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A CLASS OF LOCAL NOETHERIAN DOMAINS

SUSAN LOEPP, CHRISTEL ROTTHAUS AND SARAH SWORD

ABSTRACT. In this paper, we construct factorial domains
with a given specific completion. The material is based
on Nishimura’s paper [12], which is based on the work of
Rotthaus in [17], Ogoma in [15] and Heitmann in [6].

1. Introduction. In this paper we present a method of constructing
local Noetherian rings which has been very fruitful over the past 25
years in the construction of various examples and counterexamples
in commutative algebra. After being introduced first in 1979 this
method has been simplified, modified, extended, and generalized by
many authors resulting in numerous papers published and unpublished.
Our goal here is to describe this method comprehensively so that the
construction of additional examples is merely a matter of choosing
the right ideal in a polynomial ring and plugging in the appropriate
equations. The presentation is guided by unpublished notes of Jun-ichi
Nishimura. We are grateful to Nishimura for allowing us to make use of
his notes in this paper. Nishimura’s notes also include a large number
of new and previously unknown examples of Noetherian rings which
are not included here.

Over the past 60 years important examples of Noetherian local rings
have been constructed using so called non-standard methods. Non-
standard methods are methods which go beyond the standard ways
of constructing Noetherian rings like extensions of finite type, local-
ization, completion, and Henselization. These non-standard methods
can roughly be divided into three classes. The first class of examples,
called here the Akizuki-Nagata method, goes back to at least Akizuki
[1]. It was used and extended by Nagata [10] in his famous example of
a normal local Noetherian domain whose completion is not a domain.
The methods presented in this paper can be understood as a mod-
ification of the Akizuki-Nagata method. The local Noetherian rings
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constructed via the Akizuki-Nagata method are birational extensions
of a polynomial ring in finitely many variables over a field.

In a 1993 paper, Heitmann [7] introduced a powerful new method,
called Heitmann’s method, of constructing local Noetherian rings. In
particular, given a complete local ring T, he found in [7] necessary
and sufficient conditions for 7" to be the completion of a factorial
local Noetherian domain. Heitmann’s method was further developed
by Loepp [8] and others to construct a variety of counterexamples in
commutative algebra. This method is based on a clever transfinite
induction argument. Typically it is not known which elements are
contained in the constructed example.

The third class of non-standard examples are those examples whose
construction has not (yet) been generalized to produce a large class
of different examples. These sporadic examples include the Ferrand-
Raynaud example [4] and the example in [18].

Since, in this paper, the results are modifications of the Akizuki-
Nagata method, we now give the idea on which that method is based.

Let K be a field, z,z,...,2; variables over K, and let R =
Klz, 21, ,2t|(2,z,...z;) be the localized polynomial ring over K. Let
P15 pm € (R, (2))" = R = Kl[z1,... , 2] (z,... 2)[[%]] be the power
series in & which are algebraically independent over K (z, z1, ..., 2t).
By adjoining infinitely many elements of R, which are related to
P1,--- > Pm, @& quasi local ring B is constructed whose (z)-adic com-
pletion is R. Moreover, this ring B is a birational extension of
R[p1,... ,pm]- In many cases B is Noetherian and a homomorphic
image of B provides a counterexample to a problem in commutative
algebra, as for example, in Nagata’s example of a normal local domain
whose completion is analytically reducible. For a long time the proof
that the constructed ring B is Noetherian remained notoriously diffi-
cult and the construction was restricted to examples of small dimension
(< 3). Then in the 1990’s Heinzer, Rotthaus, and Wiegand related the
question of whether or not B is Noetherian to a flatness condition on
algebras of finite type over K. This result allowed the construction of
Noetherian examples of higher dimension.

In 1979 Rotthaus constructed a local Noetherian Nagata ring with
a non-closed singular locus [17]. In order to obtain such an example
the Akizuki-Nagata method had to be modified in the following way:
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Instead of adjoining power series p1, ... , pm in the (z)-adic completion
of R, the p’s had to be chosen in any (p)-adic completion of R where
p runs through the prime elements of R. To make such a construction
work the field K needed to be countable and, in addition, a suitable
enumeration of the prime elements of R had to be chosen. Under these
modifications the ring B is contained in R* = N, (R, (p))" where p runs
through all prime elements of R. In particular, for every ideal I C R*,
all prime elements p € R, and all n € N the ideal I + (p™) is extended
from R. The proof that B is Noetherian is, then, surprisingly simple.

In 1980 Ogoma constructed his celebrated counterexample to Na-
gata’s chain conjecture [14]. In his paper Ogoma introduced yet
another modification of the Akizuki-Nagata method which had far-
reaching consequences for the construction of a wide variety of coun-
terexamples. Before Ogama’s modification, all examples constructed
via the Akizuki-Nagata method (including the Rotthaus example) had
been a homomorphic image of a regular local ring, namely B. Of
course, Ogoma’s example of a non-catenary ring could not possibly be
such a homomorphic image. By a modest technical variation in the
construction (namely, by adjoining so called ‘front pieces’ instead of
‘end pieces’) Ogoma constructed a local Noetherian domain A which is
a birational extension of R and has completion A= }AE/ I for a specific
ideal I C R.

In 1982 Heitmann [6] found a method (unrelated to Heitmann’s
method discussed earlier in this paper) to enumerate the prime elements
of R which simplified the previous constructions. Shortly thereafter
Brodmann and Rotthaus [2] used Ogoma’s and Heitmann’s ideas to
show Theorem 10 of this paper. This theorem states that for an
affine algebra T' = Klz1,...,2t)(s,.. z)/] where K is a suitable
countable field there is a local Noetherian domain A with completion
A 2 T[[z]]. Moreover, there is an ideal in the generic formal fiber of
A corresponding to the ideal (zy,...,2) in T[[z]. This yields the
construction of a large class of local Noetherian domains with bad
formal fibers.

In 1982 Ogoma constructed a Cohen-Macaulay factorial domain
which is not Gorenstein. In this construction he substantially mod-
ified his method in [14] to obtain a factorial domain. Nishimura, in his
unpublished notes [12, 13], realized that by using Heitmann’s enumer-
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ation lemma Ogoma’s example could be generalized to large class of
factorial local domains with bad formal fibers. This method basically
obtains the same result as the Brodmann-Rotthaus theorem with three
significant differences: (1) the constructed domains are in addition fac-
torial, (2) it is no longer necessary to add an additional variable x, and
(3) (as a disadvantage) the construction only works for a certain class
of prime ideals I of the polynomial ring.

