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THE DILWORTH LATTICE OF ARTINIAN RINGS

HIDEMI IKEDA AND JUNZO WATANABE

ABSTRACT. After Freese [3] we define the Dilworth lattice
of an Artinian local ring to be the family of ideals with the
largest number of generators. We prove that it is indeed
a lattice. Moreover we prove that over certain Gorenstein
algebras the maximum and the minimum of the family are
powers of the maximal ideal.

1. Introduction. In his paper [8] the second author defined
the Dilworth number of Artinian rings and obtained some elementary
results. It was followed by Ikeda [4] and [5]. These were analogs of
some results in “combinatorial order theory” of finite sets as are found
in e.g. [1, Chapter VIII].

The present paper was inspired by [3], where Freese showed that
the family of antichains in a finite poset forms a lattice, hence it has
the maximum and the minimum. The considerations made in the
papers [4] and [8] suggest that an analogous result should be true for
Artinian rings. An antichain in a poset may be interpreted in terms
of commutative rings, as a minimal generating set of an ideal. Thus
one may conceive that the family of ideals with the largest number
of generators forms a lattice. This indeed is true and we prove it in
Theorem 3. This was the starting point of this paper.

Easy examples show that these are basically infinite families even if
we restrict the ideals to homogeneous ones. However, this leads us to
considering the maximum and the minimum members of the lattice.
It seems to be a natural question to ask under what conditions they
are powers of the maximal ideal. A general result obtained in this
paper on this question is Lemma 9. Under a certain condition of a
Gorenstein algebra, we deduce that the Dilworth lattice has powers
of the maximal ideal as the maximum and minimum. The condition

Keywords and phrases. antichain, Dilworth lattice, finite chain product,
Sperner property

Received by the editors on February 14, 2008, and in revised form on January
20, 2009.

DOI:10.1216/JCA-2009-1-2-315 Copyright c©2009 Rocky Mountain Mathematics Consortium

315



316 H. IKEDA AND J. WATANABE

of Lemma 9 is rather strong; nonetheless it has applications in two
extremal cases. (Corollary 10 and Theorem 11.)

One other case where the same result can be proved is the monomial
complete intersection (Theorem 13). We prove it using a result of the
theory of finite sets.

Finally we treat the monomial complete intersections in two variables.
In this case the homogeneous Dilworth family is a finite lattice and is
isomorphic to the lattice of ideals in the product of two chains.

Throughout, F(A) denotes the family of ideals with the largest
number of generators in an Artinian local ring A. We call it the
Dilworth lattice of A. Analogously G(A) denotes the family of ideals
with the largest “C-M type” of an ideal. This is used to prove that the
lattice F(A) is symmetric over a Gorenstein Artinian ring A.

The authors would like to express their thanks to Professor Griggs
very much for helpful suggestions for the finite chain product.

2. Definition and some properties of the Dilworth Family.
Let (A, m, k) be a Noetherian local ring and let I be an ideal of A. We
denote by μ(I) the number of elements in a minimal basis for the ideal
I in A. Recall that we have

μ(I) = length (I/mI).

μ(I) is usually called the (minimal) number of generators of I. If
(A, m, k) is Artinian, we define the Dilworth number of A by

d(A) = Max{μ(I)|I ⊂ A}.
Recall that d(A) ≤ length(A/yA) for any element y ∈ m; in particular,
d(A) is finite. (See [8, Theorem 2.3], [6, Theorem 1.1].)

Definition 1. Let (A, m, k) be an Artinian local ring. Define the
family F(A) of ideals by

F(A) = {ideal I ⊂ A | μ(I) = d(A)}.
If A is a graded Artinian ring, then define FH(A) by

FH(A) = {homogeneous ideal I ⊂ A | μ(I) = d(A)}.
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Remark 2. If A = ⊕c
i=0Ai is a graded ring, A0 a field, then F(A)

contains a homogeneous ideal. (See [8, Lemma 2.4].) Thus FH(A) is a
non-empty sublattice of F(A).

Theorem 3. Let A be an Artinian local ring. Then F(A) is a
lattice with sum and intersection as the “join” and the “meet”.

