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GORENSTEIN PROJECTIVE DIMENSION
WITH RESPECT TO
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ABSTRACT. We introduce and investigate the notion of
Gc-projective modules over (possibly non-Noetherian) com-
mutative rings, where C is a semidualizing module. This
extends Holm and Jgrgensen’s notion of C-Gorenstein pro-
jective modules to the non-Noetherian setting and general-
izes projective and Gorenstein projective modules within this
setting. We then study the resulting modules of finite G-
projective dimension, showing in particular that they admit
G o-projective approximations, a generalization of the maxi-
mal Cohen-Macaulay approximations of Auslander and Buch-
weitz. Over a local ring, we provide necessary and sufficient
conditions for a G¢-approximation to be minimal.

1. Introduction. Over a Noetherian ring R, Foxby [9], Golod [10]
and Vasconcelos [19] independently initiated the study of semidualizing
modules (under different names): a module C is semidualizing if
Hom z(C,C) = R and Ext7'(C,C) = 0. Examples include the
rank 1 free module and a dualizing (canonical) module, when one
exists. Golod [10] used these to define G¢-dimension, a refinement
of projective dimension, for finitely generated modules. The G¢-
dimension of a finitely generated R-module M is the length of the
shortest resolution of M by so-called totally C-reflexive modules; see
Definition 4.1. Motivated by Enochs and Jenda’s extensions in [7] of
Auslander and Bridger’s G-dimension [2], Holm and Jgrgensen [12]
have extended this notion to arbitrary modules over a Noetherian ring.
The current paper provides a unified and generalized treatment of these
concepts, in part by removing the Noetherian hypothesis. The tools
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developed in this paper have been particularly useful for investigating
the similarities and differences between certain relative cohomology
theories [15, 16] and the stability properties of operators on categories
[17].

Section 2 is devoted to the study of the Ggo-projective R-modules,
which are built from projective and C-projective modules; see Defi-
nition 2.1. We show that every module that is either projective or
C-projective is G¢-projective in Proposition 2.6. In particular, every
R-module admits a G¢-projective resolution. Further properties of the
class of G¢-projective modules are contained in the following result;
see Theorem 2.8.

Theorem 1. The class of G¢-projectives is projectively resolving
and closed under direct summands. The class of finitely generated
G¢-projective R-modules is closed under summands. The set of Go-
projective R-modules admitting a degreewise finite free resolution is
finite projectively resolving.

Section 2 ends with basic properties of the resulting G¢-projective
dimension. In particular, we show that, for an R-module M of G¢-
projective dimension n > 0, the nth kernel in any G¢-projective
resolution is G¢-projective.

Within the class of G ¢-projective resolutions, the proper ones exhibit
particularly good lifting properties; see subsection 1.5. These are the
subject of Section 3. Coupled with Proposition 3.4, the following result
shows that every module of finite G¢-projective dimension admits a
proper G¢-projective resolution; see Theorem 3.6.

Theorem 2. If M is an R-module with finite G¢-projective di-
mension, then M admits a strict Go-projective resolution, that is, a
G -resolution of the form

0 —-CQrP,— -+ —CQrPL —G—M—0
where G is G¢-projective and P, ... , P, are projective.
These strict Gg-projective resolutions give rise to Gc-projective

approximations, which are similar to the maximal Cohen-Macaulay
approximations of Auslander and Buchweitz in [3].
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Section 4 is concerned with comparing the G¢-projective and to-
tally C-reflexive properties; see Definition 4.1. The next result is Theo-
rem 4.4, which extends a result of Avramov, Buchweitz, Martsinkovsky
and Reiten [5, (4.2.6)].

Theorem 3. If M and Hom gr(M,C) admit degree wise finite
projective resolutions, then M is G -projective if and only if it is totally
C-reflexive.

The paper closes with several results on minimal proper G ¢-projective
resolutions of finitely generated modules over Noetherian local rings.

1. Preliminaries. Throughout this work R is a commutative ring
with unity, X = X(R) is a class of unital R-modules, and X/ is the
subclass of finitely generated R-modules in &

Homological dimensions built from resolutions are fundamental to
this work. The prototypes are the projective and injective dimensions.

1.1. An R-complez is a sequence of R-module homomorphisms

8X+1 ax 8X1
n n n—
X=X, X, 1 — -

such that 9X ;0X = 0 for each integer n; the nth homology module
of X is H,(X) = Ker(8X)/Im(825,). A morphism of complexes
a: X — Y induces homomorphisms H,(a): H,(X) — H,(Y), and «

is a quasiisomorphism when each H, («) is bijective.

The complex X is bounded if X,, = 0 for |n| > 05 it is acyclic if
X_n, =0 = H,(X) for each n > 0. When X is acyclic, the natural
morphism X — Hg(X) = M is a quasiisomorphism, and X is an X-
projective resolution of M if each X, is in X’; in this event, the exact
sequence

N oF . o
XT=w. =2 X3 —X9g—M—0

is the augmented X -projective resolution of M associated to X. Dually,
one defines X-coresolutions and augmented X-coresolutions. The X-
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projective dimension of M is defined as

X-pdr(M) = inf{sup{n | X,, #0} | X

is an X-projective resolution of M}.