In this paper we present the Brodmann-Rotthaus theorem in Sec-
tion 2 and the Ogoma-Nishimura result in Section 3. Throughout the
paper we were guided by Nishimura’s unpublished notes. The only
change we made is in Section 3 in the definition of k-absolute prime
ideals. By requiring that those prime ideals extend to prime ideals in
the power series ring it is easier to understand that the prime ideals un-
der consideration remain prime under a k-automorphism of the power
series ring.

2. The Brodmann-Rotthaus theorem. In this section we present
the basic construction which will provide examples of the following
type: Let K be a field, R = Klz1,...,2n](,..,z,) the localized
polynomial ring in n variables, and I C R an ideal of R. Our goal
is the construction of a local Noetherian ring A, which birationally
dominates R and has completion isomorphic to R/IR. In order to
make this construction work we need to impose some mild conditions
on I concerning the zero divisors of the ring R/IR. We also need to
require that the field K is countable and of countable transcendence
degree over the prime field. Under these assumptions we can choose a
suitable enumeration of a set of representatives of the height one prime
ideals of R. Using this enumeration we then define a K-automorphism
¢ of the completion R = K|[[z1,...,2]]. Under the automorphism ¢
the ideal I Ris mapped into an ideal J of R which has the property that
the ring R/J is R-torsion free. The desired example is the intersection
ring A = Q(R) N R/J. In order to show that A is a Noetherian ring
we need to describe A as a nested union of algebras essentially of finite
type over K.

The exposition of this construction is divided as follows: In sub-
section 2.1 we introduce notation and choose a suitable enumeration
(Heitmann’s enumeration) of elements of the polynomial ring R. In
subsection 2.2 we define the automorphism ¢ of the power series ring
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K|[z1,...,2n]] by defining the elements (;. Then we introduce the
ideal I and construct A, first, in subsection 2.3 as an intersection
ring, and then in subsection 2.4 we show that A is equal to a nested
union of rings which birationally dominate the localized polynomial ring
Klz1,..+ ,2n](z,... 2,)- Subsection 2.5 proves the Brodmann-Rotthaus
theorem and subsection 2.6 is an historical note which describes how
the early examples by Rotthaus [17] and Ogoma [14] can be derived
from the Brodmann-Rotthaus result.

2.1. The enumeration. Let Ky be a countable field, and let K be
a purely transcendental extension field of K of countable degree, with
transcendence basis {a;x | 2 = 1,... ,m;k € N} over K;. We express
K as

K = UKk where K = Ki_1(a1k, ... ,ami) for k € N.

k
Let z1,..., 2, with m < n be variables over K, and let
So = Kolz1, - -+, 2n) with maximal ideal Dy = (21,...,2,)S0
Sk = Sk—1[a1k, - - - Amk) with prime ideal N = (215- -+, 2n)Sk
S=JS
k
= Ko[{aix}ik][#1,- - -, 2] With prime ideal N = (21,...,2n)5.

Localize the polynomial rings at these prime ideals:

—

RO = So)mo = Ko[Zl, e ,Zn](zh__”zn) Wlth Ny = (Zl, e ,Zn)R(),
Ry = (Sk)‘ﬁk = Kk[zl, . ,Zn](zl,__. Zn) with ngy= (21, - ,Zn)Rk,
R=Sn=Klz1,.-.,2n](z1,..,20) withn = (z1,...,2,)R.

We write Ry, = Ri_1(a1k, - .- ,amk), which means Ry, is a localization
of Ri_1[aik,--- ,amk] at the prime ideal (z1,... ,2,). Note that (R,n)
is a countable regular local ring. Moreover, R = Uy Ry, is a nested union
of smaller localized polynomial rings.

Suppose I' C 0 = (z1,...,2,)S is a set of elements so that

() 0¢T
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B)z1+-+2z €l
() for all p € Spec (Ry) with p # (0) we have that pNT # 2.
(6) Sk NT is (countably) infinite for all k.

Since S is countable, I is countable.
We fix an enumeration p : N — I' with the following properties:
(a) p(U) =21+ -+ 25
(b) For all k > 2: p(k) € Sk_2,

and set p = p(k).

We frequently use the following observation:
Rrp_oNS= (Sk_g)m,%Z NS =5,_s.

This follows from the assumption that the a;; for j > k — 1 are
algebraically independent over the quotient field Q(Sk—2)-

Let €1,... ,€k,... be a strictly increasing sequence of positive inte-
gers, for example, e, = k for all k£ € N\ (0). Define:

P1=z1+22+ -+ 2y

Zi0 = Zi
gk = P1°" Dk
Zik = zi + a;1q;t + -+ agqr for k>1and i <m
PBr = (#1k, - - - » Zmk) R where m < n.
Note that the elements zig, - - . , zmk form part of a regular system of

parameters of R and that Py is a prime ideal of R of height m for all
k>0.

At this stage the choice of an increasing sequence of positive integers
{ei} other than {¢; = i} seems an unnecessary complication. However,
a proper choice of the ¢;’s becomes crucial in the second part of this
paper where factorial rings will be constructed.

Theorem 1 (Heitmann’s numbering lemma). Suppose that m < n.
Then for all integers k > 0 and all positive integers h < k+1: p, ¢ Pr.
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In order to prove the theorem we will show first by induction on &
that the ideals (z1g,... ,2sk)Sk are prime for all 1 < s < m. This
requires some lemmas.

Lemma 2. Let A be a Noetherian domain, t a variable over A, and
q, w a regular sequence in A. Then (gt — w)A[t] is a prime ideal in

Alt].

Proof. Note that (gt — w) is an ideal contained in the kernel of the
A-algebra morphism:

o Alt] — A E]
where ¢ maps to w/q. Since (¢t—w) is a prime ideal of A,[¢] and ¢ is not
a zero divisor of A, we have to show: if f(t) € A[t] with ¢" f(¢) € (gt—w)
then f(t) € (gt — w). Suppose that

&)= ait’
=0

and ¢"f(t) € (¢t — w). This implies that ¢"ap € (w)A. Since w,q
is also a regular sequence of A we have that ap € (w). Consider the
polynomial

g(t) = Z bit*
i=1

where ay = ciw, by = a1 — ci1q, and b; = a; for ¢ > 1. Then
g(t) = f(t)—ci(gt—w) and f(t) € (gt —w) if and only if g(t) € (gt —w).
A similar argument shows that b; € (w) and we can replace g(¢) by
a polynomial of the same degree as f which is divisible by ¢2. The
process stops either if we obtain the zero polynomial showing that
f(t) € (gt —w) or with a polynomial of the form ct™, in which case we
must have that ¢ = 0. o

Lemma 3. Let A be a Noetherian domain and suppose that
q, W1, - .- , Wy, is a reqular sequence of A. Then q,ws, ..., W, IS a reg-
ular sequence of Alw;/q].
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Proof. We know from the first lemma, that

w
A[?l] = Alt]/ (gt — w1).
Thus it is enough to show that gt — wy,q,ws,... ,w,, is a regular

sequence of A[t]. The proof of the first lemma shows that gt —w;, ¢ is a
regular sequence of A[t]. Since (gt — w1, q) = (¢, w1)A[t] the statement

follows since A[t] is flat over A. O

Lemma 4. Let A be a Noetherian domain and q,wi,... , W, @
regular sequence in A. The ideal (qt1 — w1,... , gty — W) s a prime
ideal in the polynomial ring Alty, ... ,tm].

