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QUASI-SOCLE IDEALS
IN LOCAL RINGS
WITH GORENSTEIN TANGENT CONES

SHIRO GOTO, SATORU KIMURA, NAOYUKI MATSUOKA
AND TRAN THI PHUONG

ABSTRACT. Quasi-socle ideals, that is, the ideals I of the
form I = Q : m? in a Noetherian local ring (A, m) with
the Gorenstein tangent cone G (m) = @,>om?/m"T! are
explored, where ¢ > 1 is an integer and @ is a parameter
ideal of A generated by monomials of a system z1,z2,...,2zq
of elements in A such that (z1,z2,...,z4) is a reduction
of m. The questions of when I is integral over @ and of
when the graded rings G (I) = ®,>0l"/I"t! and F(I) =
Dn>0I™/mI™ are Cohen-Macaulay are answered. Criteria for

G (I) and R(I) = @,>0l™ to be Gorenstein rings are given.

1. Introduction. This paper aims at a study of quasi-socle ideals
in a local ring with the Gorenstein tangent cone. Our purpose is to
answer Question 1.1, below, of when the graded rings associated to the
ideals are Cohen-Macaulay and/or Gorenstein rings, estimating their
reduction numbers with respect to minimal reductions.

Let A be a Noetherian local ring with the maximal ideal m and
d =dimA > 0. Let Q = (z1,%2,...,24) be a parameter ideal in
A, and let ¢ > 1 be an integer. We put I = @ : m? and refer to
those ideals as quasi-socle ideals in A. Then one can ask the following
questions, which are the main subject of the researches [8, 9] and the
present research as well.

_ Question 1.1. (1) Find the conditions under which I C Q, where
Q stands for the integral closure of Q.

(2) When I C @, estimate or describe the reduction number
ro(I)=min {0<neZ|I"!=QI"}

of I with respect to ) in terms of some invariants of () or A.
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(3) Clarify what kind of ring-theoretic properties of the graded rings
associated to the ideal

n=@r, Gcu=Qr/r+, and FI)=Ir/mr

n>0 n>0 n>0

enjoy.
In this paper we shall focus our attention on a certain special kind of

quasi-socle ideals. We now assume that the tangent cone, that is, the
associated graded ring

_ @mn/mn—i—l

n>0

of m, is a Gorenstein ring and that the maximal ideal m contains a
system 1, Za,...,xq of elements such that the ideal (x1,x2,...,zq)
is a reduction of m (the latter condition is always satisfied if the field
A/m is infinite; see [18] for the existence of reductions of m generated

by d elements). Let aj,as,...,aq, and g be positive integers and we
put
Q= (z1",25?,... ,23*) and I = Q : m?,
LtZ:A/Q = m/Q, and I = I/Q. Let p = max {n €
Z | m™ # (0)}, that is, index of nilpotency of the ideal m, and put
l=p+1—q.

We then have the following, which are the answers to Question 1.1 in
our specific setting.

Theorem 1.2. The following three conditions are equivalent to each
other.

mIrca.
(2) m1I = miQ.
(3)£>a; foralll <i<d.

When this is the case, the following assertions hold true.
(i) rqo(I) = [q/f] := min{n € Z | g/¢ < n}.
(ii) The graded rings G(I) and F(I) are Cohen-Macaulay.
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Theorem 1.3. Suppose that £ > a; for all 1 < i < d. Then we have
the following.

(i) G(I) is a Gorenstein ring if and only if £ | q.
(ii) R(I) is a Gorenstein ring if and only if ¢ = (d — 2)L.

Our setting naturally contains the case where A is a regular local ring
with z1,zs,... , 24 a regular system of parameters, the case where A
is an abstract hypersurface with the infinite residue class field, and the
case where A = Ry is the localization of the homogeneous Gorenstein
ring R = k[R1] over an infinite field k = Ry at the irrelevant maximal
ideal M = Ry . In Section 3 we will explore a few examples, including
these three cases, in order to see how Theorems 1.2 and 1.3 work for
the analysis of concrete examples. The proofs of Theorems 1.2 and
1.3 themselves shall be given in Section 2. However, before entering
details, let us here explain the reason why we are interested in quasi-
socle ideals.