Proof. Let I, J ∈ F(A). We have to show that I ∩ J ∈ F(A) and
I + J ∈ F(A). Consider the exact sequence:

0 → I ∩ J → I ⊕ J → I + J → 0,

where the third map is defined by (i, j) �→ i + j. This gives rise to the
exact sequence

(I ∩ J) ⊗ A/m → (I ⊕ J) ⊗ A/m → (I + J) ⊗ A/m → 0.

So we have
μ(I) + μ(J) ≤ μ(I ∩ J) + μ(I + J),

but the last sum does not exceed 2d(A). Hence

μ(I ∩ J) = μ(I + J) = d(A),

as desired.

Corollary 4. Let A be an Artinian local ring. Then F(A) has the
maximum and the minimum members.

Proof. Since A is Artinian, an infinite sum of ideals is in fact a finite
sum. Hence F(A) has the maximum member. Similarly, an infinite
intersection of ideals is in fact finite. Thus F(A) has the minimum
member.

Let I be an ideal of an Artinian local ring (A, m, k). Recall that the
type of I is defined by

τ(I) = length((I : m)/I).



318 H. IKEDA AND J. WATANABE

It was proved in [8, Theorem 2.6] that the number

Max{τ(I) | I is an ideal of A}
is equal to d(A). Define the family G(A) of ideals by

G(A) = {ideal I ⊂ A | τ(I) = d(A)}.

Proposition 5. Let (A, m, k) be an Artinian local ring. Then G(A)
is a lattice with sum and intersection as the “join” and the “meet.”

Proof. Let I, J ∈ G(A). We show that I∩J ∈ G(A) and I+J ∈ G(A).
Consider the exact sequence:

0 → A/(I ∩ J) → A/I ⊕ A/J → A/(I + J) → 0,

where the third map is defined by

(x mod I, y mod J) �→ x + y mod (I + J).

This gives rise to the exact sequence

0 → HomA(k, A/(I ∩ J))
→ HomA(k, A/I) ⊕ HomA(k, A/J)
→ HomA(k, A/(I + J)).

So we have
τ(I) + τ(J) ≤ τ(I ∩ J) + τ(I + J),

but the last sum does not exceed 2d(A). Hence

μ(I ∩ J) = μ(I + J) = d(A),

as desired.

Theorem 6. Let (A, m, k) be an Artinian local ring. Then the
correspondence {F(A) 
 I �→ mI ∈ G(A)

G(A) 
 J �→ J : m ∈ F(A)

is a lattice isomorphism between F(A) and G(A).
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Proof. We divide the proof into four steps.

Step 1. I ∈ F(A) ⇒ mI ∈ G(A). Suppose that I ∈ F(A). Then we
have

τ(mI) = length((mI : m)/mI) ≥ length(I/mI) = d(A).

Step 2. J ∈ G(A) ⇒ J : m ∈ F(A). Suppose that J ∈ G(A). Then

μ(J : m) = length ((J : m)/m(J : m)) ≥ length ((J : m)/J) = d(A)

Step 3. mI : m = I for I ∈ F(A) and m(J : m) = J for J ∈ G(A).
These are immediate from the proof of Steps 1 and 2.

Step 4. For I1, I2 ∈ F(A), we have m(I1 + I2) = mI1 + mI2 and
m(I1 ∩ I2) = mI1 ∩ mI2. The first assertion is obvious. The second
follows from Step 3 which shows that the correspondence is one to one.

Example 7. If A = k[X, Y ]/(X4, Y 3), then d(A) = 3, |FH(A)| = 4
and

FH(A) = {(X, Y )2, (XY, Y 2) + (X, Y )3, (Y 2) + (X, Y )3, (X, Y )3}.
If k is an infinite field, then F(A) is not a finite family. In fact,

I = (Y 2 + aX3) + (X, Y )3

are Dilworth ideals for any a ∈ k .

The following example shows that in most cases F(A) and even
FH(A) are not finite.