Proof. From Lemma 2 and Lemma 3. ]

Proof of Theorem 1. We want to show by induction on k:
(a) For all 1 < s < m the ideal (21, ... ,2s) is a prime ideal in Sk.
(b) gn ¢ Py for all h < k + 1.

The statement is clear for & = 0. Suppose that statements (a)
and (b) are true for k — 1. Then g is not in Py_1; in particular,
gk is not in (2y(k—1),--- , Zm(k—1))Sk—1. By the induction hypothe-
sis (21(k—1)»--- s Zs(k—1))Sk—1 is a prime ideal in Sp_; yielding that
21(k—1)»- -+ s Zs(k—1)> Gk 1S @ regular sequence in S_; for all 1 < s < m.
An induction argument shows that the sequence gk, 21(k—1); - - - Zm(k—1)
is also regular and so is the sequence q.*, z1(k—1), - -, Zm(k—1). Consid-
ering

€
Zik = Zi(k—1) T Qikqy"

as linear polynomials in the variables a;g, it follows from Lemma 4 that
the ideals (21, ... , 2zsk) are prime in Si. This shows (a) for k.

In order to show (b) observe that the elements ajk,...,anr are
variables over Si_; and its field of quotients Ly 1 = Q(Sk_1). Thus

(Z1ky - - -+ Zmk) Lk—1[01ks - - - 5 i)
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is a proper ideal in the polynomial ring Lx_1[a1k, ... , @mk]. Obviously,
(Zlk:; e 7ka)Lk71[a1k7 e 7amk5] N Lk*l = (0)

This implies that:

(Z1ks - - » Zmk)Sk—=1[A1ks - - o Gmk] VSk—1 = (21ks - - -» Zmk ) SkNSk—1 = (0).
Ry, is a localization of Sy and (21, ... ,2mk) is a prime ideal in Sk.
Therefore:

Br NSk = (21ks -+ - » Zmk) R N Sk = (Z1ks - -+ > 2mk ) Sk

and

Pr NRp_1 = (0)
Since pp, € Ri—1 for all h < k + 1, assertion (b) follows. ]

2.2. The automorphism ¢. Suppose that we have chosen an
enumeration p; of the elements of I" so that p; = 21 +-- - + 2, and that
for all £ > 2: pr € Sk_2. Let g; be a sequence of strictly increasing
positive integers. As before, we put for all & > 1:

qk = P1-° " Pk

and, for all 1 <i < m and for all £ > 1:
Zik = 2zi + 107" + @205 + -+ + aagy.

For m+1 < j <n we set zj; = 2;.

We let (; be the power series which is the limit of the z;; for k — oo,
that is:

G=z+) ang € Klz,... 2]

1=2
if 1 <i<mand(; =z for m+1 < j <n. Note that the elements
Ciy.+ yCmy Zm+1,--- 5 2n form a regular system of parameters of the
power series ring K{[z1,...,2,]] = K[[C1,-- ,Cmy Zmt1y--- »2n)]. The

map
zir— p(z) =G ifl1<i<m

zir— o(z)) =2z ifm+1<i<n
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extends uniquely to an automorphism ¢ of the power series ring
K[[z1,... , 2]l

In this first section the automorphism ¢ changes the first m variables:

oo
o(z) =G =2 +Zailqlsl for1<¢<m
1—2

while it leaves the remaining n — m > 0 variables z,,41,... , 2, fixed.
In the next section on the construction of factorial domains we need
to change all variables. Since m < m is a necessary condition in
Heitmann’s lemma, this will require a modified enumeration of I.

2.3. The intersection ring A. Let I C R = K[z1,... ,2n](z,... ,20)
be an ideal that satisfies the following condition:

(x) For every associated prime ideal:

Q € Ass (K[[z1, .., 20]] JIK[21, - -, 2a]])

we have that Q C (21,...,2zm)K|[21,- .. ,24]]-
Under the automorphism ¢ of KJ[z1,...,2,]] (as defined in (2.2))
the ideal IK|[[z1,...,2,]] is mapped into an ideal J of K[[z1,... ,2y]]

which then satisfies the following condition:

(*x) For every associated prime ideal:
Q' € Ass (K|[z1,...,2n]]/J)

we have that Q@ C (¢1,...,C¢n)K][21,...,2,]]- In particular, J C
(C1y-- ) K[21, - -, 20]]

We define P = (¢1y- - Cm)K|[215- - - 2n]]- Since the elements (y,. . ., G
are part of a regular system of parameters of R = K|[[z1,...,2,]] we
obtain that P is a prime ideal of height m in R = K|[[zy, ... , z,]].

Lemma 5. PN R = (0).

Proof. Suppose that the intersection is not trivial. Since I' has a
nonempty intersection with every nonzero prime ideal of R, there is an
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integer h € N such that p;, € PNR. By construction of the (’s this
implies that

Dhy Z1(h—1)»- - - » Zm(h—1) € PN R.
The elements zy(j,_1), - - , 2m(n—1) form part of a regular sequence in R,
which implies that the ideal Pr_1 = (21(h—1)s- -+ » Zm(h—1)) IS @ prime

ideal of height m in R. By Heitmann’s numbering lemma, p, ¢ PBp_1.
This yields a contradiction since the intersection ideal PN R is a prime
ideal of height at most m. O

The lemma implies that J N R = (0) and that the composition of
natural maps:

R-5R-5R/J
gives an embedding m = v of R into }/%/J:

ﬂ':R—}]'/%/J.

By condition (#*) every nonzero element of R is mapped via 7 into a
non-zerodivisor of R/J.

The ring of interest is the intersection ring:
A=Q(R)N(R/J) = Q(R) N (K[[z1, ... ,2a]l/ ).

