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A GRÖBNER BASIS FOR THE SECANT IDEAL
OF THE SECOND HYPERSIMPLEX

SETH SULLIVANT

ABSTRACT. We determine a Gröbner basis for the secant
ideal of the toric ideal associated to the second hypersimplex
Δ(2, n), with respect to any circular term order. The Gröbner
basis of the secant ideal requires polynomials of odd degree
up to n. This shows that the circular term order is 2-
delightful, resolving a conjecture of Drton, Sturmfels, and
the author. The proof uses Gröbner degenerations for secant
ideals, combinatorial characterizations of the secant ideals of
monomial ideals, and the relations between secant ideals and
prolongations.

1. Introduction. If X ⊂ Pm−1 is a projective variety, its rth
secant variety X{r} ⊆ Pm−1 is the closure of the union of all planes in
Pm−1 spanned by r points in X . There is a large literature on secant
varieties, and the vast majority of results focus on computing their
dimension [1, 2]. Inspired by problems in computational complexity
and algebraic statistics more attention has been paid to the problem of
determining the vanishing ideals I(X{r}) of secant varieties [6, 8, 9].

This paper presents a case study of the secant ideals I(X{2}) of a
particular family of toric varieties associated to the second hypersim-
plices

Δ(2, n) = conv({ei + ej | 1 ≤ i < j ≤ n}).
The associated toric variety X2,n arises in algebraic geometry as the
closure of the torus orbit of a generic point on the Grassmannian Gr2,n.
The secant varieties X

{r}
2,n arise in statistics as the projectivization of

the Zariski closure of the parameter space of the factor analysis model,
with r-factors [4].

Our main result is the computation of a Gröbner basis for the secant
ideal I(X{2}

2,n ), with respect to a certain circular term order, confirming
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a conjecture of Drton, Sturmfels, and the author [4]. The proof relies on
the “delightful” strategy described by Sturmfels and the author [9] plus
the connection betweens secant ideals and prolongations, introduced in
the work of Landsberg and Manivel [5] and extended in the work of
Sidman and the author [7]. As a corollary to these arguments, we
also deduce a Gröbner basis for the symbolic square of the second
hypersimplex.

2. Initial Ideal of the Second Hypersimplex. In this section,
we introduce the circular term order ≺ and describe the Gröbner
basis and initial ideal of the second hypersimplex, recalling results
from [3]. The quadratic squarefree initial ideal in≺(In) has a simple
combinatorial description in terms of non-crossing edges in the circular
straight-line drawing of the complete graph Kn. Then recalling results
on secant ideals and symbolic powers of edge ideals from [8, 9, 10], we
give combinatorial descriptions of the ideals in≺(In){2} and in≺(In)(2).

Throughout the remainder of the paper, we use the notation I{r}

to denote the secant ideal of the ideal I. If I is a radical ideal in
a polynomial ring over an algebraically closed field, then I{r} is the
vanishing ideal of the r-th secant variety of V (I). The notion of secant
ideal extends beyond both radical ideals and algebraically closed fields,
and the definitions can be found in [8, 9], though we will not need
these here.

Let C[x] := C[xij | 1 ≤ i < j ≤ n] and C[t] := C[ti | 1 ≤ i ≤ n] and
let φn be the ring homomorphism:

φn : C[x] → C[t], xij �→ titj .

The toric ideal In = kerφn is the vanishing ideal of the toric variety of
the second hypersimplex.

We will often need to work with the combinatorial structure of a
certain circular embedding of the complete graph Kn. We consider the
vertices of Kn as the n-th roots of unity in the complex plane. Each
edge (i, j) connects two of the roots of unity. This drawing of Kn is as
the set of all diagonals (including edges) of a regular convex n-gon in
the plane.

The edges of Kn fall into �n
2 	 orbits under the action of the dihedral

group Dn on the nth roots of unity. Let the ith class consist of the



A GRÖBNER BASIS FOR THE SECANT IDEAL 329

edges that are equivalent to the edge 1i, for i ∈ {2, . . . , �(n + 1)/2�}.
This also divides the variables xij into �n

2 	 classes.

Figure 1 The four orbits of edges in the circular embedding of K8

Definition 2.1. A circular term order ≺ is any block term order
such that xi1j1  xi2j2 whenever the edge i1j1 is in a smaller class than
i2j2.