Example 8. Let k be a field and let A = k[X, Y, Z]/(X5, Y 3, Z2).
Then d(A) = 6. Put

I(a,b) = (aXY 2 + bXY Z, Y 2Z) + (X, Y, Z)4,

for a, b ∈ k. It is easy to see that μ(I(a,b)) = 6, but for different b ∈ k
the ideals I(1,b) are all different. Thus FH(A) is infinite provided that
k is infinite.
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3. The maximum and the minimum of the Dilworth family.
Throughout this section, A = ⊕c

i=0Ai denotes a graded Artinian ring
with k := A0 a field. We say that A has the weak Lefschetz property
(WLP) if there is a linear form l ∈ A1 such that the homomorphism
Ai → Ai+1 induced by multiplication by l is either injective or surjective
for all i = 0, 1, · · · , c−1. In this case, we call l a weak Lefschetz element
of A. In [8, Proposition 3.2] it was proved that if A has the WLP, then
μ(mr) = d(A) for some integer r, where m is the maximal ideal of A.

Lemma 9. Let A be a graded Artinian k-algebra such that
A = k[A1]. Assume that dimkA1 > 1 and let p be the least integer
such that μ(mp) ≥ μ(mp+1). If there exists a weak Lefschetz element l
of A such that the initial degree of the socle of A/lA is greater than or
equal to p, then mp is the maximum member of F(A).

Proof. Let I be the maximum member of F(A). First we show
that I is contained in mp with the additional assumption that I is
homogeneous. If p = 1, there is nothing to prove. So we may assume
that p > 1. By way of contradiction assume that I is not contained in
mp. Let q be the initial degree of I. Then, since we are assuming that
I ⊂ mp, we have 0 < q < p. Let a1, · · · , an be a basis of Iq and put
J = (a1, · · · , an)A. Then obviously we have μ(lJ) ≤ μ(mJ). Moreover
we have μ(J) = μ(lJ), since l is a weak Lefschetz element. We treat
the two cases (1) μ(J) < μ(mJ) and (2) μ(J) = μ(mJ) separately and
in either case we lead a contradiction.

First assume that μ(J) < μ(mJ). Then we have

μ(I) = μ(J) + μ(I ∩ mq+1) − μ(mJ) < μ(I ∩ mq+1).

This contradicts the fact that μ(I) is the largest.

Now assume that μ(J) = μ(mJ). This implies that lJ = mJ , since
lJ ⊂ mJ . Hence the image J̄ of J in A/lA is contained in the socle.
Since the initial degree of the socle is at least p and since q < p, we
have J̄ = 0 and J ⊂ lA. Thus there exist homogeneous elements
b1, · · · , bn ∈ Aq−1 of degree q − 1 such that lbi = ai. Assume for the
moment that q > 1. Then if we let J ′ = (b1, · · · , bn), we have

μ(l2J ′) = μ(lJ) = μ(mJ) = μ(mlJ ′).
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Since l annihilates no elements of Aq, this means that μ(lJ ′) = μ(mJ ′).
Thus we have μ(J ′ + I) = μ(I) which contradicts the maximality of
I. Finally assume q = 1. This means that n = 1 and that l = a1 up
to constant multiple. Thus J is a principal ideal generated by l. Since
we assume that the map ×l : A1 → A2 is injective and since lJ = mJ ,
μ(m) = 1. This contradicts the assumption dimA1 > 1. Thus we have
proved that the maximum member of FH(A) is contained in mp.

Now we prove that the maximum member of F(A) is contained in mp.
We introduce some notation. For f ∈ A, if we write f = fd +fd+1 + · · ·
with fi ∈ Ai, fd = 0, we denote by f◦ the initial part fd. Let I be an
ideal of A. Then by I◦ we denote the ideal generated by the set

{a◦ | a ∈ I}.
Now let I be the maximum member of F(A). It is easy to see that
μ(I) ≤ μ(I◦). Hence I◦ is a member of FH(A), and I◦ is contained
in mp. Hence I is contained in mp. Since A has the weak Lefschetz
property, d(A) = μ(mr) for some r. (See [8, Proposition 3.2].) Thus
we have proved that mp is the maximum in F(A).

Corollary 10. Let A = k[X, Y ]/(f1, · · · , fn) be an Artinian
local ring, where k is an infinite field and f1, · · · , fn are homogeneous
polynomials in k[X, Y ]. Then the maximum member of F(A) is a power
of the maximal ideal of A.

Proof. By [5, Theorem 4.2], there is a weak Lefschetz element l of
A. Note that the H-vector of A is of the form

(1, 2, · · · , (p + 1) = hp, hp+1, · · · ),
where hp ≥ hr for p < r. It follows that A/lA is a Gorenstein ring with
socle degree p. Hence, by Lemma 9, the proof is complete.