In the next section we show that A is a local Noetherian ring with
completion R/J. As pointed out in [5] it is usually difficult to describe
what the elements in the intersection ring A are. In this particular
construction we are able to describe the intersection ring A in a different
way. We first construct a ring B contained in A which is a nested union
of essentially finitely generated algebras over K. B is a local Noetherian
ring with completion R/J. Since Q(A) = Q(B) by flatness it follows
that A = B.

2.4. Construction of the nested union ring B. Let I C R be an
ideal which satisfies condition () and let Fy(21,...,2n),. - -, Fr(21y- - -,2n)
€ Klzi,...,2s) be a generating set for I. The elements f; =
o(Fi(z1,---y2n)) = Fi(C1y--+ yCmyZmt1s--- »2n) form a generating
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system of the ideal J in K]{[z1,...,2,]]. With the notation of (2.1)
and (2.2):

o0

(i:zi—i—Za“qlE’ € K[[z1,.-.,zn]] for 1 <i<m
1=1
k

Zik :zi—i—Za”qlE’ € Klz1,...,2,) for 1 <i <m and
=1

zik =z form+1<1i¢<n.
We consider for all 1 < j < m the following elements in the field of

quotients of R:

1
Qi = quFj(zlk,... s Zmks ZmAls -+ 3 2n) € K(21,.. .5 2n).
k

A similar construction is used in [5] where accordingly the o’s are called
“front pieces.” Consider:

1
Qikt1) = “eerr Fi(Z1k41)0 - - o Zm(kt1)s ZmeAds -+ -5 Zn)
k+1
_ €k+1 Ek+1
= 7 Fi(21ih T 01(k+1) Qi1 5 - - o Zmk F Qm(k4 1) Q1 5 Zmt 1y - - -5 Zn)-

Qk+1

By Taylor’s formula:

Qj(k+1) = Erga Fj(zlka <o s Zmks Bm41s - - - 7Zn) — Sjk
k+1

with s;; € R. This yields a recursion formula which is essential for the
remainder of construction:

€k+1

k+1
O[jk = —qek [O‘j(k+1) + Sjk].
k

Note that
Ty
- €R.

sjk € R and
4y
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Lemma 6. For all1 < j<r and all k € N:

ajk € Q(R) N (R/J).

Proof. We have that

€
Gk = Fj(Z1ky -+ s Zmks Zm41s - - »2n)
which implies
£
fi— @ oge = Fj(Cuy- - 5 Cms Zmsts - -+ 5 2n)
— Fj(Z1ky -+ - s Zmks Zm+41s- -+ » %n)
— Ek+1,
= dgy1 Mjk

for some element 7,5, € R. fj € Jforalll < j <7 and therefore f; =0
in R/J. Thus:
qF o, = —q,i'fllnjk in R/J.

Since ¢;* is regular on R/J, it follows that:

1 ~
Ozjk:quFj(Zlk,...,ka,2m+1,... ,Zn)ER/J O
k

As described below the subring B is obtained from R by essentially
adjoining all the elements oj; € Q(R).

Note that the canonical injection:
m:R— R/ J

extends to a commutative diagram:
R— ™ L R/J
o

Q(R) —2— 57Y(R/J)

=)
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where S = R\ (0) and 7,7 are the natural maps. By assumption ﬁ/ J
is R-torsionfree and the map 7 is injective. We have just shown that
air, € R/J. Thus the restriction of X\ yields for all £ € N injective
morphisms: R

Ak R[Oélk, Ce ,ark] e R/J.

Let
g = )‘Izl(m)v

be the contraction of the maximal ideal m of E/J For all k € N set:
By = Rlaig, - .-, 0rkw,

Using the recursion formula for the o ’s:
€k+1
Ykt
Ok = " (k1) + il
k

we see that there are canonical inclusions:
Rloag, ... o] © Rloq(hga)s - -+ s Op(kt1)]
which yield inclusions of the local rings:
By, C Biy1

for all £k € N. The desired ring B is obtained as the nested union:

B= UBk.

keN

It is obvious that B is a quasilocal ring which is contained in 4 =
Q(R)NR/J. In the next section we show that B is a local Noetherian
ring with completion B= R/ J. This implies that A = B.

2.5. The main results.

Proposition 7. B is a local Noetherian ring. Moreover, for every
nonzero prime ideal ¢ C B the quotient ring B/q is essentially of finite
type over K.
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Proof. We want to show that every prime ideal of B is finitely
generated. Let g C B be a nonzero prime ideal. Since B C Q(R),
the intersection q N R # (0) and there is an [ € N such that p; € T'Ng.
We claim that the natural morphism:

v:R— B/pB

is surjective.

Let w € B be a nonzero element. By the definition of B there is an

integer k € N with k > [ so that w € By = R[aag,-- - ; 0rk|w,. Hence
there are polynomials h, g € R[z1,...,z,] so that
_ h(alk,...,ark)
gloak, - k)
where g(a1k, ... ,ark) 1S a unit in }/%/J Since all the elements o, are

contained in the maximal ideal of E/ J the constant term gy of g is a
unit in R. Let hg denote the constant term of . We use the recursion
formula again and write:

Ek+1

k
2L (o (k1) + Sjnl-
'

(Xjk =

Since k > | and €x41 > €j the element p; divides «; in Bi4q1. Thus
we may write:
_ hotpip
w =2 oF
go + DA
where p and ) are elements of By;. This shows that

h
w=—"in B/pB
9o

where hg,go € R and go a unit in R. Thus v is surjective and B/p;B
is a homomorphic image of R. O

Proposition 8. B = E/J

Proof. The embeddings

R<»B<R/J
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induce morphisms on the completions:
R B R/J

with pue = 7 the natural map from Rto R/J Proposition 7 shows that
the maximal ideal of B is generated by z1,... , 2,. By [6, Theorem 8.4]

the ring Bisa finitely generated R-module with generator ¢(1) = 1.
Thus the induced morphism ¢ on the completions is surjective. It
suffices to show that ker (¢) = J. Obviously ker (:) C J.

Claim. J C ker (¢).

We have shown earlier (proof of Lemma 6) that

fi—ait e = Fi(Cly - s Gy Zmetts - -+ 5 2n)

— Fj(Z1ks -+ s Zmks Zm+41s- -+ > %n)
Ek+1

=gk forall 1<j<r; keN

for some element 7;, € R. Thus o(fj) € q,i’“g for all k € N and
ufj)=0. o

Proposition 9. The ideal Py = (ST ,(m)}AE/J is in the generic
formal fiber of B, that is,

BN (C,..-,Cm)B = (0).

Proof. Consider the following commutative diagram:
B—t SR/J
|k
R—— R.