In other words, large variables in the block ordering correspond to
edges that are close to the boundary of the polygon, and small edges
cut deep through its interior. In figure 1, the four orbits of edges in
K8 are arranged in decreasing weight in the circular term order. De
Loera, Sturmfels, and Thomas [3] characterized the Gröbner basis for
the second hypersimplex with respect to any circular term order.

Theorem 2.2. The set of quadratic binomials

{
xijxkl − xikxjl, xilxjk − xikxjl | 1 ≤ i < j < k < l ≤ n

}

form a reduced Gröbner basis for In with respect to any circular term
order.

We say that a pair of edges ij kl cross if the line segments in the
circular drawing intersect (including at the endpoints). Note that
the underlined terms are the leading terms of the indicated quadratic
binomials. In terms of the circular embedding of Kn, these binomials
correspond to replacing a noncrossing pair of edges with a crossing pair
of edges, as illustrated.

The notion of crossing leads to a simple description of in≺(In).
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Corollary 2.3. The monomial ideal in≺(In) is generated by all
noncrossing pairs in the circular embedding of Kn; that is,

in≺(In) = 〈xijxkl | ij does not cross kl〉 .

To prove our results about the Gröbner bases of the secant ideal I
{2}
n

and symbolic powers I
(2)
n , we want to employ the “delightful” strategy

described in [9] and [10]. The idea here is to take advantage of the
following proposition:

Proposition 2.4. (1) [8, 9] For any term order ≺ and any ideal I,
in≺(I{r}) ⊆ in≺(I){r}.

(2) Suppose that I and in≺(I) are radical and K is algebraically closed.
Then in≺(I(r)) ⊆ in≺(I)(r).

Using Proposition 2.4, if we can find a collection of polynomials
G ⊂ I{r} such that 〈in≺(g) | g ∈ G〉 = in≺(I){r}, we can immediately
deduce that G is a Gröbner basis for I{r} with respect to ≺, (and
similarly for the symbolic power.) A term order ≺ is called r-delightful
for I when the equality in≺(I{r}) = in≺(I){r} holds. Our goal will be
to prove that the circular term order is 2-delightful for In by finding a
combinatorial description for in≺(In){2} and in≺(In)(2) and producing
the polynomials whose initial terms generate these ideals.

The ideal in≺(In) is generated by squarefree quadrics so it is an
example of an edge ideal. In general, an edge ideal is associated to
an undirected graph G, as the ideal I(G) = 〈xixj | ij ∈ E(G)〉. In
the case of the initial ideal in≺(In), the corresponding graph is the
non-crossing graph.

Definition 2.5. The noncrossing graph Gn has vertex set V (Gn) =(
[n]
2

)
consisting of all two element subsets of [n]. A pair ij and kl form

an edge of the noncrossing graph if and only if the edges ij and kl do
not cross in the circular embedding of the complete graph Kn.
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The combinatorics of the secant ideals and symbolic powers of edge
ideals are reasonably well-understood. First, we deal with the case of
the secant ideals.

Theorem 2.6. [8, 9] Let I(G) be an edge ideal. Then

I(G){2} = 〈xV | V ⊆ [n], GV is an odd cycle 〉 .

Here GV is the induced subgraph of G with vertex set V and
xV =

∏
i∈V xi. Thus, to describe the minimal generators of in≺(In){2},

we must characterize the odd cycles in the noncrossing graph.

Corollary 2.7. When n = 5, in≺(In){2} = 〈x12x23x34x45x15〉 has
a single generator of degree five. For n ≥ 6 the secant ideal in≺(In){2}

has generators of every odd degree between 3 and n, inclusive. The
generators come in two types:

(1) Degree three generators: Let i1 < i2 < i3 < i4 < i5 < i6.
Then xi1i2xi3i4xi5i6 and xi1i6xi2i5xi3i4 are degree three generators of
in≺(In){2}.

(2) Higher degree generators: Let i1 ≤ j1 < i2 ≤ j2 < · · · < i2k+1 ≤
j2k+1, where k > 1. Then the monomial

∏2k+1
l=1 xiljl+k−1 is a minimal

generator of in≺(In){2}. ( The index l + k − 1 is interpretted modulo
2k + 1. )

Note that in the sequence i1 ≤ j1 < i2 ≤ j2 < · · · < i2k+1 ≤ j2k+1 <
i1 we assume that the sequence makes exactly one full revolution around
the circle. We call such a sequence of indices admissible.