The nonzero modules in X are precisely the modules of X'-pd 0.

1.2. The class X is projectively resolving if
(a) X contains every projective R-module, and

(b) for every exact sequence of R-modules 0 - M’ - M — M" — 0
with M € X, one has M € X if and only if M’ € X.

The class X is finite projectively resolving if
(a) X consists entirely of finitely generated R-modules,
(b) X contains every finitely generated projective R-module, and

(c) for every exact sequence of finitely generated R-modules 0 —
M — M — M" — 0 with M"” € X, one has M € X if and only if
M eX.

1.3. Counsider an exact sequence of R-modules
0—->M —-M—M"—0.

The class X is closed under extensions when M', M" € X implies
M € X, closed under kernels of epimorphisms when M, M" € X
implies M’ € X and closed under cokernels of monomorphisms when
M', M € X implies M’ € X.

1.4. Let M be an R-module. If X € X and ¢: X — M is a
homomorphism, the pair (X, ¢) is an X-precover of M when, for every
homomorphism ¢: Y — M where Y € X, there exists a homomorphism
fiY — X such that ¢f = 4. Enochs and Jenda introduced this
terminology, which can be found in [8].

1.5. An R-complex Z is X-proper if the complex Hompg(Y, Z) is
exact for each Y € X. If X’ contains R and Z is X-proper, then Z is
exact.
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An X-resolution X of M is X-proper if the augmented resolution
X is X-proper; by [11, (1.8)] X-proper resolutions are unique up to
homotopy. Accordingly, when M admits an X-proper resolution X
and N is an R-module, the nth relative homology module and the nth
relative cohomology module

TorX (M,N) =H,(X ®z N)  Ext%(M,N)=H_,Hom (X, N)

are well-defined for each integer n.

1.6. A degreewise finite projective (respectively, free) resolution of an
R-module M is a projective (respectively, free) resolution P of M such
that each P; is a finitely generated projective (respectively, free). Note
that M admits a degreewise finite projective resolution if and only if it
admits a degreewise finite free resolution. However, it is possible for a
module to admit a bounded degreewise finite projective resolution but
not admit a bounded degreewise finite free resolution. For example, if
R = k1 ®ksy, where ky and ko are fields, then M = k; 0 is a projective
R module, but it does not admit a bounded free resolution.

The next result follows from well-known constructions, but the author
is unable to locate an elementary reference.

Lemma 1.7. The class of R-modules admitting a degreewise finite
projective (respectively, free) resolution is closed under summands,
extensions, kernels of epimorphisms, and cokernels of monomorphisms.

1.8. An R-module C is semidualizing if
(a) C admits a degreewise finite projective resolution,

(b) The natural homothety map R — Hom r(C,C) is an isomor-
phism, and

(c) Ext Z'(C,C) = 0.
A free R-module of rank one is semidualizing. If R is Noetherian and
admits a dualizing module D, then D is a semidualizing.

Note that this definition agrees with the established definition when
R is Noetherian, in which case condition (a) is equivalent to C being
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finitely generated. Also, since Hom g(C,C) = R any homomorphism
¢: C™ — C'™ can be represented by an m x n matrix with entries in R.

Finally, note that the hypothesis that C' admits a degreewise finite
free resolution does not imply that R is Noetherian. As one example,
take R to be a non-Noetherian ring and C' = R. For an example with
C # R, let Q@ — R be a flat local homomorphism of commutative rings,
with @ Noetherian and R non-Noetherian. If C' is semidualizing over
@ with degreewise finite projective resolution F, then C' = C' @¢ R
is semidualizing over the non-Noetherian ring R with degreewise finite
projective resolution F' ®¢ R.

1.9. Avramov and Martsinkovsky define a general notion of mini-
mality for complexes in [4, Section 1]: A complex B is minimal if every
homotopy equivalence f: B — B is an isomorphism. Furthermore,
by [4, (1.7)] a complex B is minimal if and only if every morphism
f: B — B homotopic to the identity map on B is an isomorphism.

1.10. Let M, N and F be R-modules. The tensor evaluation
homomorphism

wMNF:HomR(M,N) ®r F —)HOmR(M,N(X)RF)

is defined by wy N (¥ ®r f)(m) = ¥(m) ®g f. It is straightforward to
verify that this is an isomorphism when M is a finitely generated free
(or projective) R-module.

Lemma 1.11. Let F be a flat R-module.

(a) If M admits a degreewise finite projective resolution P, then for
i > 0 there are isomorphisms Ext,(M,C ®r F) 2 Ext%(M,C)®g F.

(b) If M admits a degreewise finite projective resolution and Ext % (M,
C) =0 for some i > 0, then Ext’,(M,C ®g F) = 0.

(¢) If M admits a degreewise finite projective resolution, F is
faithfully flat, and Ext “(M,C @r F) = 0 for some i > 0, then
Ext i,(M,C) = 0.