The study of socle ideals dates back to the research of Burch [1], where
she explored certain socle ideals of finite projective dimension and gave
a characterization of regular local rings (cf. [7, Theorem 1.1]). More
recently, Corso and Polini [4, 6] studied, with interaction to the linkage
theory of ideals, the socle ideals I = @ : m in a Cohen-Macaulay local
ring (A, m) and showed that I? = QI, once A is not a regular local ring.
Consequently, the rings G(I) and F(I) are Cohen-Macaulay and so is
the ring R(I) if dim A > 2. The first author and Sakurai [11, 12, 13]
also explored the case where the base ring is not necessarily Cohen-
Macaulay but Buchsbaum, and showed that the equality I? = QI
(here I = @ : m) holds true for numerous parameter ideals @ in a
given Buchsbaum local ring (A, m), whence G(I) is a Buchsbaum ring,
provided that dim A > 2 or that dim A = 1 but the multiplicity el (A)
of A with respect to m is not less than 2.

A more important thing, however, is the following. If J is an equi-
multiple Cohen-Macaulay ideal of reduction number one in a Cohen-
Macaulay local ring, the associated graded ring G(J) = @®p,>oJ"/J" T
of J is a Cohen-Macaulay ring and, so is the Rees algebra R(J) =
®n>0J" of J, provided ht4J > 2. One knows the number and de-
grees of defining equations of R(J) also, which makes the process of
desingularization of Spec A along the subscheme V(J) fairly explicit
to understand. This observation motivated the ingenious research of
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Polini and Ulrich [20], where they posed, among many important re-
sults, the following conjecture.

Conjecture 1.4 [20]. Let (A,m) be a Cohen-Macaulay local ring
with dim A > 2. Assume that dim A > 3 when A is reqular. Let g > 2
be an integer, and let Q be a parameter ideal in A such that QQ C m9.
Then

Q:m? Cmi.

This conjecture was settled by Wang [23], whose theorem says:

Theorem 1.5 [23]. Let (A, m) be a Cohen-Macaulay local ring with
d=dimA > 2. Let ¢ > 1 be an integer and Q a parameter ideal in A.
Assume that Q C m?, and put I = @Q : m?. Then

ICm!, mil=miQ, and I?=QI,
provided that A is not reqular if d > 2 and that ¢ > 2 if d > 3.

The recent research [9] of the first and the third authors jointly with
Takahashi reports a different approach to the Polini-Ulrich Conjec-
ture 1.4 and has proven the following.

Theorem 1.6 [9]. Let (A,m) be a Gorenstein local ring with d =
dim A > 0 and €% (A) > 3, where €% (A) denotes the multiplicity of A
with respect to m. Let Q be a parameter ideal in A, and put I = Q : m?2.
Then m?I = m?Q, I® = QI and G(I) = ®,>0l"/I""" is a Cohen-
Macaulay ring, so that R(I) = ®p>ol" is also a Cohen-Macaulay ring,
provided d > 3.

The research [9, 23] is performed independently, and their methods
of proof are totally different from each other. The technique of [9]
cannot go beyond the restrictions that A is a Gorenstein ring, ¢ = 2,
and e) (A) > 3. However, despite these restrictions, the result [9,
Theorem 1.1] holds true even in the case where dim A = 1, while Wang’s
result says nothing about the case where dim A = 1. As is suggested
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in [9], the one-dimensional case is substantially different from higher-
dimensional cases and more complicated to control. This observation
has led the first three authors to the research [8], where they have
explored quasi-socle ideals in Gorenstein numerical semigroup rings
over fields as the first step towards further investigation of the Polini-
Ulrich Conjecture 1.4 of arbitrary dimension. The present research is,
more or less, a continuation of [8, 9, 23|, and our Theorems 1.2 and
1.3 might have some significance towards the second step, providing
some insight with Question 1.1, that are not presented by [8, 9, 23].

2. Proof of Theorems 1.2 and 1.3. The purpose of this section
is to prove Theorems 1.2 and 1.3. First of all, let us restate our setting,
which we shall maintain throughout this paper.