Proof. According to Theorem 2.6, we must classify the induced odd
cycles in the noncrossing graph Gn. First, the cycles of length three:
this is a set of three edges in the circular embedding of Kn, none of
which cross each other. Since six distinct indices appear in a set of three
disjoint edges, this reduces to the graph K6. In K6 there are exactly
two combinatorial types of non-crossing triples, the first isomorphic to
the triple 12, 34, 56 and the second isomorphic to the triple 16, 25, 34.
These account for all the degree three monomials in in≺(In){2}.
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Now consider a cycle in the noncrossing graph Gn of odd length 2k+1
greater than or equal to five. We may suppose that each vertex appears
in exactly one edge, since any vertex that appeared in two edges could
have edges extended to two new vertices beyond to arrive at a cycle
without that repeated vertex.

Suppose that we have three consecutive edges in this cycle. These
edges will always form, up to a rotation and relabelling of vertices,
a set of edges with exactly one crossing, like: k1k3, k2k4, k5k6 where
k1 < k2 < k3 < k4 < k5 < k6 are arranged in circular order. Since
every other edge in the cycle must cross edge k5k6, this implies that
there are 2k − 2 vertices on one side of k5k6 and 2k + 2 vertices on
the other side. By symmetry this pattern holds true for all edges in
the graph. In particular, the parity of the connections implies that
we can alternately label the indices appearing by an i or a j, splitting
the vertices into two classes such that every edge is incident to both
classes. Furthermore, to guarantee the desired crossing conditions, after
choosing the i and j for one of the edges so that edge has the form i1jk,
this forces the other edges to have the form iljl+k−1 to guarantee each
vertex is only contained in one edge.

The small symbolic powers of edge ideals are also easy to characterize.

Theorem 2.8. [10 ] Let G be a graph. Then I(G)(2) = I(G)2 +
I(G){2}. In particular, I(G)(2) is generated by degree three monomials
xixjxk where i, j, k are a cycle in G, and degree 4 monomials xixjxkxl

where ij and kl are (not necessarily vertex disjoint) edges in G.

Corollary 2.9. The symbolic square of the initial ideal in≺(In)(2)

is generated by noncrossing triples and pairs of noncrossing edge pairs
in the noncrossing graph Gn.
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3. Master Polynomials. In this section, we describe the master
polynomials (Definition 3.2), which are a collection of polynomials in
the ideal I

{2}
n whose initial terms generate the secant ideal in≺(In){2}.

This will allow us to complete the delightful strategy and prove:

Theorem 3.1. The circular term order ≺ is 2-delightful for the ideal
In of the second hypersimplex. In particular, the master polynomials
and 3×3 off diagonal minors form a Gröbner basis for I

{2}
n with respect

to any circular term order.

Let i1 ≤ j1 < i2 ≤ j2 < · · · < i2k+1 ≤ j2k+1 be an admissible circular
sequence which admits a monomial in in≺(In){2}. To begin with, we
will assume that i1 < j1, i2 < j2, . . . . Let i be the sequence of i indices
and j the sequence of j indices. We will construct a polynomial fi,j in
I
{2}
n whose initial term is

∏2k+1
l=1 xiljl+k−1 .

Since the elements of i and j are all distinct, we think about the mono-
mial

∏2k+1
l=1 xiljl+k−1 as a fixed-point free involution

∏2k+1
l=1 (iljl+k−1) in

the symmetric group Si,j on the letters {i1, j1, i2, j2, . . . , . . . }. In the
symmetric group, consider the subgroup Zi,j generated by the 2k + 1
transpositions (iljl−1). Note that Zi,j

∼= Z
2k+1
2 because each of the

2k + 1 transpositions acts on a disjoint set of indices.

Let the group Zi,j act on Si,j by conjugation. Since conjugation
preserves cycle type, any conjugate of

∏2k+1
l=1 (iljl+k−1) is a fixed-

point free involution, and corresponds to a monomial in C[x] of degree
2k + 1. Let xi,j =

∏2k+1
l=1 xiljl+k−1 and for σ ∈ Si,j let xσ

i,j be
the monomial that is obtained from the fixed-point free involution
σ ·
(∏2k+1

l=1 (iljl+k−1)
)
· σ−1.

Definition 3.2. Let i, j be an admissible pair of sequences of length
2k + 1. The master polynomial fi,j is the polynomial

fi,j =
∑

σ∈Zi,j

(−1)σxσ
i,j.

