.10]. Therefore,
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Remark 4.2 allows us to assume that we can find e > 0 so that
condition (b) holds and, for that same e, we may find a surjective
map in ¢ € Image (ma ) - (daltP*=D1)1/P",

Now, in either case (a) or (b), every element of
. 1/p®
Image (mae) - (da[t(” *UW) Y

can be written as a map of the form ¢((da)'/?°_) for some ¢ €
Image (ma,.) and some a € al*®*=D1 In the sharply F-pure case,
set d = 1. The result then follows. o

We now note that the two definitions are the same in the case that
R is local.

Proposition 5.2.  Suppose that (R,A,a') is a triple. Further
suppose that (R,m) is local. Then (R,A,at) is strongly F-regular
(respectively, sharply F-pure) if and only if it is locally strongly F-
regular (respectively, locally sharply F-pure).

Proof. Note that elements of the form ¢((da)'/?"_), for some
¢ € Image(ma.) and some a € alt® DI generate Image (74 ) -
(dalt®*=D1)1/P* even as an R-module. Therefore, if all these elements
are sent, by evaluation at 1, into the maximal ideal m, then so are any
of their linear combinations. For the proof in the sharply F-pure case,
set d = 1. ]

Finally, we verify the graded case at least assuming that A = 0. One
can do similar things when A # 0 but the statements become more
complicated.

Proposition 5.3. Suppose that (R,at) is a pair. Further suppose
that R = ®;>0R; 1s an N-graded ring and a is a graded ideal. Then
(R, a') is strongly F-regular (respectively, sharply F-pure) if and only
if it is locally strongly F-regular (respectively, locally sharply F-pure).

Proof. Suppose first that R is locally strongly F-regular. It is suf-
ficient to show that (R,a’) is strongly F-regular in the usual sense
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(the case of sharply F-pure rings is similar). We view RYP° as a
Z[1/p°]-graded R-module. Using standard techniques related to strong
F-regularity, it is not difficult to see that it is sufficient to verify
the statements of Lemma 3.3 for homogenous d € R°. Note that
Homp(R'Y?", R) is generated by graded (degree-shifting) homomor-
phisms since R is F-finite. In particular, the image of the natural

map )
e 1/p¢
Image (ma) - (da“(p _1)]> — R,

which evaluates an element ¢ at 1, is a graded submodule of R.
Therefore, the map is surjective if and only if the image is not contained
in R4. One then argues exactly the same as in the local case. O

One should note that most of the work done with the previous
definition of strongly F-regular pairs was in the local setting, see for
example [12, 16, 18, 19].

Corollary 5.4. A triple (R,A,at) is locally strongly F-regular
(respectively, locally sharply F-pure) if and only if (Rm, Alspec Ry » 05)
is strongly F-regular (respectively, sharply F-pure) for every mazimal
m € Spec R.

We now recall the definition of the test ideal.

Definition 5.5 [9, 13, 17]. Let X = Spec R be an F-finite normal
integral affine scheme. Further suppose that A is an effective Q-divisor
on X, a # (0) is an ideal of R and ¢ > 0 is a real number. We define
the big test ideal 7,(R; A, at) of the triple (R, A, a?) to be the unique
smallest non-zero ideal J of R such that

(5.5.1) P ((art@tlﬂj)l/pe) cJ
for all e > 0 and all
¢ € Image (HomR ((R(]—(pe — 1AV, R) N HomR(Rl/pe,R)>.

This ideal always exists in the context described.
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The big test ideal is often called the non-finitistic test ideal and is
often denoted by 7 (R; A, at).

Remark 5.6. Assume that 0 # ¢ € 7,(R; A, a) (in other words, c is a
big sharp test element). Then

(R A, at) = 33 g((cal DI,

e>0 ¢
where the inner sum is over

¢ € Image (HomR ((R(((pe —1)A])) V7, R) — HomR(Rl/pe,R)>.

It is clear that the sum on the right satisfies the condition from equation
5.5.1. It is also easy to see that the sum on the right is non-zero
(consider the case where e = 0). Thus the containment C is clear. But
the containment O is also easy since cR C 7,(R; A, a) and again using
equation 5.5.1. Thus the statement is proven.

For more discussion on the big test ideal in this context, see [2, Section
3] or [13, Subsection 2.2] and compare with [8, 11, 17].

Corollary 5.7. The big test ideal 7,(R; A, a) is equal to R if and
only if the triple (R, A, a) is locally strongly F-regular.