Proof. (a) The maps wp,cF are isomorphisms by 1.10; hence, the
desired conclusion follows from the flatness of F' and the resulting
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isomorphism of complexes

HomR(P, C XR F) = HOIIIR(P, C) XR F.
(b) and (c). These follow directly from (a). O

1.12. An R-module is C'-projective if it has the form C®g P for some
projective P. Set Pc = Pc(R) = {C ®g P | P is projective}. These
modules are studied extensively (in the non-commutative setting) in
[12]. We state for later use a Lemma that follows readily from [12,
(3.6, 5.6, 6.8)].

Lemma 1.13. Consider an exact sequence of R-modules
0— M — M-— M'"—0.

When M" is a (finitely generated) C-projective, M' is a (finitely
generated) C-projective if and only if M is a (finitely generated) C-
projective. If all of the modules in (1) are C-projective, then (1) splits.

1.14. The Bass class with respect to C, denoted Bc or Be(R),
consists of all R-modules N satisfying

(a) Ext 2 (C,N) =0,

(b) Tor &, (C,Hom g(C, N)) = 0, and

(c) The evaluation map von:C ® g Hom g(C, N) — N is an isomor-
phism.

2. (Gce-projective modules. In this section we define and de-
velop properties of G¢-projective R-modules and the associated G¢-
projective dimension. We begin with a definition which extends the
notion of G¢-projective modules found in [12] (where they are referred
to as C-Gorenstein projective modules) to the non-Noetherian setting.

Definition 2.1. A complete PC-resolution is an exact sequence of
R-modules

2) X=--—P —P—CerQ°*"—CorQ" — ---
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where each P; and Q' is projective, and such that the complex
Hom g(X,C ®g Q) is exact for each projective R-module Q.

An R-module M is G¢-projective if there exists a complete PC-
resolution as in (2) with M = coker (P, — Fp).

Note that when C' = R, the definitions above correspond to the
definitions of complete resolutions and Gorenstein projective modules.

The definition immediately gives rise to the following, which generalizes
11, (2.3)].

Proposition 2.2. A module M is G¢-projective if and only if
Ext ﬁl(M,C ®r P) = 0 and M admits a Pc-coresolution Y with
Hom g(Y,C ®g Q) exact for any projective Q.

Observation 2.3. If M is a G¢-projective R-module, then M
admits a complete PC-resolution of the form
(3) i —F — F)—C@QrF' — C@rF' — -
where each F; and F? is free. To construct such a sequence from a

given complete PC-resolution, argue as in [11, (2.4)].

When X is a complex of the form (2), then the complex Hom r (X, C
®r Q) is exact for all projective R-modules @ if and only if the complex
Hom r(X,C ®g F) is exact for all free R-modules F'. One implication
is immediate. For the other, note that if Q @ @’ is free, then we have
the following isomorphism of complexes Hom g(X,C ®r (Q ¢ Q')) =
HOIIIR(X, C (2973 Q) (&) I‘IOHIR()(7 C QR Q’)

The next three results provide ways to create G¢-projective modules.

Proposition 2.4. If X is a collection of complete PC-resolutions,
then [, Xx is a complete PC-resolution. Thus, the class of (finitely
generated) G¢-projective R-modules is closed under (finite) direct sums.

Proof. For any projective R-module @ there is an isomorphism,

HomR<HX>\,C®R Q> = HHOIHR(XA,C@’R Q).
A A
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Thus, if the complex Hom g(X»,C ®g Q) is exact for all A, then the
complex Hom r(]], Xx,C ®r Q) is exact. It follows that a (finite)
direct sum of (finitely generated) G c-projective R-modules is a (finitely
generated) G¢-projective R-module. |

Lemma 2.5. Let P and Q be projective R-modules, and let X be
a complex of R-modules. If the complex Hom g(X,C ®r Q) is exact,
then the complex Hom r(P ®g X,C ®r Q) is exact. Thus, if X is a
complete PC-resolution of an R-module M, then P g X is a complete
PC-resolution of P @z M. The converses hold when P is faithfully
projective.

Proof. Assume the complex Hom g(X,C ®g Q) is exact. Since
Hom g(P, —) is an exact functor, the isomorphism of complexes given
by Hom-tensor adjointness

Hom r(P ®r X,C ®r Q) = Hom g(P,Hom (X,C ®r Q))

implies that Hom gr(P®r X, C®r Q) is exact. It is now straightforward
to see that if X is a complete PC-resolution of an R-module M, then
P ®gr X is a complete PC-resolution of P ®p M.

If P is faithfully projective, then the complex Hom g (P, Hom r(X,C
®grQ)) is exact if and only if the complex Hom g(X,C®rQ) is exact. O

Proposition 2.6. If P is R-projective, then P and C @ P are G¢-
projective. Thus, every R-module admits a G¢-projective resolution.

Proof. Using Lemma 2.5, it suffices to construct complete PC-
resolutions of C' and R. By definition, C' admits an augmented
degreewise finite free resolution

X=-..—R" RV - (C—0,

and this is a complete PC-resolution of C. Indeed, the complex X is
exact by definition and C' = Coker (R’* — RP0). Furthermore, the
complex Hom r(X,C ®g Q) is exact for all projective R-modules @ by
Lemma 1.11 (b), because Ext 1%1(0, C) = 0. Thus, C is G¢-projective.
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We now show that
Hom (X,C)=0 — R — CP — CPr — ...

is a complete PC-resolution of R. First, left exactness of Hom g(—, C)
and the equality Ext 1%1(0, C) = 0 imply Hom (X, C) is exact. More-
over, since Hom g(X, C') consists of finitely presented modules, for any
projective R-module @, tensor evaluation provides the first isomor-
phism of complexes

Hom g(Hom g(X,C),C ®g Q) = Hom g(Hom g(X,C),C) ®r @
= XQ®rQ.