Example 3.3. The first case where fi,j is nonzero occurs when
k = 1, with i = (1, 3, 5) and j = (2, 4, 6). In this case, the master
polynomial is an eight term cubic:
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fi,j = x12x34x56 − x12x35x46 − x13x24x56 − x15x26x34

+ x13x25x46 + x14x26x35 + x15x24x36 − x14x25x36

For k = 2, the generic case, where all indices are distinct, yields
a polynomial with 32 terms. In the degenerate case where i =
(1, 2, 3, 4, 5) and j = (1, 2, 3, 4, 5), there is extensive cancellation, and
the resulting quintic has only twelve nonzero terms:

fi,j = x12x15x23x34x45 − x12x13x25x34x45 − x12x14x23x35x45

+ x12x14x25x34x35 + x12x13x24x35x45 − x12x15x24x34x35

+ x13x14x23x25x45 − x13x14x24x25x35 − x13x15x23x24x45

+ x13x15x24x25x34 − x14x15x23x25x34 + x14x15x23x24x35.

In the statistical literature on factor analysis, this degree five polyno-
mial constraint on covariance matrices is known as a pentad.

To show that the master polynomials belong to the secant ideal I
{2}
n

we exploit the connection between secant ideals and prolongations.

Theorem 3.4. [7, Theorem 4.1] Let f be a homogeneous polynomial
of degree r(d − 1) + 1 such that ∂af

∂xa ∈ I for all a ∈ Nn with
∑

ai ≤
(r − 1)(d − 1). Then f ∈ I{r}.

Theorem 3.5. The master polynomial fi,j is nonzero and belongs
to the secant ideal I

{2}
n .

Proof. We will begin with the case that all the indices in i, j are
distinct, and then derive the general case as a consequence.

First of all, we will show that fi,j has 22k+1 nonzero terms when the
i, j are distinct, and hence is non-zero. This will be implied by the fact
that the stabilizer of

∏2k+1
l=1 (iljl+k−1) with respect to the conjugation

action of Zi,j is trivial. This can be seen by looking at the cyclic crossing
numbers of the permutation

∏2k+1
l=1 (iljl+k−1) and its Zi,j conjugates.

To explain these cyclic crossing numbers, we cyclically arrange the
numbers i1, j1, i2, j2, . . . , around a circle. The cyclic crossing number
of a fixed point free involution is the number of pairs of edges that cross
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in the associated embedded graph. The involution
∏2k+1

l=1 (iljl+k−1) has
crossing number

(
2k+1

2

)− (2k + 1) because it corresponds to a cycle in
the noncrossing graph Gn. Now if σ ∈ Zi,j is the maximal permutation
σ =

∏2k+1
i=1 (il, jl−1) then

σ ·
(

2k+1∏
l=1

(iljl+k−1)

)
· σ−1 =

2k+1∏
l=1

(jlil+k−1)

which has crossing number
(
2k+1

2

)
since every pair of edges cross. Now

conjugation of any fixed-point free involution by an outside transpo-
sition (iljl−1) changes the crossing number by at most one. Thus, if
σ ∈ Zi,j is the product of m distinct (iljl−1), σ ·

(∏2k+1
l=1 (iljl+k−1)

)
·σ−1

must have crossing number
(
2k+1

2

) − (2k + 1) + m. This implies that
the stabilizer is trivial as claimed.

Now we will show that fi,j ∈ I
{2}
n using Theorem 3.4. Since fi,j

has degree 2k + 1, we must show that all partial derivatives of fi,j up
to order k belong to In. In the situation where i, j are all distinct,
every monomial in fi,j is squarefree, so we only need to consider
the squarefree differential operators Da = ∂a

∂xa where a is a (0, 1)-
vector. This is given by a set of ≤ k edges in the complete graph
Ki,j with 4k + 2 vertices i, j. Since there are only ≤ k edges, at
least one of the edges (il, jl−1) is not incident to any of these edges.
Now suppose that Dafi,j is not the zero polynomial. Since fi,j is the
signed sum of squarefree monomials, so also is Dafi,j. As (il, jl−1)
does not involve the variable set under differentiation by Da, (il, jl−1)
acts as an involution without fixed points on the set of monomials
appearing in Dafi,j, which yields a pairing of the monomials. Since a
monomial m and its conjugate m(il,jl−1) will have oppositely signed
coefficients, this provides a decomposition of Dafi,j into a sum of
binomials Dafi,j =

∑
(xu −xv) and each binomial belongs to the toric

ideal In, because the set of indices appearing in xu and xv is the same.
This implies that fi,j ∈ I

{2}
n .