Let A be a Noetherian local ring with the maximal ideal m and
d =dim A > 0. We assume that the associated graded ring

G(m) = Gamn/m"Jrl

of m is Gorenstein and that the maximal ideal m contains a system
Z1,T2, ... ,xq of elements which generates a reduction of m. Then, since
G(m) is a Gorenstein ring, the base local ring A is also Gorenstein and
the initial forms {X;}1<;<a of {z;}1<i<a With respect to m constitute
a regular sequence in G(m), so that we get a canonical isomorphism

G(m/(wl,xg, e ,LEd)) = G(m)/(Xl,Xg, e ,Xd)

of graded A-algebras ([22]). Let aj,as,...,aq, and ¢ be positive
integers, and we put

Q= (z{*,232,...,23%) and I=0Q:m%
Let A= A/Q,m=m/Q and I = I/Q. Then
G(m) 2 G(m)/(X1%, X2, ..., X4%),

whence G(m) is a Gorenstein ring. Let p = max{n € Z | m" # (0)},
that is, the index of nilpotency of the ideal m, and we have

d
p = a(G()) = a(G(m)) + Zai,
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where a(x) denotes the a-invariant of the corresponding graded ring
([14, (3.1.4)]).

Let
l=p+1—q.
By [24] (see [19, Theorem 1.6] also) we then have the following.

_ Proposition 2.1. (0) : m = mT for all i € Z. In particular
I=(0):m?=m" whence I = Q + m’.

The key for our proof of Theorem 1.2 is the following.

Lemma 2.2. Suppose that £ > a; for all1 <i<d. Then
Q N mn(—i—m g meIn—l

forallm >0 and n > 1.
Proof. We have
d
Q N nger — Z x?imn€+mfai
=1

since x1, 2, ... , x4 is a super regular sequence with respect to m (that
is, their initial forms X7, Xs,... , Xy constitute a regular sequence in
G(m)). Because

nl+m—a;=Mn—1)l+m+{L—-a;)>n—-1)L0+m
for each 1 < ¢ < d, we get

ngerfai g m(nfl)Zer — mm‘(ml)nfl‘
Therefore, since m* C I by Proposition 2.1, we have
d
nl+m __ a; . nlt+m—a;
QNm = Z x;'m

i=1

d

C Zw?imm(mé)n—l C meIn—l’

i=1

as is claimed. O
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Let us now prove Theorem 1.2.

Proof of Theorem 1.2. (2) = (1). This is well known. See [18, Section
7, Theorem 2].

(3) = (2). By Proposition 2.1 we get m?I = m?Q + m?+¢, whence
mitt C @, so that m9*¢ = Q N m9t* C m?Q by Lemma 2.2, because
£ > a; for all 1 <i<d. Thus, m?] = miQ.

(1) = (3). Let 1 <i < d be an integer. Then zf! e m* C 1 C Q. We
look at the integral equation

()" +er(@)" ke =0

withn > 0 and ¢; € Q7. Then M e 2?21 Qja:gn_j)e and so, thanks to

the monomial property of the sequence z1, s, ... ,z4 (cf. [6, Exercise
17.13, c.]; recalling that the sequence z1,x2,...,zq is A-regular), we
have

te Qigin
for some 1 < j n. Let L = {(O[]_,O{Q,...,O[d) € Z% | ap >

<
Oforalll1<k<d}and Aj={a€eL| Ek:l ax = j}. Then, since

d
Qi = <Hmk“k“k | aeAj>,

k=1

thanks to the monomial property of z1, x5, ... ,x4 again, we get
d .
£ e |:H Ikakak] ‘xgn*J)KA
k=1
for some o € A;. Hence,
d
Z akak e + - j)@]el +0
k=1

with B € L, where {e;}1<i<q denotes the standard basis of VA
Consequently, ap, = B = 0 if k& # ¢ and so a; = j. Hence,
0 =a;j — jl + B;, so that we have ¢ > q; as is claimed.



610 S. GOTO, S. KIMURA, N. MATSUOKA AND T.T. PHUONG

Let us now consider assertions (i) and (ii). Let » > 1 be an integer.
Then I™ = QI" ! + m™ since I = Q +m* (Proposition 2.1), so that

len _ an—l + [Qmmnl] g an—l

because Q@ Nm"™ C QI"~! by Lemma 2.2. Therefore, Q N I" = QI"!
for all n > 1, whence G(I) is a Cohen-Macaulay ring ([22, Corollary
2.7)).

We will show that rq(I) = [¢/¢]. Notice that
vo(T) = minfn > 0| "1 € @},

because I"*! = QI™ if and only if I"** C Q. Firstly, suppose that
I C Q. We then have @™ = (0) (recall that T = "), whence
(n+1)¢ > p + 1. Therefore,

p+tl g+l g
1>t _art gy
ntlz—y ¢ —¢th

because £ = p 4+ 1 — ¢, so that we have n > ¢/¢.

