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RINGS OF FINITE RANK
AND

FINITELY GENERATED IDEALS

AMANDA MATSON

ABSTRACT. Here we provide examples of rings of mini-
mum rank n for every positive integer n. We also introduce
a tool that is used to count irreducible elements in finitely
generated prime ideals in atomic domains.

1. Introduction. The concept of finite generation is prominent in
commutative algebra. Indeed, Noetherian rings, where every ideal is
finitely generated, form one of the richest and most fruitful classes of
commutative rings with identity. In this paper we consider two classes
of rings: the class of rings of finite rank, which is a restrictive subclass
of Noetherian rings, introduced by Cohen [1]; the class of rings that
satisfy the n-generator property, which is a restrictive subclass of Prüfer
domains, introduced by Gilmer [2]. Both of these classes are defined
below.

Let I be an ideal of R. We say that I is n-generated if it can be
generated by a set of n elements. Using notation from [3], we denote
by μ(I) the minimal number of generators of I. Additionally, we say
that the ring R is of finite rank n if every ideal of R is n-generated.
For convenience, we will say that a ring that is an element of the class
of rings that are off finite rank n is Mn.

The concept of mininum rank will also prove useful. We say that the
ring R has minimum rank n if it is Mn and contains an ideal I such
that μ(I) is n. Following the notation from [4], we use μ∗(R) to denote
the minimum rank of R. For an example, note that if R is a Dedekind
domain, then μ∗(R) is 1 if |Cl(R)| is 1 and is 2 otherwise.

It is also natural to generalize these concepts to the realm of non-
Noetherian domains. One could consider a ring to have the n-generator
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property if, for a fixed n, every finitely generated ideal is n-generated.
For convenience, we will say a ring that is an element of the class of
rings satisfying the n-generator property is q-Mn. For a number of
years, this was a question of import in the study of Prüfer domains.
Indeed, since Dedekind domains are M2, it is natural to ask if Prüfer
domains are q-M2. In [3] and [5], Heitmann and Swan answered these
problems more or less completely.

The classes of rings of finite rank and the n-generator property have
been studied fairly extensively in the literature. After the seminal
work of Cohen [1], rings of finite rank were considered by Gilmer [2],
Heitmann [3], and most recently Pettersson [4], to name a few. One
missing facet in the study of finite generation is the existence for each
n of rings whose minimum rank is n.

2. Results Regarding Prime Ideals. We begin by connecting
finitely generated prime ideals in atomic domains to the irreducible
elements of the domain. Afterwards, we will pursue our main result of
the existence of rings of minimum rank n for every n. We first recall a
definition from factorization theory.

A nonzero nonunit r of a domain R is irreducible if whenever r can
be written as ab, then either a or b must be a unit of R. R is an atomic
domain if every nonzero nonunit can be written as a finite product of
irreducible elements. On the other hand, R is an antimatter domain if
R contains no irreducible elements.

Theorem 2.1. Let R be an atomic domain. Any finitely generated
nonzero proper prime ideal P of R can be minimally generated by
irreducible elements.

Proof. Let P be a nonzero finitely generated prime ideal of an
atomic domain R. Since P is finitely generated, there exists some
minimal set {x1, . . . , xn} that generates P . As P is nonzero, we can
take the generators to be nonzero. Since R is atomic, there exists a
factorization of each xi as a finite product of irreducible elements of
R: τi1 · · · τiki . Since P is a prime ideal, τij must be an element of P
for some j. Let τi denote the first irreducible τij such that τij is in P .
It is straightforward to see that P can be generated by {τi}n

i=1. This
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allows any finitely generated prime ideal P of the atomic domain R to
be minimally generated by irreducible elements of R.

The hypothesis that R is atomic is essential. In [6], J. Coykendall
and T. Dumitrescu construct a finitely generated maximal ideal in an
antimatter domain. Since the ideal is maximal, it must be prime.
Since the ring is an antimatter domain, it must contain no irreducible
elements. Accordingly the finitely generated prime ideal cannot be
generated by irreducible elements.

This next corollary establishes boundaries for the number of irre-
ducible elements in a given prime ideal of an atomic domain.

Corollary 2.2. Let P be a nonzero proper prime ideal in an
atomic domain R. If μ(P ) is n then P contains at least n non-associate
irreducible elements. If P cannot be finitely generated, then P contains
infinitely many non-associate irreducible elements of R.