Theorem 11. Let k be an infinite field and let f1, · · · , fn be ho-
mogeneous polynomials in k[X1, · · · , Xn] with deg fi = pi. We assume
that 2 ≤ p1 ≤ · · · ≤ pn. Suppose that A = k[X1, · · · , Xn]/(f1, · · · , fn)
is a complete intersection. If pn > p1 + · · · + pn−1 − (n − 1), then the
maximum member and the minimum members of F(A) are powers of
the maximal ideal of A.
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Proof. Put

S = k[X1, · · · , Xn]/(f1, · · · , fn−1)

and
p = p1 + · · · + pn−1 − (n − 1).

Then S is a graded Cohen-Macaulay ring of dimension one. Let
(h0, h1, · · · ) be the H-vector of S. Then we have

h0 < h1 < · · · < hp−1 < hp = hp+1 = · · · .

Let l ∈ S be a linear form which is a non-zero-divisor of S. The
homomorphism Si → Si+1 induced by multiplication by l is injective
for i < p and bijective for i ≥ p. Let M be the homogeneous maximal
ideal of S. It follows that lS ⊃ Mp+1. Notice that A/lA ∼= S/(fn, l)S ∼=
S/(l), since pn > p. So A/lA is a complete intersection with the socle
degree p. It is easy to see that A has the weak Lefschetz property and
that l is a weak Lefschetz element of A. (Cf. [9, Main theorem].) Let
m be the maximal ideal of A. Then we have μ(mi) < μ(mp) for i < p
and μ(mp) ≥ μ(mi) for p ≤ i. By Lemma 9 we see that mp is the
maximum member of F(A).

By Lemma 12 below, the minimum member of F(A) is mpn−1.

Lemma 12. Let (A, m, k) be an Artinian Gorenstein local ring and
let F(A) be the Dilworth lattice of A. Then the correspondence

I �→ (0 : I) : m

gives an anti-isomorphism of the lattice F(A).

Proof. Let I ∈ F(A). Suppose that I = (a1, · · · , ad) with d = μ(I).
Then 0 : I = ∩d

i=1(0 : ai) is an irredundant intersection of irreducible
ideals. Hence τ(0 : I) = μ(I) and 0 : I ∈ G(A). By Theorem 6, we
have (0 : I) : m ∈ F(A). It is easy to see that the correspondence

F(A) 
 I �→ 0 : I ∈ G(A)

is an anti-isomorphism of lattices. Thus by composing with G(A) →
F(A) as given in Theorem 6, the assertion follows.
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Theorem 13. Let A = k[X1, · · · , Xn]/(Xd1
1 , · · · , Xdn

n ) be a
monomial complete intersection. Then the maximum and the minimum
of F(A) are powers of the maximal ideal.

Proof. Let C(d) denote a chain of length d, i.e., a totally ordered
d-element set. Then the set of monomials in A may be identified with
the finite chain product

P := C(d1) × · · · × C(dn).

P is a poset with a rank function. It is well known that P has the
Sperner property, that is, a level set is a maximum-sized antichain.
(For this, there are many references. See, e.g., [1].) This in particular
determines d(P ), and hence d(A), as the maximum size of the level sets.
Let F(P ) denote the Dilworth lattice of P in the sense of Freese [3].
Namely F(P ) is the set of maximum-sized antichains with the partial
order defined by the containment of the order ideals the antichains
generate.

It can be proved that the maximum member of F(P ) is a level set.
(For this we give a proof in the appendix, since we have been unable
to find a suitable reference.)

Now let I ∈ F(A) be the maximum member. We would like to prove
that I = mp, where p is the least integer such that μ(mp) ≥ μ(mp+1).
Among the monomials of A introduce a graded monomial order, as
is used in the theory of Groebner basis, and let in(I) be the ideal
generated by {in(f) | f ∈ I}, where in(f) is the initial monomial of f .
Then μ(I) ≤ μ(in(I)). Hence, in fact, μ(in(I)) = μ(I) = d(A). Thus
the minimal generating set of in(I), being a maximum sized antichain,
is contained in the maximum of F(P ). This means that the degree of
any element of I is at least p. The assertion for the minimum of F(A)
follows from Lemma 12.