P, is the image of P under #. By Lemma 5, PN R = (0) and the
assertion follows, since J C P. O
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We summarize the results in the following theorem:

Theorem 10. Let K be a countable field of infinite transcendence
degree over a prime field, and let R = K(z1,...,2n](s,.. ) be the
localized polynomial Ting in n variables. Let m € N be an integer with
m <n and I C R an ideal which satisfies the following condition:

() For every associated prime ideal Q € Ass(R/IR) it holds that
QC (21, ,2m)R where m < n.

Then there is an automorphism ¢ of the completion R = K|[[z1,.. . , )]
and a local Noetherian domain B which birationally dominates R with
the following properties:

(a) B=R/o(IR) = R/IR = K[[z1, ... , 2]/ IK][21, - .. , 2a]].

(b) For every nonzero prime ideal ¢ C B the ring B/q is essentially
of finite type over K.

(c) The prime ideal Py = (p(21),-.- ,cp(zm))ﬁ is in the generic
formal fiber of B.

2.6. Historical note. The first example using a suitable enu-
meration of the prime elements of R was constructed in [17]. In this
paper a local Nagata ring A is produced which has a non-open regu-
lar locus in Spec (A). The construction starts with a four-dimensional
localized polynomial ring R = K21, 22, 23, Z4] (21,25 ,25,24)- Using an ap-
propriate enumeration of the prime elements of R similar to subsec-
tion 2.2, two algebraically independent elements (; and (> are con-
structed which yield a transcendental element w = (;(2. The construc-
tion in [17] differs from the construction in Section 2 in the following
way. In [17] so-called ‘end-pieces’ of w (instead of ‘front-pieces’ as in
Section 2) are adjoined to R in order to show that the intersection ring
Ay = Q(R)(w) N R is a nested union of five-dimensional localized poly-
nomial rings. This is used to show that Ap is a regular local ring with
completion Ag = R = K][[z1, 22, 23, 24]]. Moreover, Ay is a non excellent
Nagata ring, p = (w) is a prime ideal in Ay, and the ring A = Ay/(w)
has a non open regular locus. By setting I = (2122), Theorem 10 in
Section 2 recovers the ring A of [17].

In 1980 Ogoma provided his celebrated counterexample to Nagata’s
chain conjecture [14]. The chain conjecture states that the normaliza-
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tion of a Noetherian domain is universally catenary. Ogoma constructs
a local Nagata ring A whose completion A fails to be equidimensional
implying that A is not universally catenary. Of course, the ring A is
not a homomorphic image of a regular local ring. In [14] Ogoma real-
ized that he needed to adjoin ‘front-pieces’ (instead of ‘end-pieces’ as
in [17]) in order to directly produce a local Noetherian ring with com-
pletion a homomorphic image of R. Let R = K21, 22, 23, 24] (2, 23,23, 24)
be the four-dimensional localized polynomial ring over a countable field
K and I = (2122,2123) € R. The ring B of Theorem 10 is Ogoma’s
example.

Both examples in [14, 17] have in common that while it is easy to
show that the constructed rings are Noetherian, it is rather tedious to
find a suitable enumeration of the prime elements of R. In [6] Heit-
mann simplified Ogoma’s construction by showing that any enumera-
tion which satisfies conditions (a) and (b) of subsection 2.1 implies The-
orem 1 (Heitmann’s numbering lemma). Using Heitmann’s numbering
lemma in [2] Brodmann and Rotthaus showed essentially Theorem 10
(more precisely, they proved Theorem 10 if m < n — 1).

3. The Ogoma-Nishimura result. In this section our objective
is a modification of the construction in Section 2 in order to produce
factorial rings B. Examples of this type were first introduced by Ogoma
[9]. Our presentation here uses material from Nishimura’s paper [7],
in which Ogoma’s construction has been simplified by incorporating
Heitmann’s enumeration lemma into the construction. A modification
of the construction to produce factorial rings B is a nontrivial exercise
that requires several additional considerations. First it is obvious that
our choice of ideals I C R is restricted. Ogoma introduced the notion
of absolute prime ideals which impose the “right” conditions on I;
however, putting more conditions on I is not enough. The major change
in the construction is that we need to construct a certain sequence of
prime elements py,...,pk,... in R which will play the role of I'. In the
sequence of the py’s repetitions are allowed, that is, for some k it may
happen that pr = prt1. Therefore, strictly speaking, this sequence may
not be an enumeration of some subset of R. The difficulty is that the
sequence of the pg’s is constructed inductively along with the exponents
€x—1 which occur in the construction of the power series (;. However,
this construction is guided by an enumeration of the set I' which will
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be defined as in Section 2. The reader should be aware that in this
section I will be renamed () representing a prime ideal.

In subsection 3.1 we first choose a suitable enumeration of all prime
elements of R using Heitmann’s lemma. In addition, k-absolute prime
ideals are defined. Ogoma’s construction is based on an inductive
argument that constructs from the given enumeration of all prime
elements of R an appropriate infinite subsequence. This process is
described in subsections 3.2 and 3.3. In subsection 3.4 the desired ring
is constructed by making use of this subsequence of prime elements
of R and the Ogoma-Nishimura result is proven. The historical note,
subsection 3.5, describes again how the first examples by Ogoma [15]
and Weston [19] can be obtained from the Ogoma-Nishimura result.

3.1. The set up. We start with the same general assumptions
as in the standard example. Let K = UpKj be a countable field
which is the nested union of fields Ky = Kg_1(a1k,... ,ank), where
the elements aig,...,anr are algebraically independent over Kj ;.
We define the rings Sk, S, R and R as before, and take a subset
' c M = (z1,...,2,)S that satisfies the same conditions as in
Section 2, namely:

(a) Every element of T is a prime element of R.

(b) For all p € Spec (R) with p # (0) there is at least one element in
pNT.

Next we take an enumeration
p:N—T,
put p(i) = p;, and assume that p satisfies the following conditions:
(Ta) p1 € (#15.--,2n)ko[#1,.-. , 2n] is a prime element which is not
contained in the prime ideal (z1,...,2zm,) for some m < n. After
introducing the ideal @ = I we need to be more specific about the

choice of p; and m. Indeed the construction only works for certain
ideals @ together with a particular choice of the prime element p;.