I n > g/, then (n+1)¢ > ((a/0) + 1) = g+ £ = p+ 1 and so
T = mn e 2 (0), whence I"** C Q. Thus ro(I) = [q/¢].

Because G(I) is a Cohen-Macaulay ring, to see the fiber cone F(I) is
Cohen-Macaulay it suffices to show that

QNmI" =mQI""!

for all n > 1 (see, e.g., [2, 5]). By Lemma 2.2 we have
QNmI" = QN [mQI"! 4+ m"t
=mQI" 1 +[Q Nm"tl]
CmQI",

whence Q NmI” = mQI" L. u]

Assume that ¢ > a; for all 1 < i < d, and let the Y;’s be the
initial forms of the z{"’s with respect to I. Then ¥;,Ys,...,Y; is a
homogeneous system of parameters of G(I), since @ is a reduction of
I (Theorem 1.2). It therefore constitutes a regular sequence in G(I),
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because G(I) is a Cohen-Macaulay ring by Theorem 1.2 (ii), so that
we have a canonical isomorphism

GI)=GI)/(Y1,Ys,...,Ys)

of graded A-algebras ([22]). Hence a(G(I)) = a(G(I)) + d. Let 7 be
the index of nilpotency of I, that is 7 = a (G(I)). Then, since r = rg(I)
(recall that z1%1, 22%2,... , 4% is a super regular sequence with respect
to I) and a(G(I)) = a(G(I)) —d ([14, (3.1.6)]), by Theorem 1.2 (i) we
have the following.

Lemma 2.3. Suppose that ¢ > a; for all 1 < i < d. Then
a(G(I)) = [q/t] —d.

Corollary 2.4. Assume that £ > a; for all1 <i < d. Then R(I) is
a Cohen-Macaulay ring if and only if [q/€] < d. When this is the case,
d>2.

Proof. Since G(I) is a Cohen-Macaulay ring by Theorem 1.2 (ii),
R(I) is a Cohen-Macaulay ring if and only if a (G(I)) < 0 ([21]). By
Lemma 2.3 the latter condition is equivalent to saying that [¢/¢] < d
(cf. [13, Remark (3.10)]). When this is the case, d > 2 because
0<TJg/l]. o

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. (i) Notice that G(I) is a Gorenstein ring if and
only if so is the graded ring

G(I) =G(I)/(\1,Ys,...,Ys),

where the Y;’s stand for the initial forms of the z;"’s with respect to
I. Let 7 be the index of nilpotency of I. Then r =rg(I) = [¢/¢], and

G(I) is a Gorenstein ring if and only if the equality

(0) . Tz _ TTJrl*i

holds true for all i € Z ([19, Theorem 1.6]). Hence, if G(I) is a

r

Gorenstein ring, we have (0) : T = I = m"". On the other hand,
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since I =M’ and g = p+ 1 — £, by Proposition 2.1 we get
(0): 7= (0): m* =m?
Therefore, ¢ = r¢, since m"* = m? # (0). Thus, ¢ | ¢ and r = .

Conversely, suppose that ¢ | g. Hence r = ¢/¢ by Theorem 1.2 (i).

Let i € Z. Then since I = m’, we get 7= ﬁ(”l_i)e, while

(0): T = (0) : m* =mrtii
by Proposition 2.1. We then have (0) : T =T""""forallic Z, since
(r+l1—if=q+L—il=p+1—il

Thus G(I) is a Gorenstein ring, whence so is G(I).

(ii) The Rees algebra R(I) of I is a Gorenstein ring if and only if
G(I) is a Gorenstein ring and a (G(I)) = —2, provided d > 2 (]16,
Corollary (3.7)]). Suppose that R(I) is a Gorenstein ring. Then d > 2
by Corollary 2.4. Since a (G(I)) =rq(I) —d = —2, by assertion (i) and
Theorem 1.2 (i) we have ¢/¢ = rgo(I) = d — 2, whence ¢ = (d — 2)¢.
Conversely, suppose that ¢ = (d — 2)¢. Then d > 3 since ¢ > 1.
By assertion (i) and Theoreml.2 (i) G(I) is a Gorenstein ring with
ro(I) = q/¢ = d—2, whence a(G(I)) = (d — 2) —d = —2, so that R(I)
is a Gorenstein ring. o