The second isomorphism follows from the fact that Hom r(C, C) = R.
These complexes are exact since the complex X is exact and @ is flat.

Finally, since the class of G¢-projective R-modules contains the
class of projective R-modules, every R-module admits a G¢-projective
resolution. o

When C' = R, the following proposition is contained in [11, (2.3)].
The proof is similar to that of [4, (2.2)].

Proposition 2.7. If X is a complete PC-resolution and L is
an R-module admitting a bounded Pc-projective resolution, then the
complex Hom (X, L) is exact. Thus, if M is Gc-projective, then
Ext 7' (M, L) = 0.

The following result is Theorem 1 from the introduction.

Theorem 2.8. The class of G -projectives is projectively resolving
and closed under direct summands. The class of finite G¢-projective
R-modules is closed under summands. The class of Gg-projective
R-modules admitting a degreewise finite projective resolution is finite
projectively resolving.

Proof. Consider an exact sequence

L

0—M ML M —0
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of R-modules. First, assume that M’ and M" are G¢-projective with
complete PC-resolutions X' and X", respectively. Use the Horseshoe
lemmas in [11, (1.7)] and [14, (6.20)], together with the fact that
the classes of projective and C-projective R-modules are closed under
extensions to construct a complex

X=. 5P —P —CorQ" - CorQ" — .-

with P; and Q° projective and a degreeswise split exact sequence of
complexes
0— X — X —X"—0

such that Coker (P — Ppy) &2 M. To show that M is G¢-projective,
it suffices to show that Hom r(X,C ®g Q) is exact for all projective
R-modules Q. The sequence

0— HomR(X",C®R Q) — HOHIR(X,C(X)R Q)
— Hom g(X',C ®r Q) — 0

is an exact sequence of complexes. Since the outer two complexes are
exact, the associated long exact sequence in homology shows that the
middle one is also exact.

Next, assume that M and M" are G¢-projective with complete PC-
resolutions X and X", respectively. Comparison lemmas for resolu-
tions, see e.g., [11, (1.8)] and by [14, (6.9)], provide a morphism
of chain complexes ¢: X — X" inducing p on the degree 0 coker-

nels. By adding complexes of the form 0 — P/ 9 P/ — 0 and

0—C®r(QY 9 cor (Q")" — 0 to X, one can assume ¢ is surjec-

tive. Since both the class of projective and C-projective modules are

closed under kernels of epimorphisms, see Theorem 1.13, the complex
X' = ker(¢) has the form

X' = — P — P, —C®r(Q") — Cor Q) — -

with P! and (Q')" projective. The exact sequence 0 — X' — X —
X" — 0 is degreewise split by Lemma 1.13, so an argument similar
to that of the previous paragraph implies that X' is a complete PC-

resolution and M’ is G¢-projective.
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Since the class of G¢-projective R-modules is projectively resolving
by the previous paragraphs and closed under arbitrary direct sums by
Proposition 2.4, it follows from Eilenberg’s swindle [11, (1.4)]holm:ghd
that they are also closed under direct summands.

When the exact sequence (4) consists of modules admitting a degree-
wise finite projective resolution, one can check that the above construc-
tions can be carried out using finite modules. Finally, if G is a finitely
generated Go-projective, then any summand is also G¢-projective.
Since summands of finitely generated modules are finitely generated,
this implies that the class of finitely generated G ¢-projective modules
is closed under summands. o

When C' = R, the next proposition follows readily from the symmetry
of the definition of the Gorenstein projectives. However, in the case of
G¢-projectives, the situation is more subtle. Nonetheless, significant
symmetry exists.

Proposition 2.9. FEvery cokernel in a complete PC-resolution is
G ¢ -projective.

Proof. Consider a complete PC-resolution
X=-—P—P—C3rQ —CorQ"— -

and set M = Coker (P, — Py) and K = Coker (P, — P;). Since M
and Py are G¢-projective, the exact sequence

0—K—PFP—M—70

shows that K is G¢-projective; see Theorem 2.8. Inductively, one can
show that Coker (P,11 — P;) is G¢-projective for every positive integer
i.

Set N_y = M, Ny = Coker (Py — C ®g Q°), and N; = Coker (C ®g
Q™! —» CorQ") for i > 1. Using Proposition 2.2, we will be done once
we verify that Ext il(N,-, C ®g Q) = 0 for all projective R-modules Q.
For each ¢ > —1, consider the exact sequence

Y;':O—)Ni—)C®RQi+1‘>Ni+1 — 0.
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By induction, one has Ext 7" (N;,C ®g Q) = 0. Proposition 2.6 im-
plies that C ®g Q! is G¢-projective for each i > 0, and hence
Extﬁl(C ®r Q,C ®r Q) = 0. The long exact sequence in
Ext g(—,C' ®g Q) associated to Y; provides Ext %{2 (Nit1,C®rQ) = 0.
Furthermore, since Hom g(X,C ®g Q) is exact, so is the complex
Hom r(Y;,C ®r Q). Therefore, since Ext L,(C ®r Q*"',C ®r Q) = 0,
one has Ext L(N;11,C ®r Q) = 0. o

The class of G¢-projective R-modules can be used to define the G-
projective dimension, denoted Gg-pdg(—); seel.l. The following five
results are proved similarly to [11, (2.18), 2.19), (2.20), (2.21), (2.24)].
We collect them here for ease of reference.