(T'p) For all k > 2: py € Sk—_o.
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We want to construct inductively a sequence of elements in I':

Plyere sPkyeer yenn

If py,...,p, have been constructed we put ¢ = p;...px for all
1 < k < n. Along with the inductive construction of pg’s we construct
a sequence of strictly increasing integers ¢; € N. We define according
to Section 2:

Zi0 = %4

Zik = % + aiqul +---+ aiquk for k> 1,

where ¢ ranges from 1 < ¢ < n. Obviously, the elements z1g,... , znk
form a regular system of parameters in R for every k > 0. Again we
denote by Py, the prime ideal (214, ... , zmk) of R. In subsection 2.1 we
used the condition py € Si_o to prove Heitmann’s lemma, namely, that
pr & P for all h < k + 1. Note that the proof of Heitmann’s lemma
requires that at least one variable 2,1 remain unchanged. In our new
construction all variables z1, ... , z, need to be changed. The sequence
P1y--- ,Pk,--. is distinguished from the sequence p1, ... , pk,... in that
we can no longer force py € Si_o for all k € N. However, later we will
use the fact that pg € Si_2 to prove that

ph & P, for all h < k + 1.

To begin the construction we first define:

Definition. Let k£ be a field, zq,...,z, variables over k, and
Q C (z1,..-,2n)k[#1,.-., 2] a prime ideal. We call Q a k-absolute
prime if for all field extensions L of k the ideal QL[[z1,...,2,]] is a
prime ideal in the power series ring L[z1, ... , 2,]]-

This definition of a k-absolute prime is a modification of Ogoma’s
definition of an absolute prime [9].

In the following let Qo C (z1,...,2n)Ko[21,--. ,2n] be a prime ideal
which satisfies the following three conditions:

(I,) Qo is a Kp-absolute prime ideal.
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(Ip) There is an m < n such that for every associated prime ideal
Q € Ass(R/QoR) we have that Q C (z1,...,2m)R.

(I.) The element p; is a prime element in the domain L[[z1,. .., 2,]]/
QoL[[#1,. .., 2,]] for all field extensions L of K.

From now on we assume that the enumeration p of I' is chosen in such
a way that in condition (T'y) p1 ¢ (21,...,%m) where m < n is given
by condition (I;). Furthermore we assume that p; satisfies condition
(I.) from above.

Before continuing with a key observation for the induction step we
fix generators for Qo:

Qo= (f1(z1,-+ 2n),- o fr(2150 0 20))

3.2. The key lemma. Let k be a field and z1, . .. , z, variables over
k. We denote by D = k[z1,...,2n](s,.. ) the localized polynomial
ring over k and by m = (z1, ..., z,) the maximal ideal of D. Suppose
that Qo = (f1,..-,fr) C (21,.. ,2n)k[21,-.. ,2n] is & k-absolute prime
ideal of k[z1,. .., z,], that is, for all field extensions L of k the ideal

QoL[[z1,. -,z

is prime in L[[z1,... , z4]]-
Let ay, ... ,a, be variables over D, and let D(a) denote the local ring
D(a‘) = D[a’lv s 7an]mD[a]-
D(a) is a regular local ring with regular system of parameters z1, . . ., 2.

We denote by k(a) the purely transcendental extension field k(ay,. . .,an)
of k.

Suppose that pi,...,pr € (21,.-.,2n)k[21,...,2,] are prime ele-
ments in D and let € € N be an integer with € > 1. Put

qg=(p1---pr)°-

We first observe:
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Proposition 11. The ideal Q1 = (fi(z1 + a1q, -+, 2n + anq), .. .
fr(z1 + a1q,...,2n + anq)) C D(a) is a k(a)-absolute prime ideal in
D(a).

Proof. The elements z1 + a1q, ... , 2, + a,q form a regular system of
parameters in D(a) and its completion k(a)[[z1, . . ., 2]]. Let L be an ex-
tension field of k(a). There is an automorphism of L[[z1,. . ., z,]] defined
by z; — z; + a;q which maps QoL[[z1, ..., 2,]] into Q1L[[z1, ..., 2,]]-
Since QoL[[z1,- - -, 2n]] is prime so is Q1 L][[z1, . . ., 2,]]. In particular, @y
is a prime ideal of D(a). u]

In addition we make the following assumptions on the prime elements
bi:

(IT) For all 1 <4 < k the ideal Qo + (p;) is a prime ideal in D with
Qo # Qo + (pi)-

Note that condition (I7) implies that for all 1 < ¢ < k the ideal
Q1+ (p;) = (Qo + (pi))D(a) C D(a) is prime in D(a) and that the
elements p1, ... ,py are prime elements of D(a)/Q;.

Let 0 € D be an element so that:
o =pit...piFs mod Qg

where ¢ > Ele e; and s ¢ UX_(Qo + (pi))-

Lemma 12 (The key lemma). Under the above assumptions:
(a) o =p5---piFt mod Q1 where t ¢ UF_(Q1 + (p;))D(a).
(b) s is a unit in D/Qo if and only if t is a unit in D(a)/Q;.

(c) If o is a prime element in D and t is not a unit in D(a)/Q1, then
t is a prime element in D(a)/Q1.

Proof. (a) and (b). By assumption
g:p‘il ...pzks_lr_v

where v € Q9. Thus we can write:

v = Zujfj(zi).
j=1
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Foralll1 <j<r:
fi(zi +aiq) = fj(zi) + qH;

where H; € D(a). This yields in D(a):

o =pf - pits + Y ui(fi(z + qai) — gHj)
j=1

T T
=pit s — qZujHj + Zujfj(zi + a;q),
j=1 j=1

and therefore:
,
o =pit ---pZ’“(s —(5ZujHj> mod Q4
j=1
where § = ¢/p7* - - -pi¥ € mD. We set:

t:S—gzUjHj ED(a).

j=1
Since § € Ny (Q1+(ps)) and s ¢ UL, (Qo+(pi)) D(a) = UL, (Q1+(pi))
assertions (a) and (b) follow.

(c) If t is not a unit the elements g,t form a regular sequence in
D(a)/Q;1. This implies that D(a)/(Q1 + (t)) is a domain if and only if
the ring (D(a)/(Q1 + (t)))q is @ domain. Since p1,...,px are units in

Dy:

(D(a)/(Q1+ (2))q = (D(a)/(Q1 + (9)))q-
First observe that:

(D(@)/(@Q1+(0))g =T ' (Dylas, .. ,an]/(Q1 + (0)))

where T is the multiplicative set 7' = Dlay,... ,a,] — mD|aq, ..., ay].
Therefore it suffices to show that D,[ay, ... ,a,]/(Q1+(0)) is a domain.
Note that:

Dq[ala"' aan] :Dq[zl+qa17"' azn+qan]
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and put y; = z; + qa;. Then:

Dglat, ... ,an]/(Q1 + (o))
= (D/(o)
(D/(U) q
CQ(D/(0)) ®k kly1, -, ynl/(Fr(®),---, fr(¥))
—Q(D/(U))[yl,--- Ynl/(F1()s - Fr(y)
CQD/(oNw1s-- - »ynll/(F1(y)s-- - s Fr(9))-

Since @ = (f1(y),. .., f-(y)) is a k-absolute prime ideal, the last ring
is a domain and ¢ is a prime element in D(a)/Q. u]

alyrs -5 unl/(f1(Y), -, r(y)

) )
)a @k klyr, s ynl/(F1() -5 fr(y)

3.3. The induction step. We want to define inductively prime
elements py, ... ,pr and positive integers €1, ... ,€,_1. At any stage we
define:

G =p1...pifor1 <i<k
zio =z fori <n
Zik—1 = 2z +ai1qit + - + aig_1q,"" for i <n.