Example 2.5. Suppose that p > 5 is an odd integer, say p = 27 + 1
with 7 > 2. Let ¢q = p—1. Then ¢ = p+ 1 —q = 2. Hence,
choosing a; < 2 for all 1 < i < d, we have I = Q + m? C Q with
rg(I) = 7 by Theorem 1.2. Since ¢ | g, by Theorem 1.3 (i) the ring
G([) is Gorenstein, despite Q € m? (compare the condition with those
in Theorem 1.5). The ring R(I) is by Theorem 1.3 (ii) a Gorenstein
ring, if d =7+ 2.

3. Examples and applications. In this section we shall discuss
some applications of Theorems 1.2 and 1.3. Let us begin with the case
where A is a regular local ring.

3.1. The case where A is a regular local ring. Let A be a
regular local ring with z1,z9,..., x4 a regular system of parameters.
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Similarly as in the previous sections, let
Q= (21", 25?,...,z3")and T = Q : m?

with positive integers a1, az, ... , a4, and g. Then G(m) = k[X5, X, ...,
X ] is the polynomial ring, where k = A/m and the X,’s are the initial
forms of z;’s, so that we have

d d

pzzaifdandKZZ(aifl)_’_l*q,

i=1 i=1
since a (G(m)) = —d. Notice that the condition that
£>max{a; |1 <i<d}

is equivalent to saying that
Y aj>q+d-1
J#i

for all 1 <i < d, because £ —a; =,
the case, d > 2.

i @G~ (g4 d—1). When this is

We readily get, thanks to Theorem 1.2, the following.

Example 3.1. The following assertions hold true.
(1) Let d = 2. Then I C @ if and only if min{a;,as} > g+ 1.

(2) Let d = 3. Then I C @ if and only if min{a; +a; |1 <i < j <
3} >q+2.

(3) Choose integers a and g so that 2 < a < d and (d - 1)(a —1) <
g<d(a—1). Leta; =aforalll <i<d. ThenI C AbutlZ Q. For
example, let d =3, a =2 and ¢ = 3. Then

(a:%,:v%,mg) :m® =m Z (m%,m%,x%)

Thanks to Theorem 1.3, we are able to produce quasi-socle ideals
I = @ : m? whose Rees algebras are Gorenstein.
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Example 3.2. The following assertions hold true.

(1) Let d = 2, and assume that I C Q. Then G(I) is not a Gorenstein
ring.

(2) Suppose that d > 3, and let n > d—1 be an integer. Let a;y = d—1,
a; =n for all 2 <i<d, and ¢ = (d — 2)n. Then R(I) is a Gorenstein
ring.

(3) Suppose that d = 5, and let a; = 4 for all 1 <i < 5. Let ¢ = 8.
Then I C @ and G(I) is a Gorenstein ring with rg(I) = 1, but R(I) is
not a Gorenstein ring.

Proof. (1) Suppose that G(I) is a Gorenstein ring, and let ¢ = r¢
with » = rg(I). Then a; + a2 —1=p+1=¢g+¢={(r+ 1), which
implies, because ¢ > a; for i = 1,2 by Theorem 1.2, that r = 0. This is
impossible.

(2) Since p =nd —n — 1, we get £ = n. Hence ¢ = (d — 2)¢, so that
by Theorem 1.3 (ii) R(I) is a Gorenstein ring.

(3) We have p = 15 and ¢ = ¢ = 8. Hence I C Q with rg(I) = 1 by
Theorem 1.2. By Theorem 1.3 G(I) is a Gorenstein ring, but the ring
R(I) is not, because g # (d — 2)¢. o

Remark 3.3. When A is not a regular local ring, the associated graded
ring G(I) of I can be Gorenstein, even though d = 2. See Example 3.9.

Since the base ring A is regular, the Cohen-Macaulayness in Rees
algebras R(I) follows from that of associated graded rings G(I) ([17]).
Let us note a brief proof in our context.

Proposition 3.4. Suppose that £ > a; for all 1 < i < d. Then the
Rees algebra R(I) is a Cohen-Macaulay ring.