Proof. Let P be a nonzero prime ideal in an atomic domain such
that μ(P ) is n. By Theorem 2.1, any finitely generated prime ideal in
an atomic domain can be generated minimally by a set of irreducible
elements. This forces there to be a generating set {τi}n

i=1 consisting
solely of irreducible elements. Since this generating set is a minimal
generating set, the irreducible elements must be pairwise non-associate.
Therefore, P contains at least n pairwise non-associate irreducible
elements.

On the other hand, let P be a prime ideal in an atomic domain that
cannot be finitely generated. Let Γ denote the set of all pairwise non-
associate irreducible elements of R contained in P . Assume for the
moment that Γ is a finite set. Since P is not finitely generated, Γ does
not generate all of P ; and, there exists some element x in P which is not
in the ideal generated by Γ. Since Γ contains all pairwise non-associate
irreducible elements of P , the ideal generated by Γ must contain all
irreducible elements of P . Since R is atomic and x is a nonzero nonunit
of R, x can be written as a finite product of irreducibles: τ1 · · · τn. The
fact that P is prime forces τj to be an element of P for some j. By
construction of Γ, τj must be an element of the ideal generated by
Γ, contradicting the fact that x is not in the ideal generated by Γ.
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Therefore, Γ cannot be finite and hence P contains infinitely many
non-associate irreducible elements.

In this next example, we consider a UFD of dimension 2 where every
prime ideal is generated by 2 elements or fewer. This example illustrates
that it does not suffice to check prime ideals in order to determine
whether or not a ring is of finite rank. In [7], Bresinsky shows existence
of a field K for every degree d ≥ 4 such that K[x1, . . . , xd] contains a
prime ideal which is not d-generated. It is not known to the author
whether or not this example has previously been done in literature.

Example 2.3. The ring F[x, y] is a UFD with the property that
every prime ideal is two generated, however, there exist ideals which
require an arbitrarily large number of generators.

Proof. Notice that for any given n, the ideal (xn, xn−1y, . . . , xyn−1, yn)
of F[x, y] requires n + 1 generators. Accordingly, F[x, y] is not Mn for
any n. To establish the rest of the claim, we consider prime ideals of
F[x, y]. Let P be such a prime ideal. If P is the zero ideal, then we are
done.

If P is a height one prime ideal, which forces there to be no prime
ideals strictly between 0 and P , then we will show that P must be
principal. Since F[x, y] is a UFD, P must contain a nonzero principal
prime element, p. As p is a nonzero prime element of F[x, y], the ideal
(p) is a prime ideal strictly containing zero. Since p is an element of
P , we arrive at the chain: 0 ⊂ (p) ⊆ P . Since P is a height one prime
ideal, P must be the same as the ideal (p) and hence is principal.

If P is not a height one prime, then the fact that F[x, y] is a
Noetherian UFD yields the existence of infinitely many principal prime
ideals (pi) such that (pi) strictly contains 0 and is strictly contained in
P . Let p1 and p2 be two such prime elements of F[x, y] such that (p1)
is distinct from (p2). Since p1 and p2 are distinct prime elements of
F[x, y], p1 and p2 are relatively prime in F(x)[y]. As relatively prime
elements of a principal ideal domain, there exist k1 and k2 in F(x)[y]
such that k1p1+k2p2 is 1. Now ki is an element of F(x)[y] and hence can

be written as
k̂i

fi
where k̂i is an element of F[x, y] and fi is an element
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of F[x]. Clearing denominators, we attain that f2k̂1p1+f1k̂2p2 must be
f1f2 where f1f2 is an element of F[x]. Notice also that f2k̂1p1 +f1k̂2p2,
and hence f1f2, is an element of P . Since F[x] is a UFD, f1f2 can
be written as a product of prime elements each of which must be an
element of F[x]. Since P is a prime ideal, one of those prime elements
must be an element of P . Let p(x) be such a prime element.

Consider the ring
F[x, y]

p(x)F[x, y]
. This ring is isomorphic to

F[x]
p(x)

[y].