Obviously, z1x-1,-..,2nk—1 are a regular system of parameters of
Ry 1. By a simple induction argument Proposition 11 shows that for
all £k > 1 the ideal

Qr-1=(fi(Zik—1,-- s Znk—1)s- - fr(Z1k—1,--+ s Znk—1))

is a Kj_1-absolute prime ideal of Ry ;. As in Section 2 we define the
ideals P; = (215, ,2m;j) € Rfor 1 < j < k—1. We also denote by B;
the ideal %3; N R_1 which is generated by 21, ... , zm; in Rj_1. Since
the elements z1;,... , 2y, are part of a regular sequence, the ideals ‘I3;
are prime ideals in R and Rj_1, respectively.

At stage k we assume that py,...,pr and €1,...,ex_1 have been
constructed so that the following conditions are satisfied:

(I1I,) Forall1 <i<k: p; € Rp_1 and p; ¢ Qp—1.

(III;) The ideals Qg—1 + (pi;) are prime ideals in Rj_; for all
1<i<k.

(III.) For all 1 < i < k the elements p; split over Ry 1/Qp_1 into

products p; = ;pi* - - pi** where v; is a unit in Ry_1/Qk—1.



A CLASS OF LOCAL NOETHERIAN DOMAINS 671

(IIIj) Forall 1 <i<k—1:g > Y e
(III.) For all h < k: pp ¢ Pr_1.

We start the induction by setting p; = p1. Note that condition (I.)
implies (II1,), (I11y) and (I11.). Condition (III.) follows from (T',).

We now assume that p;,...,pr and €1,...,ex—1 have been con-
structed so that conditions (ITI(,_.)) are satisfied. In order to con-
struct pr4+1 and e consider a decomposition of the prime element
pr+1 =0 of Rp_1 in Rp_1/Qp_1:

0 =ppt1 =07 DS € Rp_1/Qr—1

where s ¢ U¥_ (Qr—1 + (p;)). Although the elements py,... ,p; are
prime elements in Ri_1/Qk—1 we are not assuming that they generate
different prime ideals. Therefore the decomposition of o = pg41 may
not be unique. However, the element s is uniquely determined. We
choose ¢, so that the following conditions hold:

k
ek > Y e (with eji as in (I11,))
j=1

€k > €k—1
and define accordingly:

Zik = Zik—1 + Girqy
Qk = (fl(zlk, ey an), [P ,fr(zlk, [P ,an))

We apply the key lemma to this situation by making the following

substitutions:
D ~ Rk —1

Alyevr 3Oy = Ay - -5 Ak
D(a)ﬁRk
€~ ek
Qo >~ Qr-1
Q1 ~ Q-

By the key lemma the element o = py11 factors in Ry /Qy as follows:

0 = Pr41 =Dp7 - DRFt
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where ¢ is either a unit or a prime element in Ry/Qg. If ¢ is a unit we
set pr4+1 = p; for some 1 < ¢ < k with e; > 1. If ¢ is not a unit by the
key lemma the element ¢ is a prime in Ry /Qf since o = pyy1 is a prime
element of Ry. In this case we choose an element pg; € I' which maps
onto an associate of ¢ under the natural map Ry — Ry/Q, that is,
t = pr+17k+1 € Ri/Qr where vi41 is a unit in Ry /Qg. By definition
of I' the element pi1 is prime in Ry.

It remains to show that p1,... ,pry1 and €1, ... , ek satisfy conditions
(I1T(q—c)):

Lemma 13. (a) For all 1 <i<k+1: p; ¢ Q.
(b) The ideals Q, + (pi) are prime ideals in Ry, for all1 <i < k+1.

(c) For all 1 < i < k+ 1 the elements p; split over Ry/Qy into

products p; = y;pi* - - - p;* where y; is a unit in Ry /Qy.

(d) For all1 <i<k: g > 22':1 €.
(e) For all h < k + 1: pp, & Py

Proof. We first show conditions (a)—(e) for py,...,px and €1,...,€5_1.
By assumption p; ¢ P 1 for 1 < i < k and Pe_1 + (pr) = T + (p1)-
Since Pr_1 and Pi are both prime ideals of height m it follows that
p; & P for all 1 < i < k. By construction Qp C P and therefore
pi ¢ Qr for 1 < i < k. Since Qk + (p;) = Qr—1 + (pi), the ideals
Qr + (p;) are prime in Ry for 1 < ¢ < k. This shows conditions (a),
(b), (d) and (e) for p1,...,pr and €1,...,e4_1. Condition (c), the
appropriate splitting of the p; for 1 < i < k, is a consequence of the
key lemma.

It remains to show that pri1 and e satisfy conditions (a)—(e). (a),
(c) and (d) follow immediately from the definition of py4+1 and €. Note
that px,1 was chosen so that Qg + (pg+1) is a prime ideal in Ry and
that yg41 is a unit in Ry /Qp.

It remains to show that pr11 ¢ Pi. Since by assumption pr11 € Rg—1
and

‘Bk NRp_1= (0)
we see that pgy1 ¢ Pr. By construction:

Pe+1 =DPi" Pt € R /Qr
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where ¢ = pr+17Yk+1 or t a unit in R and pg41 = p; for some 1 <¢ <k
with e; > 1. Since @k C Py the assertion follows. ]

3.4. The result. Using Lemma 13 we construct a sequence of
prime elements of R, p1,... , Py, ... together with a sequence of positive
integers €y,... ,€n,... sothat forallk € N, p1,... ,prandey,... €51
satisfy conditions (I11,)—(III.). Similarly to Section 2 for all k € N
we set:

qk = P1° " Pk

and define for all 1 < ¢ < n:

Gio=zi+ Y aagq € K[[z1,... ,z]].
=1

The map z; — (; for 1 < i < n defines an automorphism ¢ on the
power series ring K[[z1,... ,2,]] = R. With J = ¢(Q)R we set

A=Q(R)NR/J.