Proof. Since the formation of the big test ideal commutes with
localization, see [2, Section 3] and [6, Lemma 2.1], it is sufficient to
prove Corollary 5.7 at each maximal ideal. Therefore, we can reduce to
the case of a local ring (R, m). Then the proof is exactly the same as in
[17, Lemma 2.3|, or [3, Proposition 2.1]. We sketch another approach
where we avoid Matlis duality and instead use a version of [2, Lemma
2.1] generalized to triples (R, A, a?).

Now, still assuming (R, m) is local, R = 7,(R; A, a?) if and only if for
each d € R° we have

le)” < > e ((dalt0ly) )

e>0 * ¢p.Elmage (7a,e)
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see Remark 5.6, [2, Lemma 2.1], [18, Lemma 3.5] and [14, Lemma
2.20]. But then the statement is obvious since 1 is in the sum if and
only if there are terms in the sum not contained in m. u]

6. F-pure thresholds, test ideals, and uniformly F-compatible
ideals. In this section we discuss how these new notions of strong F-
regularity and sharp F-purity fit into the existing theory. We also
correct a small error of the current author, in the paper [13].

6.1. The F-pure threshold. Recall that the F-pure threshold of a
pair (R, a), where R is a reduced F-finite F-pure (not necessarily local)
ring is defined to be

c(a) = sup{s € R> | the pair (R,a®) is F-pure}
= sup{s € R>¢ | the pair (R, a®) is sharply F-pure},

see [19, Definition 2.1] and [14, Proposition 5.3]. This definition
was stated originally for non-local rings, but we expect that a better
definition would require that (R, a®) is locally sharply F-pure. Note,
most results about the F-pure threshold were shown in the case that
R is local. However, there is the following notable exception:

Remark 6.1. The rationality result for the F-pure threshold found
in [1, Theorem 3.1] or [2] (at least when R is strongly F-regular), is
a rationality result for the locally-F-pure threshold. Note that in [1,
Theorem 3.1], it is assumed that R is regular, but it is not assumed
that Hompg(R'/?°, R) is free as an R'/P"-module (though it is locally
free).

6.2. The test ideal of a locally sharply F-pure pair. We turn
our attention again to test ideals. One nice fact about sharply F-pure
pairs is that the associated generalized test ideal (of [8]) is a radical
ideal. We now show directly that this also holds for the a-priori weaker
condition of local sharp F-purity.

Proposition 6.2 [14, Corollary 3.15]. If (R,at) is locally sharply
F-pure, then the test ideal T(R, a') (as defined in [8]) is a radical ideal.
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Proof. The proof is identical to the proof of [14, Corollary 3.15] once
one has Lemma 6.4, which we prove below. ]

First we recall the following definition.

Definition 6.3. Given an ideal I C R, we define the a’-sharp
Frobenius closure of I, denoted IF*a" as follows. The ideal IF*" is
defined to be the set of elements z € R such that alt®*~D1zr" C Jlr°]
for all e > 0.

Lemma 6.4 [14, Remark 3.11]. If (R,a") is locally sharply F-pure,
then TF'e" =T for all ideals I.

Proof. Suppose that z € I**a" Thus there exists an ep > 0 such
that al*(P*=D1,2° C 11P*] for all e > ey. Since (R, a?) is locally sharply
F-pure, there exists a ¢ € Homg(RY?", R) - (al*®*=D11/P° for some
e > eg, such that ¢(1) = 1 (we can increase e due to Lemma 4.1). We
then write ¢ = ¢y - a}/pe + ot Py at?" for $; € Hompg(R'/?",R)
and a; € alt®" DI Then for that same e > €o,

2= ("))

6.3. Uniformly F-compatible ideals and centers of F-purity.
We begin by recalling the definition of a uniformly F-compatible ideal.

Definition 6.5. Suppose that (R, A, a!) is a triple. Recall that
an ideal J C R is called uniformly (A,a’, F)-compatible if for all
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¢ € Image (ma.) C Hompg(RY?" R) and all a € a/*P" D1 we have
that
o((al)'"") C J.

A prime uniformly (A, a?, F)-compatible ideal is called a center of F-
purity for (R, A, a?).

Remark 6.6. In [14], the author actually dealt with triples of the form
(R, A, a,) where a, is a graded system of ideals (that is, a;-a; C a;4;).
For simplicity, we won’t work with graded systems of ideals, although
none of the results are more difficult in that generality.