Notice that as p(x) is a nonzero prime element in the one dimensional

domain F[x], (p(x)) is a maximal ideal in F[x]. Accordingly,
F[x]
p(x)

is a

field and hence
F[x]
p(x)

[y] is a principal ideal domain. Look at the image

of P in
F[x, y]

p(x)F[x, y]
. This ideal, P̂ , must be principally generated by

some element w(x, y) + p(x)F[x, y] where w(x, y) is an element of P .

We will show that the prime ideal P can be generated by w and
p. Certainly, {w, p} is a subset of P . Let r(x, y) be an arbitrary
element of P . As r(x, y) is an element of P , r(x, y) + p(x)F[x, y]
is an element of (w(x, y) + p(x)F[x, y]). Accordingly, there exists

f(x, y) + p(x)F[x, y] in
F[x, y]

p(x)F[x, y]
such that r(x, y) + p(x)F[x, y] can

be written as (f(x, y) + p(x)F[x, y])(w(x, y) + p(x)F[x, y]) or, more
simply, f(x, y)w(x, y) + p(x)F[x, y]. This makes r(x, y) an F[x, y]-
linear combination of w(x, y) and p(x); and hence, P is two generated.
Consequently, every prime ideal of F[x, y] can be generated by two
elements or fewer.

3. Existence of Rings of Minimum Rank n as Subrings of
Dedekind Domains. We now focus our attention on rings that
are of finite rank. Since any Mn domain must be one dimensional and
Noetherian, its integral closure must be Dedekind. It is natural to study
subrings of Dedekind domains in the pursuit of rings of finite rank. This
next theorem connects rings of algebraic integers to finite generation
and builds the foundations for the existence of rings of minimum rank
n for each n.
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Theorem 3.1. Let D be a Dedekind domain with quotient field F

such that there exists a principal ideal domain R with quotient field K
such that RF is D and the degree of F over K is some integer n. Any
ring A which is a subring of D, contains R and has quotient field F

must be Mn.

Proof . Before we begin, we gather the hypotheses in the following
diagram.

A � D � F

R

�
�

��� �

� K

�

n

Since the degree of F over K is finite, D must be a free module over the
PID, R, of finite rank. Accordingly, A must be a free R-module of rank
less than or equal to n and every submodule of A must be generated
by n elements or fewer. Since every ideal of A is also a submodule of
A, every ideal of A must be generated by n elements or fewer as an
R-module. Since every generator is originally an element of A and R
is contained in A, this allows the same generating set to generate I as
an ideal of A. Thus A must be Mn.

Before we continue, we will look at an example that illustrates the
necessity of some of the hypotheses. Notice that the ring Q[x] is an M1

domain whose quotient field is not a finite field extension over Q. The
subring Z[x] shares a quotient field with Q[x], however, is not Mk for
any k since for every n, the ideal (2n, 2n−1x, . . . , 2xn−1, xn) requires
n + 1 generators.

Here we introduce the main result.

Theorem 3.2. For every natural number n, there exist rings of
minimum rank n.

Proof. We have seen examples of principal ideal rings and Dedekind
domains which have minimum rank 1 and 2 respectively. We introduce
here an example of a ring which has minimum rank n.

Let R and T denote the rings Z[2 · 2
1
n , . . . , 2 · 2

n−1
n ] and Z[2

1
n ]
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respectively. Notice that 2
1
n is a prime element of T . Let I =

(2, 2·2 1
n , . . . , 2·2 n−1

n ). We will show that this ideal requires n generators
and that n is an upper bound for the required number of generators for
ideals of R. For a contradiction to the first claim, assume that I can be
generated by the set {ξi}k

i=1 where k is less than n. Note that each ξi

can be written as (2
1
n )βiti where ti is an element of T that 2

1
n does not

divide and βi is a nonnegative integer. Reindex the generating set such
that βi is no greater than βi+1 for each i. Notice that since 2 generates
I in T , 2 must divide each ξi in T . This forces βi to be at least n for
each index i.

To begin, we will show that β1 must be n. Assume that β1 is strictly
greater than n. As 2 is an element of the ideal generated by {ξi}k

i=1, 2

can be written as an R-linear combination
k∑

i=1

riξi where each ri is an

element of R. We now lift to T and compute:

2 =
k∑

i=1

riξi

2 =
k∑

i=1

ri(2
1
n )βiti

1 =
k∑

i=1

ri(2
1
n )βi−nti

1 = 2
1
n

(
k∑

i=1

ri(2
1
n )βi−n−1ti

)
.