Proposition 2.10. Let 0 - K — G — M — 0 be an exact sequence
of R-modules where G is G¢-projective. If M is G¢-projective, then so
is K. Otherwise, one has Gg-pdg(K) = Go-pdg(M) — 1.

Proposition 2.11. If (My)aca is a collection of R-modules, then

Ge-pdg < 11 M,\> = sup{Gc-pdy(My) | A € A}.
A

Proposition 2.12. Let M be an R-module such that Go-pdg(M) is
finite, and let n be an integer. The following are equivalent.
(i) Go-pdg(M) < n.
(ii) Extz(M,L) = 0 for all i > n and all R-modules L with
'Pc-pd(L) < 0.
(iii) Ext % (M,C®g P) =0 for all i > n and all projective R-modules
P.

(iv) In every exact sequence 0 = K,, - Gp_1 — -+ = Gy —> M — 0
where the G; are Gg-projective, one has thatK,, is also G¢-projective.

Proposition 2.13. Let M be an R-module with Gg-pdg(M) < oo.
If M admits a degreewise finite projective resolution, then there is an
equality Go-pdg(M) = sup{i € Z | Ext’5 (M, C) # 0}.
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Proposition 2.14. If two modules in an exact sequence have finite
G -projective dimension, then so does the third.

When C = R, there are numerous proofs (see e.g., [4, (3.4)] or
[11, (2.27)]) of the following: if M is an R-module of finite projective
dimension, then there is an equality pdg (M) = G-pdi(M). Since G-
dimension can be viewed as a refinement of projective dimension, it
makes sense to ask the following:

Question 2.15. If M is an R-module of finite projective dimension,
must pdz(M) = Ge-pdr(M)?

Over a Noetherian, local ring, the affirmative answer in the case of
finitely generated modules follows immediately from the AB-formulas
for projective dimension and G¢-dimension. Over a non-local Noethe-
rian ring, an affirmative answer follows from work in [11, 12]. However,
as of the writing of this paper, the author does not know the answer
to this question in general.

However, arguably the more natural comparison is between Pg-
dimension and G¢-dimension. We have the following.

Proposition 2.16. If M is an R-module of finite Pc-projective
dimension, then Pg-pdg(M) = Gg-pdgi(M).

Proof. Using Proposition 2.12, it suffices to show that if M is G¢-
projective with finite Pe-projective dimension, then M is C-projective.
To this end, consider an exact sequence of the form

0 —K —>CQ®rP—M—0

where P is projective and Ggo-pdg(K) < oo. By Proposition 2.12,
ExtL(M,K) = 0 so the above sequence splits, forcing M to be a
summand of C' ® g P. Since the class of C-projectives is closed under
summands by 1.13, this implies that M is C-projective, as desired. O

3. Gc¢-projective resolutions and approximations. In this
section we prove the existence of strict and proper Gg-projective
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resolutions and of G¢-projective approximations. These will give rise
to well-defined relative (co)homology functors, see Remark 3.7, which
are further studied in [15, 16]. We begin with the requisite definitions.

Definition 3.1. Let M be an R-module of finite G¢-projective
dimension. A strict Gg-projective resolution of M is a bounded G-
projective resolution G such that for i > 1, there exists a projective
R-module P; such that G; = C ® g P;. This gives rise to an associated
G ¢ -projective approzimation of M; that is, an exact sequence of R-
modules

0—K—G—M—0

in which P¢-dimg(K) is finite and G is G¢-projective.

We provide two examples. The first corresponds to the situation
when C'is dualizing, the second to when C = R.

Example 3.2. When R is a local Cohen-Macaulay ring with dual-
izing module D, Auslander and Buchweitz [3] show that every finitely
generated module M admits a maximal Cohen-Macaulay approxima-
tion, that is, an exact sequence of the form

0—K—G—M—0

where K has finite injective dimension and G is maximal Cohen-
Macaulay. This gives rise to a resolution of the form

0— D" — ... —D —5G—M-—0

where G is a maximal Cohen-Macaulay module.

Example 3.3. When R is Noetherian and M is an R-module of
finite G-dimension, Avramov and Martsinkovsky [4, (3.8)] and Holm
[11, (2.10)] provide several constructions of G-approximations, that is,
exact sequences of the form

0—K—G—M—0
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where K has finite projective dimension and G is totally reflexive
(see 4.1). These give rise to strict G-approximations, namely, exact
sequences of the form

0—R"—.-+— R —5G—M-—0

where G is totally reflexive.

The existence of strict Go-projective resolutions implies the existence
of proper G¢-projective resolutions.