Example 14. Let A = k[X, Y, Z]/((Y, Z)Z + (Y 3, X2Z) +
(X, Y, Z)4). The H-vector is (1, 3, 4, 3). Note that X is a weak
Lefschetz element and d(A) = 4. The maximum of F(A) is (Z) + m2

and the minimum (XZ)+ m3. So the maximum and the minimum are
not powers of the maximal ideal.
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It seems conceivable that if A is a Gorenstein algebra with the weak
Lefschetz property, then the maximum and the minimum of F(A) are
powers of the maximal ideal. In particular, in Theorem 11 above, the
restriction on the degrees of generators seems unnecessary.

4. The Dilworth lattice of monomial complete intersections
in two variables.

Theorem 15. Let k be a field and let A = k[X, Y ]/(Xp, Y q) where
p, q are integers such that p ≥ q ≥ 2. Then FH(A) is a distributive
lattice isomorphic to the lattice of order ideals of the chain product
C(p − q) × C(q). In particular |FH(A)| =

(
p
q

)
.

Proof. Let I ∈ FH(A). First note that d(A) = q, and mq−1 ⊂
I ⊂ mp−1 by Lemmas 9 and 12. Fix the reverse lexicographic order of
monomials in A with X < Y and let in(f) denote the initial monomial
in f ∈ A. Suppose that I ∈ FH(A). Then μ(I) ≤ μ(in(I)). Hence
μ(in(I)) = q. Suppose that {M0, M1, · · · , Mq−1} is the set of minimal
monomials in in(I) put in the increasing order with respect to the Y -
degree. Then it is easy to see that the only possibility for the Y -degree
of Mi is i, and hence Mi take the form

(1) Mi = XαiY i, i = 0, 1, 2, · · · , q − 1,

where
p > α0 > α1 > · · · > αq−1 ≥ 0.

Note that
{

deg M0 ≥ deg M1 · · · ≥ deg Mq−1,

deg Mi = deg Mi+1 if and only if αi − αi+1 = 1.

We may assume that I is minimally generated by homogeneous ele-
ments

f0, f1, · · · , fq−1

such that in(fi) = Mi, i = 0, 1, · · · , q − 1. Now suppose that a
monomial M appears in fi for some i. Notice that Mi <(rev lex) M .
Thus M is either in the list (1) above or is divisible by a monomial in
the list. In other words, every monomial that appears in f is contained
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in in(I). Thus we have I ⊂ in(I). This show in fact that I = in(I) and
I can be generated by monomials. Put

I = {(α0, α1, · · · , αq−1) | p > α0 > · · · > αq−1 ≥ 0}.

We have obtained a one-one correspondence

F(A) → I.

In the obvious manner I is a lattice. The correspondence is actually
a lattice isomorphism. It is easy to see that I is (isomorphic to) the
lattice of order ideals in C(p−q)×C(q). (Cf. Remark 16 below.)

Remark 16. The lattice I above has many interpretations. See
Stanley [7, pp. 28–31]. For example, it is the lattice that appears
in the cellular decomposition of the Grassmann variety G(q, p). Also I
parametrizes the Young diagrams fit in a rectangle of size r × q, where
r = p − q. It also parametrizes the zigzag paths starting at (0, 0) and
ending at (r, q) in a rectangle of size r × q divided into rq squares.

5. Appendix.

Proposition 17. Let P be the finite chain product. Let F(P ) be
the Dilworth lattice. Then the maximum of F(P ) is a level set.

Proof. Let P = �Pi be a level decomposition and let hi be the level
number: hi = |Pi|. Let I ⊂ P a maximum-sized antichain. Then

∑
a∈I

1
hrk(a)

≤ 1.

This is known as the LYM property of a poset and a finite chain
product indeed has the LYM property. (See [2, Corollary 4.12].) Let
I be the largest maximum-sized antichain of P . (This exists by Freese
[3].) Let p be the least integer such that hp ≥ hp+1. Then since P has
the Sperner property, the order ideal which I generates contains Pp. If
there is an element a ∈ I \ Pp, then it contradicts the LYM property.
Thus Pp is the maximum member of F(P ).
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