This forces 2
1
n to be a unit of T which is a contradiction. Therefore

β1 must be n. Assume that there exists some index j such that βj is
not n + j − 1. Take m to be the smallest such index. Look now at

2 · 2 m
n . As an element of I, it can be written as

k∑
i=1

riξi where each ri

is an element of R. We will show that for each i less than m, 2 divides
ri in T and use this to attain a contradiction. We again lift to T and
compute:
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2 · 2 m
n =

k∑
i=1

riξi

2 · 2 m
n =

k∑
i=1

ri(2
1
n )βiti

2
m
n = r1t1 +

k∑
i=2

ri(2
1
n )βi−nti

r1t1 = (2
1
n )m −

k∑
i=2

ri(2
1
n )βi−nti

r1t1 = 2
1
n

(
(2

1
n )m−1 −

k∑
i=2

ri(2
1
n )βi−n−1ti

)
.

Recall here that 2
1
n is prime in T and hence must divide either r1 or

t1. By construction, 2
1
n does not divide t1. Accordingly, 2

1
n divides r1

in T . All elements of R that, in T , have a factor of 2
1
n must have at

least n factors of 2
1
n in order to remain elements of R. Therefore, 2

divides r1 in T . Write r1 as 2t̂1 where t̂1 is an element of T . We now
continue our computation:

2t̂1t1 = (2
1
n )m −

k∑
i=2

ri(2
1
n )βi−nti

2
1
n r2t2 = (2

1
n )m − 2t̂1t1 −

k∑
i=3

ri(2
1
n )βi−nti

r2t2 = (2
1
n )m−1 − (2

1
n )n−1t̂1t1 −

k∑
i=3

ri(2
1
n )βi−n−1ti

r2t2 = 2
1
n

(
(2

1
n )m−2 − (2

1
n )n−2 t̂1t1 −

k∑
i=3

ri(2
1
n )βi−n−2ti

)
.

We attain again that 2
1
n divides r2 or t2 in T . By construction, 2

1
n

does not divide t2 so must divide r2. This forces 2 to divide r2 in T .
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In general, for l less than m, we have:

rltl = 2
1
n

⎛
⎝(2

1
n )m−l −

l−1∑
j=1

(2
1
n )n−l−1+j t̂jtj −

k∑
i=l+1

ri(2
1
n )βi−n−lti

⎞
⎠ .

This forces 2 to divide rl for the same reason that 2 divided r1 and
r2 previously. Writing ri as 2t̂i, whenever i is less than or equal to m,
we are now prepared to return to the original equation:

2 · 2 m
n =

k∑
i=1

ri(2
1
n )βiti

2 · 2 m
n =

m−1∑
j=1

2t̂jtj(2
1
n )n+j−1 +

k∑
i=m

ri(2
1
n )βiti

1 =
m−1∑
j=1

(2
1
n )n−m+j−1 t̂jtj +

k∑
i=m

ri(2
1
n )βi−n−mti

1 = 2
1
n

⎛
⎝m−1∑

j=1

(2
1
n )n−m+j−2 t̂jtj +

k∑
i=m

ri(2
1
n )βi−n−m−1ti

⎞
⎠ .

Notice that n − m + j − 2 is a nonnegative number since m is strictly
less than n and j is at least 1. This forces 2

1
n to be a unit in T which

is a contradiction; therefore, each βi is exactly n + i − 1. To finish the
proof, look at the element 2 · 2 n−1

n :

2 · 2 n−1
n =

k∑
i=1

ri2
n+i−1

n ti .

The same argument from before will yield that 2 divides each ri since
i is less than or equal to k and k is less than n. This yields:

1 =
k∑

i=1

t̂i2
i
n ti .

Again forcing 2
1
n to be a unit in T since i ranges from 1 through k.

Therefore k cannot be less than n and I requires n generators. This
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forces the ring Z[2 · 2 1
n , . . . , 2 · 2 n−1

n ] to have minimum rank at least n.
Since Z[2 · 2 1

n , . . . , 2 · 2 n−1
n ] is a subring a Dedekind domain, contains

Z, and has the same quotient field as the Dedekind domain whose field
extension over Q is n, Theorem 3.1 forces the ring to be strictly Mn.

Here we have established existence of rings of finite rank n, where n
is the minimum rank of the ring, for every n.
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