Proposition 3.4. Augmented strict G¢-projective resolutions are
G¢-proper.

Proof. Let H be a G¢-projective R-module and
(6) 0—C®rP,—+—CQrP, —G—M—0

an augmented strict G¢-projective resolution. Since Ext L (H,C ®p
P,) = 0 by Proposition 2.12, applying Hom g(H,—) to the exact
sequence 0 - C®r P, - C ®gr P,_1 — K,_2 — 0 provides an
exact sequence

0— HomR(H,C [59)3 Pn) — HOII]R(H,C@R Pnfl)
— Hom g(H, K,_2) — 0.

Continuing to break the exact sequence (6) into short exact sequences
and applying Proposition 2.12 shows that (6) is G¢-proper. o

The existence of a strict G¢-projective resolution for a module M
of finite G¢-projective dimension which is in the Bass class of R with
respect to C' (see 1.14) was shown in [12, (5.9)]. We offer an alternative
construction, motivated by [3], that has the added advantage of not
requiring any Bass class assumption. When R is Noetherian and M is
finitely generated, this is [1, (2.13)]. We begin by proving a lemma.

Lemma 3.5. Let ¢:G — V be a homomorphism between G-
projective R-modules. If 0 - G % U = N =0 is an ezact sequence of
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R-modules such that N is G¢-projective, then the pushout module H
of the maps ¢ and ¢ is G -projective.

Proof. We have a commutative diagram with exact rows

0 G—* Ly N 0
L
0 v H N 0.

Since N and V are G¢-projective, Proposition 2.8 implies H is G¢-
projective. o

The next result contains Theorem 2 from the introduction.

Theorem 3.6. If M is an R-module with finite G¢-projective
dimenston, then M admits a strict Gc-projective resolution and hence
a G¢-projective approximation.

Proof. Assume Gg-pdi(M) = n. By Proposition 2.12, truncating
an augmented free resolution of M yields an augmented G¢-projective
resolution of M

0—>Gnﬂ>Fn,1—>---—>F0—>M—>O.

A complete PC-resolution of G,, gives rise to an exact sequence
0—Gn -5 C®r P, — N —0
where P, is projective and IV is G¢-projective. Lemma 3.5 provides a

commutative diagram (note that the orientation is not the same as in
the previous lemma)

0 Gn i Fn—l Fn—2

0——C®gP, L>Gn—1
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with exact rows in which G,,_; is Gg-projective. As G,,_1 is a pushout
module, the maps ¢, and ¢’ have isomorphic cokernels, resulting in a
G c-resolution

0—COrP,25G, 1 —s Fyg—s e —s Fy — 0.

Continuing this process yields a strict G¢-projective resolution of M. O

Remark 3.7. As noted in the introduction, Proposition 3.4 and
Theorem 3.6 imply the following: every module M of finite G¢-
projective dimension admits a proper G¢-projective resolution. Hence,
the relative (co)homology functors Ext &, (M, —) and Torg; (M, —) are
well-defined for each integer n; see 1.5.

We close the section with a complement to Proposition 2.11, which
is proved as in [12, (2.11)].

Corollary 3.8. Let 0 - G' - G — M — 0 be an exzact
sequence of R-modules. Assume G and G' are G¢-projective and that
Ext H(M,C ®gr Q) = 0 for all projective R-modules Q. Then M is
G -projective.

4. Connections with totally C-reflexive modules. In this
section, we reconnect with Golod’s G¢-dimension.

Definition 4.1. Let M be an R-module, and assume that M and
Hom g(M,C) admit a degreewise finite projective resolution. The
module M is totally C-reflexive if the following conditions hold

(a) The natural biduality map M — Hom g(Hom (M, C),C) is an
isomorphism,

(b) Ext }%I(M, C) =0, and

(c) Ext il(Hom r(M,C),C)=0.

Observation 4.2. Finitely generated free modules are totally C-

reflexive, as is the R-module C™ for any positive integer n. If M
is totally C-reflexive, then it is straightforward to check that any
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summand M’ of M is also totally C-reflexive (using Lemma 1.7 to
see that M’ admits a degreewise finite free resolution). Thus, finitely
generated projective R-modules are also totally C-reflexive, and so
every finitely generated R-module admits a resolution by totally C-
reflexive modules.

When R is Noetherian, the homological dimension which arises by
resolving a given module by totally C-reflexive modules is known as the
G¢-dimension of a module, which was first introduced by Golod; see
[10]. In the case C' = R, this is Auslander and Bridger’s G-dimension
[2].

Next we provide a useful characterization of totally C-reflexive mod-
ules, which generalizes [5, (4.1.4)].

Lemma 4.3. An R-module M is totally C-reflexive if and only if
there is an exact sequence of the form

(7) X=-+—R" S Ro Cv Cm — ...

with M = Coker (RP* — RP) and such that Hom r(X,C) is exact.

Proof. Set (—)' = Hom r(—,C). Assume first that M is totally C-
reflexive. By definition, there exist augmented degreewise finite free
resolutions

F=...— R R s M —0
G=---— R — R*™ — M — 0.