We want to show that A is a local Noetherian factorial domain with
completion R/J.

Let P denote the prime ideal P = (C1y--v 5 Cm) of R = K([z1,.-- 2]
As in the previous section we set for all 1 < i < n,

k
Zik = zi + Zaiqu’ € Klz1,... .24
=1

Again Py, denotes the prime ideal P = (21k,- .- , 2mk). We first show:
Lemma 14. PN R = (0).

Proof. f PNR # (0), then p = PN R is a nonzero prime ideal and
there is an element p, € I' with p, € p. For all | > k, p, € R; and by
(I1,)

€ €
pr = D" - prug + vy,
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where u; € R; a unit and v; € Q;. Note that u; and v; may vary with [
while by the key lemma the exponents e;;, are independent of [. Since
foralll e N

P+ (gh) =B+ (a1)
and @; C P, we obtain for all [ > k that

P ppt € P+ ()
and therefore

pipt e (VBi+ (@) = () P+ (i) = P.
1>k 1>k

Thus p; € P for some 1 < j < k. Since P and ‘B; are both prime

ideals of R of height m with P + (pj) = Bj-1 + (pj;), it follows that
pj € PB;j_1, a contradiction to condition (I11). O

In order to show that A = Q(R) N R/J is a Noetherian ring, similar
to Section 2 we define a subring B of A which is a nested union of
algebras essentially of finite type over K. We will show that B is a local
Noetherian ring with B= I/%/J implying A= B. Forall 1 < j <n and
all £ € N, consider the following elements in the field of quotients of
R:

1
ajr = qufj(Zuc,--- yZnk) € K(z1,...,2p).
k

As in Section 2 we have a recursion formula:

k41

dy

AL [er) + Sik]
dy

Qi
with s;x, (¢, /¢z*) € R. This implies:

Lemma 15. Forall1 < j <n and all k € N:

ajr € Q(R)NR/J.

Proof. The proof is identical with the proof of Lemma 6. o
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Exactly the same proof as in Section 2 shows that for all £ € N there
is an embedding;:

)\k : R[Ozlk, e ,ank] — ﬁ/J
With oy, = A;'(m) we put again for all k € N:
Bk = R[alk, [P ,ank]mk.

Since By, C Bj11 we can now define B as the nested union:

B:UBk.
k

Proposition 16. B is a local Noetherian domain. Moreover, for
every nonzero prime ideal p C B the ring B/p is essentially of finite
type over K.

Proof. Let p C B be a nonzero prime ideal of B. Since p N R # (0)
there is an element p € pNI". Choose an integer I > k. Then py, is an
element of R; and by (I11.):

€k—1k, €Lk

pr =PIt D P + v
where u; € R; a unit, v; = Z;zl djfji € Qi where fj;1 = fi(z11,-- - Zn1)s
and ¢; > Zle eik- By construction
q'aj = fi
and therefore in B:

€k—1k, Ekk

pe =D e PR [uk + Ok

where ¢y, is divisible by ¢x and the element wug + dx is a unit in B. Since
p is a prime ideal in B which contains pg, p contains one of the elements
p; for some 1 < j <k.

Suppose that p; € p for some 1 < < k. Exactly the same proof as
for Proposition 7 of Section 2 yields that the natural morphism:

v: R — B/(pj)
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is surjective. This shows that B is a local Noetherian ring and that
B/p is essentially of finite type over K for every nonzero prime ideal p
of B. o

Proposition 17. B = R/J.

Proof. This is exactly the same proof as for Proposition 8 of Sec-
tion 2. O

Proposition 18. B is factorial.

Proof. We have to show that every height one prime ideal of B is
principal. Let p C B be a height one prime ideal. By the proof of
Proposition 16 there is an h € N with p, € p. We claim that p = p, B.
Since B is a local Noetherian ring with completion R/J we have by
faithful flatness: R

prB = (phB) N B.

Since J + (ph)j% =QnR + (ph)j?: again faithful flatness yields:

(J + (pr)R) "R = (Qn + (pr)) RN R = QuR + (pn).
This implies:
BN R =QrR+ (pn)-

and:
B/(pn) = R/(QnR + (pr))-

By construction R/(QnR+ (ps)) is a domain and therefore p = p, B. O

To summarize the result, let K be a countable field of count-
able infinite transcendence degree over a subfield K,. Put R =
Klz1,. . s 2n](z,... zn) and let @ C Kolz1,...,2n](z, ... z,) be an ideal
that satisfies the following conditions:

(a) For every extension field L of Ky the ring

Ll[z1,...,z]]l/QL[[21, - .. , 2n]]
is a domain.

(b) There is an integer m < n such that for every associated prime
ideal Q € Ass (R/QR) we have that 9 C (z1,...,2y,)R. Then:

Theorem 19. Under the above assumptions there is an automor-
phism ¢ of the power series ring R = K|[[z1,. .., 2,]] and a local Noethe-
rian factorial ring B which birationally dominates R so that:
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() B=R/p(QR=R/QR=K[[z1,...,z]l/QK[[z1,... , 2]
(b) For every nonzero prime ideal p C B the ring B/p is essentially
of finite type over K.

(c) The prime ideal P = (o(z1), ... ,¢(2m))B is in the generic formal
fiber of B.

3.5. Historical note. The method in Section 3 of constructing
a factorial local Noetherian domain with a given completion is due to
Ogoma. Ogoma first applied his method to the construction of a Cohen-
Macaulay factorial domain which fails to be Gorenstein [15]. In [16]
he used his method again to produce an acceptable Cohen-Macaulay
ring without a canonical module. His method was also adopted by
Weston in [19] to construct a local Noetherian ring with a Gorenstein
module of rank two but with no canonical module. Our presentation
of Ogoma’s method is due to Nishimura [12]. Nishimura modified and
simplified Ogoma’s method by incorporating Heitmann’s enumeration
lemma into the construction.

There is a significant difference between the constructions in Sections
2 and 3. Let K be a countable field, I C KJz,...,2,] an ideal in
the polynomial ring over K, and D = K][z1,...,2n](s,... z,)- If the
generators of I involve all variables 21, ... ,z,, by Section 2 there is a
local Noetherian domain A so that A = D[[y]] where y is an additional
variable. If I is a K-absolute prime, then by Section 3 there is a
factorial domain B with completion B = D. While in Section 2 an
additional variable is needed no additional variables are needed in
Section 3. Therefore the second method can be used to construct
examples of excellent rings (with isolated singularities). For example in
[12], Nishimura used the method of Section 3 to construct an example
of an excellent Cohen-Macaulay ring which fails to admit a Gorenstein
module.
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