Proof. By Corollary 2.4 we have only to show [q/¢] < d. Let
ar, = max{a; | 1 <i < d}. Then because £ > aj, we have

d

q p+1 (g —1)+1 aj — 1
- 4+1= < = 1<d
Z+ - ag Z ag tl<a,

i#k

whence [¢/¢] < d as is wanted. o
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Let L = {(a1,0,...,0q) € Z¢ | a; > 0 for all 1 < i < d}. For
each a = (a1,a2,...,a4) € L, we put z%* = ngl x;". Let a be an
ideal in A. Then we say that a is a monomial ideal, if a is generated
by monomials in {z;}1<;<q, that is, a = (z* | « € A) for some A C L.
Monomial ideals behave very well as if they were monomial ideals in
the polynomial ring k[z1, Z3, . .. , z4] over a field k (see [15] for details).
For instance, the integral closure Q of our monomial ideal Q is also a
monomial ideal, and we have the following.

_ Proposition 3.5 [15]. Let A = {a € L | Zle(ai/ai) > 1}. Then
Q= (z|aed).

Corollary 3.6. Suppose that d > 2, and let n > 2 be an integer. We
n—1

put q = (7728, ..., 2%). Thenq§=q+m" = (z7') + m" and all
the powers 4" (m > 1) are integrally closed.

Proof. Let J = q+ m” and a = (z},2%,...,27). Then a C q
and m™ C @, so that J C . Let m > 1 be an integer, and put
K = (zT("‘l),mgm, ... ,zm™). We will show that K C J™. Let a € L,
and assume that oy /m(n —1) + E?ZZ(ozi/mn) > 1. We want to show
that z® € J™. We may assume that oy < m(n—1). Let oy = (n—1)i+j
with 4,5 € Z such that 0 < j < (n —1). Then 0 < ¢ < m. Since

i=2
we get
d
nay + (n — 1)-20@ > mn(n — 1),
i=2
so that

d
(n— 1)-20@- >mn(n —1) — na; =n[(n— 1)(m — i) — j],

1=2

whence
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Because (nj/n—1) = j+ (j/n—1) and 0 < j < n — 1, we have
(nj/n—=1)=j+(j/n—1)<j+1andso

Thus,

1 Y »
2% — l‘gn )z_lexgz . _l,gd c 335" )Zmn(m i) Jm,

whence K C J™ by Proposition 3.5.

Because J™ C g™ and q™ C K, we have J™ C g C q
whence J™ = @™ = q™ = K. Letting m = 1, we get J =
completes the proof of Corollary 3.6 a

Thanks to Corollary 3.6, we get the following characterization for
quasi-socle ideals I = @ : m? to be integrally closed.

Proposition 3.7. Suppose that d > 2 and a; > 2 for all 1 < i < d.
Then the following two conditions are equivalent to each other.

() I=Q.
(2) Fither (a) a; = £ for all 1 <3 < d, or (b) there exists 1 < j < d
such that a; =0 ifi # j and a;j = — 1.

When this is the case, I" = I™ for all n > 1, whence R(I) is a Cohen-
Macaulay normal domain.

Proof. (1) = (2). Since I = Q, we get ¢ < p and [ = @ + m¢
(Proposition 2.1). Notice that

QCI=Q:m'C(Q:m):m=Q:m’,
because I C A. Hence, Q : m4™t ¢ Q. Consequently £ — 1 =
p+1—(qg+1) < a; for some 1 < i < d by Theorem 1.2, so that,

thanks to Theorem 1.2 again, we have

KzaiZaj
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forall 1 <j <d Let A={l<j<d|a; <} We then have the
following.

Claim. (1) a; =¢—-1, if j € A.
(2) 1A < 1.

Proof. Let j € A. Then a; < £ = a; whence j # ¢ and £ > 3.
Let « = (a; — 1)e; + (a; — aj)e;. Then o € L but, thanks to
the monomial property of ideals, 2* ¢ Q +m¢ = I = @Q, because
Zzzl ar =a;—1 =¢—1and z* ¢ Q. Consequently, Zzzl(ak/ak) <1
by Proposition 3.5, so that 1 < (1/a;) + (aj/a;), because

aj; — 1 a; — aj

+
a; a;

<1

Let n = a; — a;. Then aj(a; —a;) < a; as 1 < (1/a;)+ (a;/a;), whence
a;n < a; = aj+n so that 0 < (a; —1)(n—1) < 1. Hence, n = 1 (recall
that a; >2) and aj =a; —1=¢—-1.