The complexes FT and G' are exact, as Ext il(M, C) =0 =

ExtZ!'(M",C). The isomorphism M = M shows that G' has the
form
GT=0—M-—C* —C* — -

Splicing together the complexes F and G' provides an exact sequence
X of the form (7) with M = Coker (R#* — RP°). The fact that F'T and
G are exact implies that X T is exact.

Conversely, assume that M admits a resolution X of the form (7)
such that

(8) Xt=... 5 R R P 0P — ...
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is exact. Counsider the following “soft truncations” of X

F=-..—RP R M —0
H=0—M —C* — C* — --- .

The complex X' is exact and therefore so are F' and HT.

Since F' is an augmented free resolution of M, this implies that
Ext il(M ,C) = 0. The biduality maps and exactness of H' provide a
commutative diagram

H=0 M cee c*
e
H'" = 0 ——— Hom r(Hom (M, C), C) ceo o

The top row is exact by definition, while a routine diagram chase
and the fact that Hom g(—,C) is left exact shows that the bottom
row is exact. Since 68a, and 6, are isomorphisms, the snake lemma
implies that the map §¢; is an isomorphism. Finally, the exact sequence
H' is an augmented degreewise finite free resolution of MT. Thus,
exactness of H'T implies that Ext 1%1 (M*,C) = 0 and thus M is totally
C-reflexive. O

The next result is Theorem 3 from the introduction.

Theorem 4.4. If M and Hom g(M,C) admit degreewise finite
projective resolutions, then M is G ¢ -projective if and only if it is totally
C-reflexive.

Proof. Set (=)' = Hom g(—, C) and let F and G be degreewise finite
free resolutions of M and Hom r(M, C), respectively.

Assume first that M is totally C-reflexive. By Lemma 4.3, there is
an exact sequence

X=---— R — R 0% M — ...
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with M = Coker (R#* — RP°) and such that Hom r(X, C) is exact. An
argument similar to the one used in the proof of Lemma 1.11 implies
that the complex Hom g(X,C ®g P) is exact, and so X is a complete
PC-resolution of M.

Conversely, assume that M is G¢-projective, and let
i — P — Py—CQrF' —C@rF' — --.

be a complete PC-resolution of M in which each F" is a free R-module;
see Observation 2.3. We show M is totally C-reflexive by constructing
a complex X as in Lemma 4.3. To this end, it suffices to construct an
augmented 'Pé—coresolution

Y=0— M —CQrR* — (CQrR** —---

where each a; is a non-negative integer and Y is exact. Indeed,
Proposition 2.12 implies that Ext ﬁl (M,C®pgP) =0 for any projective
R-module P; in particular Ext ﬁl(M, C) = 0. Tt follows that (F*)T is
exact. Splicing together the complexes F' and Y provides the desired
complex X.

We now build the complex Y piece by piece. Consider the exact
sequence
0—M-—C®RrF’*—G—0

arising from the given complete PC-resolution of M. By Proposi-
tion 2.9 we know that G is G¢-projective. Since C ®p FO is a direct
sum of copies of C' we know that the image of the finitely generated
module M is contained in a finite direct sum of copies C'. That is, the
image of M is contained in a finitely generated submodule C' ® g R*°
of C ®g FP. Thus, we have a commutative diagram with exact rows

0 M C ®pr R% H 0
S J
0 M C ®g F° G 0.

Let P be a projective R-module, and set F = Hom g(—,C ®g P).
Since C ® g R*® and G are G¢-projective, we have Ext L(G,C®x P) =
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0 = ExtL(C ®g R*,C ®g P). Hence, applying F to (9) yields a
commutative diagram with exact rows

0 F(@) F(C &g F%) F(M) 0
0 F(H) F(C ®p R™) F(M) ExtL(H,C @ P) —— 0.

A routine diagram chase shows that Ext % (H,C ®g P) = 0. Propo-
sition 2.12 and Proposition 2.14 then imply that H is G¢-projective.
Since M and R“° admit degreewise finite projective resolutions, so does
H. Applying Hom r(—, C) to the exact sequence

00— M —CQrR* —H—0
gives rise to an exact sequence
0 — Hom r(H,C) — R* — Hom g(M,C) — 0.

Here we used the facts that Hom r(C®gR*, C) 2 R* and Ext L (H, C)
= 0 because H is G¢-projective. Since Hom g(M,C) and R* ad-
mit degreewise finite projective resolutions, so does Hom g(H, C); see
Lemma 1.7. Thus, we can proceed inductively to construct the complex
Y with the given properties. ]

Corollary 4.5. If M and Hom g(M,C) admit degreewise finite
projective resolutions, then M has finite G -projective dimension if and
only if it has finite G -dimension. Moreover, these values coincide.

Combining this with the AB-formula for G¢-dimension, see [6,
(3.14)], and Proposition 2.16, we have an AB-formula for modules of
finite Pc-dimension.

Corollary 4.6. Let R be a local, Noetherian ring. If M is a finitely
generated R-module of finite Pc-dimension, then

Pc-pdp(M) = depth (R) — depthg(M).
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The next result compares with Theorem 3.6.

Corollary 4.7. If M and Hom g(M,C) admit degreewise finite
projective resolutions and Go-pdg(M) is finite, then M admits a strict
Gé—resolution.