Remark 6.7. An ideal J is uniformly (A, af, F')-compatible if and only
if for all

. 1/p®
¢ € Image (ma.c) - (u[t(p 71)1) ! ,

we have that
P(JHP) C .

This can be seen because maps of the form ¢-a'/?" for ¢ € Image (TALe)
and a € alt®" V1 generate Image (74 ) - (al*®*~D1)1/P° even as an R-
module. In other words, the definition of uniformly F-compatible ideals
is the same under the paradigm of “local strong F-regularity/local sharp
F-purity” as it is under the paradigm of “strong F-regularity /sharp F-
purity.”

Remark 6.8. We now point out a misstatement in the current author’s
paper [14, Corollary 4.6]. In that paper, the author claimed that in
the case of an F-finite normal domain R, a triple (R, A, a?) is strongly
F-regular if and only if (R, A,a’) has no proper nontrivial centers of
F-purity. To prove this, the author showed (correctly) that a minimal
prime of the non-strongly F-regular locus was a center of F-purity.

The non-strongly F-regular locus still makes sense using the old
definition of a strongly F'-regular pair or triple. It is the set of
primes Q € Spec R such that (RQ,A|speCRQ,th) is not strongly F-
regular. This is a closed set because if (R, A, at) is strongly F-regular
at @ € Spec R, then it is also strongly F-regular (and locally strongly
F-regular) in a neighborhood of Q.
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Unfortunately, the non-strongly F-regular locus being empty is equiv-
alent to a triple (R, A, a?) being locally strongly F-regular (which we
expect is a different condition than being strongly F-regular). There-
fore, a correct statement, in the case of an F-finite normal domain,
would be one of the following.

(1) A triple (R, A, a?) has empty non-strongly F-regular locus if and
only if (R, A, a’) has no proper non-trivial centers of F-purity.

(2) A triple (R, A,at) is locally strongly F-regular if and only if
(R, A, a") has no proper non-trivial centers of F-purity.

(3) The big test ideal 7,(R; A, a*) = R if and only if (R, A, a*) has no
proper non-trivial centers of F-purity.

On the other hand, the only place where [14, Corollary 4.6] was
applied in the paper [14], was in a case where A = 0 and a = R, see
[14, Corollary 7.8].

Perhaps more importantly, all the results of [14] for sharply F-pure
triples extend to “locally sharply F-pure triples.” For the most part,
these generalizations can be accomplished by reducing to the local
case where the two notions of strong F-regularity (respectively, sharp
F-purity) agree. However, the most fundamental such result is the
following and we prove it directly:

Proposition 6.9 [14, Corollary 3.3]. If (R, A,a") is locally sharply
F-pure and I is uniformly (A, at, F)-compatible, then R/I is also F-
pure.

Proof. Choose ¢ € Image (ma ) - (alt®*=D1)1/P° guch that ¢(1) = 1.
Consider the diagram:

Il/pe ¢|Il/pe I

| |

¢

R/ — % R

S

(R/I)V/?» —2 - R/I.
Since ¢(1) = 1, we also see that ¢(1) = 1. This completes the proof. O
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6.4. Links with Kawamata log terminal singularities. We
finally note that the new definition of strongly F-regular, provided in
this paper, is the notion that corresponds to Kawamata log terminal
singularities when R is not necessarily local.

Proposition 6.10 [4], [17, Theorem 3.2], [8, Theorem 6.8], [18, The-
orem 2.5]. Let (R,A,a") be a triple that was reduced to characteristic
p > 0 from a characteristic zero Kawamata log terminal triple (reduced
with a log resolution, etc). Then (R, A, a") is locally strongly F -regular.

Proof. Note that this implies that Kgr, + Ay was Q-Cartier in
characteristic zero. This statement has typically been stated in the
case that R is a local ring (for example, it follows from [18, Theorem
2.5], also see [17, Theorem 3.2] and [8]). A priori, if you change the
local ring, you might need to also change the particular characteristic
p > 0 you are working in. However, the key injectivity needed to prove
these results, holds at every local ring of a ring reduced to characteristic
p > 0, see [4, subsections 4.4, 4.5]. In particular, if (R, A, a?) is
as stated above, then after localizing at each prime @ € SpecR,
(R, Alspec Ro » a’ég) is strongly F-regular. Proposition 6.10 follows. O
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