Assume A > 2, and choose j,k € A so that j # k. We put
Yy = acjxf;_Q. We then have y¢~! = (mﬁ_l)(xi_l)e_z = (w?j)(w%’“)e_2 €
Q*!, because a;j = ap = {—1 by assertion (1). Hence, y € Q = Q+m¢,
which is impossible because y ¢ @ (recall that £ > 3) and y ¢ m¢,
thanks to the monomial property of ideals. Hence, A < 1. ni

If A = &, we then have £ = q; for all 1 < j < d. If A # @, letting
A = {j}, we get a; = £ if i # j and a; = £ — 1. This proves the
implication (1) = (2).

(2) = (1). Suppose condition (b) is satisfied. Then I = Q + m® =
(wﬁfl) +mf = Q by Proposition 2.1 and Corollary 3.6. Suppose
condition (a) is satisfied. Then I C @ by Theorem 1.2 and I = Q+m’ =
m¢ by Proposition 2.1, whence I = Q. In each case all the powers of
I are integrally closed (see Corollary 3.6 for case (b)), whence the last
assertion follows from Proposition 3.4. u]

Example 3.8. Suppose that d > 3, and let n > d — 1 be an integer.
We look at the ideal

d—1
Q:(ml axgaxga---amg)
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and let ¢ = n(d — 2). Then { =n, as p =nd — (n + 1), whence I C Q
and I = Q+m" = (¢ ')+ m". The ring R(I) is by Theorem 1.3 (ii) a
Gorenstein ring, since ¢ = (d —2)¢. If n = d, then I = (z{*)+m? and
I™ = I™ for all m > 1 by Corollary 3.6, so that R(I) is a Gorenstein
normal ring.

3.2. The case where A = R);. Our setting naturally contains the
case where A = R is the localization of the homogeneous Gorenstein
ring R = k[R;] over an infinite field k = Ry at the irrelevant maximal
ideal M = R,. Let us note one example.

Example 3.9. Let S = k[X,Y,Z] be the polynomial ring over
an infinite field k, and let R = S/fS, where 0 # f € S is a form
with degree n > 2. Then R is a homogeneous Gorenstein ring with
dim R = 2. Let x1, x2 be a linear system of parameters in R, and let
M = R,. We look at the local ring A = Rps. Let a1 = 2, a2 = n and
g=mn. Let Q = (22,23)A and I = Q : m?, where m = M A. Then

p=a(R)+ (a1 +az) =2n — L.

Hence, { = q=mn,so that I CQ, I = Q + m" = (z3) + m", and G(I)
is a Gorenstein ring with ry (/) = 1 (Theorems 1.2 and 1.3). We have
Qg mi ifn > 3.

3.3. The case where A = k[[t%,1]]. Let 1 < a < b be integers with
GCD (a,b) = 1. We look at the ring A = k[[t?, °]] C k[[t]], where k[[t]]
denotes the formal powers series ring over a field k. We put = = ¢*
and y = t®. Then A is a one-dimensional Gorenstein local ring and
m = (z,y). Because A = k[[X,Y]]/(X® — Y?) where k[[X, Y]] denotes
the formal powers series ring over the field k, we get

G(m) = k[X,Y]/(Y?).

Let n,q > 1 be integers, and put @ = (z") and I = @ : m?. Then
because a(G(m)) = a—2, we have p = a+n—2 and ¢ = (a+n)—(¢+1).
Consequently, I C @ if and only if ¢ < a (Theorem 1.2), whence the
condition that I C @ is independent of the choice of the integer n > 1.
When this is the case, by Theorems 1.2 and 1.3 we have the following.
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Proposition 3.10. The following assertions hold true.

(1) re(I) = g/(a+n) = (¢ + 1)].
(2) The graded rings G(I) and F(I) are Cohen-Macaulay rings.

(3) The ring G(I) is a Gorenstein ring if and only if (a+n) —(g+1)
divides q.

Hence, if ¢ = a — 1, we then have, for each integer n > 1 such that
n | g, that G(I) is a Gorenstein ring.

REFERENCES

1. L. Burch, On ideals of finite homological dimension in local rings, Proc. Camb.
Philos. Soc. 64 (1968), 941-948.

2. A. Corso, L. Ghezzhi, C. Polini and B. Ulrich, Cohen-Macaulayness of special
fiber rings, Comm. Algebra 31 (2003), 3713-3734.