Finally, we need to extend the result to the degenerate situation where
for some values of l, il = jl. First of all, the fact that fi,j ∈ I

{2}
n follow

just by “identifying parameters”. If we think about the i and j as being
generic indices, fi,j ∈ I

{2}
n if and only if fi,j(xij = titj + uiuj) = 0 for

all vectors t and u. In particular, this holds if some of the ti = tj and
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ui = uj, which is what happens when we move from the generic indices
to degenerate indices. To show that, fi,j is nonzero in the degenerate
case, we go back to counting cyclic crossings. Note that setting some
il = jl for some values of l cannot decrease the cyclic crossing number of
the resulting graph and the crossing number might increase. However,
for the graph corresponding to the monomial

∏2k+1
l=1 xiljl+k−1 the cyclic

crossing number remains the same, even if some il = jl. This implies
that this particular monomial does not cancel with any other monomial
in the representation, so fi,j is not zero.

Lemma 3.6. The leading term of the master polynomial fi,j

with respect to any circular term order is the cycle monomial xi,j =∏2k+1
l=1 xiljl+k−1 .

Proof. The monomial xi,j is the only monomial appearing in fi,j that
is divisible by one of the odd cycle generators of in≺(In){2}. Indeed,
applying a nonzero element σ ∈ Zi,j removes edges from the noncrossing
graph of this involution. Since fi,j ∈ I

{2}
n , and we must have the

containments in≺(I{2}n ) ⊆ in≺(In){2}, this implies xi,j is the initial
term.

Another argument is that every monomial appearing in fi,j can be
obtained from xi,j by applying some sequence of quadratic reductions
from the Gröbner basis for the second hypersimplex. Since such any
such single reduction takes a monomial and produces a monomial that is
smaller in the term order, this implies that xi,j is the leading monomial.

Proof of Theorem 3.1. We employ the delightful strategy to deter-
mine the Gröbner basis for I

{2}
n . In particular, to show that the circular

term order ≺ is 2-delightful, we must show that each of the monomials
in in≺(In){2}, that were determined in Corollary 2.7 is the initial term
of some polynomial in I

{2}
n .

By Lemmas 3.5 and 3.6, each admissible sequence of odd length 5
or greater produces a master polynomial fi,j whose initial term is the
corresponding odd cycle in the noncrossing graph Gn. Also, admissible
sequences of length 3 produce master polynomials of degree 3 whose
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initial terms of the monomials of form xi1i2xi3i4xi5i6 . So to finish the
proof, we need only show that each degree 3 monomial of the form
xi1i6xi2i5xi3i4 is the initial monomial of some 3× 3 off diagonal minor.
So, consider the off diagonal minor

X =

⎛
⎝ xi1i4 xi1i5 xi1i6

xi2i4 xi2i5 xi2i6

xi3i4 xi3i5 xi3i6

⎞
⎠

whose antidiagonal term is the desired monomial. This off-diagonal
minor clearly belongs to I

{2}
n since it vanishes on rank two symmetric

matrices. Furthermore, the term xi1i6xi2i5xi3i4 is its initial term, since
each of the five other terms can be obtained from it by applying a
sequence of non-crossing to crossing moves. These non-crossing to
crossing moves send a monomial to something smaller in the term order,
because they amount to Gröbner reduction with respect to the circular
Gröbner basis for In.

Finally, we are able to apply the results about the secant ideal I
{2}
n

and its delightful Gröbner basis to also deduce the Gröbner basis for
the symbolic power I

(2)
n .

Corollary 3.7. The set of 3 × 3 off-diagonal minors, the degree
3 master polynomials, and the products of pairs of 2 × 2 off-diagonal
minors form a Gröbner basis for I

(2)
n with respect to any circular term

order. Furthermore I
(2)
n = I2

n + I
{2}
n .

Proof. By Corollary 2.9, the symbolic power of the initial ideal is
in≺(In)(2) = in≺(In)2 + in≺(In){2}, which is generated by length three
cycles in the noncrossing graph plus products of pairs of noncrossing
edges. Each length three cycle is the initial term of either a degree three
master polynomial or a 3 × 3 off-diagonal minor. Products of pairs of
noncrossing edges are the initial terms of products of 2× 2 minors. All
these polynomials belong to I

(2)
n by the containment I2 + I{2} ⊆ I(2)

(see, for example, [10]). This implies that in≺(In)(2) = in≺(I(2)
n ) and

hence that the desired polynomials form a Gröbner basis for I
(2)
n .
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