We conclude the paper with results on minimal proper G¢-projective
resolutions; see 1.9 for the definition of a minimal complex. Note that
Proposition 4.10 (b) shows, in particular, that such resolutions are
strict. We begin with two lemmas, the first of which follows as in [4,

(8.1)].

Lemma 4.8. Over alocal ring R, a complex H consisting of modules
in 'Pé, s minimal if and only if O(H) C mH.

Lemma 4.9. Let R be local, Noetherian and M a finitely generated
R-module which admits a bounded Pé—resolution. Then M admits a

minimal Pé—resolution.
Proof. An augmented bounded Pé—resolution of M
XT=0—C*" —...—C*" —C* —M—0

is also an augmented strict G¢-projective resolution of M and so Propo-
sition 3.4 implies that it is proper. Applying the functor Hom g(C, —)
to X and using the fact that Hom g(C, C) = R yields an exact sequence

Hom z(C,X*)=0— R*» — ... — R™
— R* — Hom p(C, M) — 0,

which is an augmented finite free resolution of Hom g(C, M). There
is an isomorphism of complexes Hom g(C,X) = F & G where F is
an augmented minimal free resolution of Hom g(C, M) and G is a
contractible complex of free modules. Recall that G is contractible
if the identity map on G is homotopic to the zero map.
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Since M has finite Po-dimension, [18, (2.9)] implies that M € B¢ (R)
(see 1.14 for the definition). This provides the first isomorphism below

X+ %C®RH0mR(C,X+)
~“(CerF)® (CerG)

while the second follows from the isomorphism Hom (C, X ) ~ F&G
and the fact that finite direct sums commute with tensor products. It is
now straightforward to verify that the complex C ® g F' is contractible
and that the complex C ®pg F is a minimal Pc-resolution of M, as
desired. o

The following structure result is the key to demonstrating the dif-
ferences between the relative cohomology theories Ext p,, Ext ¢, and
Ext g in [15].

Proposition 4.10. Assume that R is local, and let M be a finitely
generated R-module of finite G¢-projective dimension. If M and
Hom g(M,C) admit degreewise finite projective resolutions, then the
following hold.

(a) The module M admits a minimal proper G -projective resolution.

(b) A given G¢-projective resolution H of M is minimal if and only
if the following conditions hold.

(1) H, 2 C* for alln > 1,
(2) 02 (H,) C mH,_; for alln > 2, and

(3) O (Hy) contains no nonzero C-summand of Hy.

Proof. We begin by showing that a G¢-projective resolution H
satisfying conditions (1)—(3) is minimal. First, observe that Hj is
finitely generated because M and H; are so. Let v: H — H be a
morphism that is homotopic to idg. Using 1.9, we need to show that
~n 18 an isomorphism for each integer n.

For n > 0, let 6,:H, — H,y; be maps such that v, —idg, =
Op_10H + (9f+10n, which exist since =y is homotopic to idg. For n > 2,
condition (2) implies 0% ®g k = 0, and so 7, ®g k — idgy, Qg k = 0.
Nakayama’s lemma implies 7, is a surjective endomorphism, and hence
bijective.
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Now let n = 1. We verify the containment Im (6y0{') C mC® and
then an argument similar to that in the previous paragraph shows that
71 is an isomorphism. Suppose Im (6p8f') ¢ mC*. This means the
matrix representation of 8y0{ contains a unit; see 1.8. Thus, there
exist maps p: C®* — C and ¢: C — C° such that pfy0f7t = idc. This
provides a splitting 0f7 ¢ of pfy: Hy — C, and so Hy = C @ ker(pfy).
Finally, the summand C@0 is isomorphic to Im (9#¢) which is contained
in Im (0f1) C Hy, contradicting assumption (3).

The fact that v is an isomorphism now follows as in [4, (8.5)].

Next we show that M admits a resolution satisfying (1)—(3). With
the first part of this proof, this will establish part (a). First, note that
by Corollary 4.7, there exists a G¢-projective approximation of M

Y-0—K—H —M—0

where H is totally C-reflexive and K admits a bounded Pé—resolution.

If possible, write H = C' @ H' and assume K contains the nonzero
C-summand C & 0 of H, say K = C & K' for some K'. One checks
readily that the compatibility of the two splittings gives rise to a split
exact sequence of complexes, written vertically

0 0 0 0

Y’ 0 K’ H' M 0
Y 0 K H M 0
X 0 C c 0

0 0 0.

Since Y' is a G’é—projective approximation of M, one can repeat this
process. Finitely many iterations yield a G¢-approximation Yy =0 —
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Ky — Hy — M — 0 where K, does not contain a nonzero C-summand
of Hy. Lemma 4.9 implies that K admits a minimal Pé—resolution Z.
Splicing together Yy and Z at K provides a resolution of M satisfying
(1)—(3).

Finally, let G be a resolution of M satisfying conditions (1)—(3), and
let H be a minimal proper G¢-projective resolution of M. It follows
from [11, (1.8)] that G and H are homotopy equivalent. Since G and
H are minimal, it follows from Definition 1.9 that they are isomorphic,
and so H has the prescribed form. ]
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