3. A. Corso and C. Polini, Links of prime ideals and their Rees algebras, J.
Algebra 178 (1995), 224-238.

4. A. Corso and C. Polini, Reduction number of links of irreducible varieties, J.
Pure Appl. Algebra 121 (1997), 29-43.

5. T. Cortadellas and S. Zarzuela, On the Cohen-Macaulay property of the fiber
cone of ideals with reduction number at most one, in Commutative algebra, algebraic
geometry, and computational methods Springer, Singapore, 1999.

6. D. Eisenbud, Commutative algebra with a view toward algebraic geometry,
Grad. Texts Math. 150, Springer-Verlag, New York, 1995.

7. S. Goto and F. Hayasaka, Finite homological dimension and primes associated
to integrally closed ideals, Proc. Amer. Math. Soc. 130 (2002), 3159-3164.

8. S. Goto, S. Kimura and N. Matsuoka, Quasi-socle ideals in Gorenstein
numerical semigroup rings, J. Algebra 320 (2008), 276-293.

9. S. Goto, N. Matsuoka, and Ryo Takahashi, Quasi-socle ideals in a Gorenstein
local Ting, J. Pure Appl. Algebra 212 (2008), 969-980.

10. S. Goto and H. Sakurai, The equality I? = QI in Buchsbaum rings, Rend.
Sem. Mat. Univ. Padova 110 (2003), 25-56.

11. , The reduction exponent of socle ideals associated to parameter ideals
in a Buchsbaum local ring of multiplicity two, J. Math. Soc. Japan 56 (2004),
1157-1168.

12. , When does the equality I1? = QI hold true in Buchsbaum rings?,
Commutative Algebra Lecture Notes Pure Appl. Math. 244, 2006.

13. S. Goto and Y. Shimoda, On the Rees algebras of Cohen-Macaulay local
rings, in Commutative algebra, Lecture Notes Pure Appl. Math. 68, Dekker, New
York, 1982.




620 S. GOTO, S. KIMURA, N. MATSUOKA AND T.T. PHUONG

14. S. Goto and K. Watanabe, On graded rings I, J. Math. Soc. Japan, 30 (1978),
179-213; Proc. London Math. Soc. 29 (1974), 55-76.

15. R. Hiibl and I. Swanson, Adjoints of ideals, arXiv:math.AC/0701071.

16. S. Ikeda, On the Gorensteinness of Rees algebras over local rings, Nagoya
Math. J. 102 (1986), 135-154.

17. J. Lipman, Cohen-Macaulayness in graded algebras, Math. Res. Lett. 1
(1994), 149-157.

18. D.G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Camb.
Philos. Soc. 50 (1954), 145-158.

19. A. Ooishi, On the Gorenstein property of the associated graded ring and the
Rees algebra of an ideal, J. Algebra 115 (1993), 397-414.

20. C. Polini and B. Ulrich, Linkage and reduction numbers, Math. Ann. 310
(1998), 631-651.

21. N.V. Trung and S. Ikeda, When is the Rees algebra Cohen-Macaulay?, Comm.
Algebra 17 (1989), 2893-2922.

22, P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya. Math.
J. 72 (1978), 93-101.

23. H.-J. Wang, Links of symbolic powers of prime ideals, Math. Z. 256 (2007),
749-756.

24. J. Watanabe, The Dilworth number of Artin Gorenstein rings, Advances
Math. 76 (1989), 194-199.

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, MELJI
UNIVERSITY, 1-1-1 HIGASHIMITA, TAMA-KU, KAWASAKI 214-8571, JAPAN
Email address: goto@math.meiji.ac.jp

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, MELJI
UNIVERSITY, 1-1-1 HIGASHIMITA, TAMA-KU, KAWASAKI 214-8571, JAPAN
Email address: skimura@math.meiji.ac.jp

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, MELJI
UNIVERSITY, 1-1-1 HIGASHIMITA, TAMA-KU, KAWASAKI 214-8571, JAPAN
Email address: matsuoka@math.meiji.ac.jp

DEPARTMENT OF INFORMATION TECHNOLOGY AND APPLIED MATHEMATICS, TON
Duc THANG UNIVERSITY, 98 NGo TAT To STREET, WARD 19, BINH THANH
District, Ho CHI MINH CITY, VIETNAM

Email address: sugarphuong@gmail.com




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


