
M EM O IRS OF 'M E COLLEGE O F SCIENCE, UNIVERSITY OF KYOTO, SERIES A,

V o l.  XXVII, Mathematics No. 1, 1952.

On the Varieties of the Classical Groups
in the Field of Arbitrary Characteristic

by

Jun-ichi IGusA

(Received October 30, 1951)

Let K  be a universal domain over the prime field p of chara-
cteristic p, then the m atrix o f degree n  (n >1 )  w ith  coefficients
in K

=  (x/ ")  ( i <  ,  j<n )

can be considered as a point of an n'-space in our algebraic geo-
m etry. Since the equation

det (a) =0

in the n ' coefficients of a  is absolutely irreducible, it defines over
p  a variety of n 2-1 dimension in the n2-space. If we take out this
variety as a frontier from the space, the abstract variety so obtained
forms the general linear group G L (n, K ) by matrix multiplication.
Moreover since the group operation

( i ,  -r) —>a • 7 - 1

in G L (n , K ) is  a function, which is everywhere defined on the
product variety G L (n, K ) x  G L (n , K ) , the group GL (n, K )  is
the so-called group variety in the recent terminology."

We shall now define the special linear group S L (n , K )  and
the special orthogonal group S O (n , K ) in K  by the equations

det (a ) = 1

and ea • a = ea • i n  • a = det (a ) --= 1

respectively, where In  means the unit matrix of degree n .  More-

We shall use freely the results and terminology of Well's book : Foundations o f
algebraic geom etry, Am. Math. Soc. Colloq., Vol. 29 (1946).

1) See A . W e il, Variétés A béliennes e t  c o u rb e s  algébriques, Act. Sc. et Ind.,
n,0 1964 (1948), §
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over we shall define the symplectic group S p(n, K )  in K  by the
equation

t c - L • c = J . ,

where In is the n-fold sum of the following matrix

/ 0 1\
= — 1 0..

These "classical groups" are clearly subgroups and at the same
time bunches in the general linear groups. In  such a case we
have the following useful lemma.

L e m m a . Let g be a subgroup and a bunch in  a group variety
QS, then  the component of  the identity  i n  g is a  group variety g o .
Therefore g„ is a  norm al subgroup w ith f inite index  in g, which is
equal to the num ber of components of g.

This lemma is well known if is an abelian variety (Cf. loc.
cit. 1)-§ VI, prop. 8) and can be proved by the same reasoning.
We note that the component g„ (in Weil's terminology) is also the

connected component" of the identity in g with respect to Zariski's
topology.

Theorem I. T he classical groups are connected and hence they
are group varieties all defined over the prime f ield p .

Since our theorem is almost evident for S L (n, K ),  we shall
consider the other cases. We note thereby that the case S L (n, K )
can be treated also by the same method.' )

(Case 1) 0 =  G L(n, K ) ,  g ---- SO (n , K ). )

We first define the scalar product o f two column vectors x
and y in n-space by

(x, Y) == t x . Y.

Let c be a generic point of GL(n, K )  over p, then the well-known
process of "Schmidt normalization" is prossible for the n  column
vectors of a. Otherwise there exists an integer v (I< v <n )  such
that the process is possible for the first v-1 vectors but is impossi-
ble for the .'-th vactor. In such a case we see readily that the Gramian

2) In  W eyrs  book :  Classical groups, Princeton (1939), the case of characteristic 0
is discussed by a  different method.

3) I n  § II-p. 18, loc . c it. 1), this part o f the  theorem is stated a s  "on  vérifie sans
Nine. ".
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of these vectors must vanish. However this is absurd since
this Gramian has clearly the specialization 1 over p.

Now we can prove our theorem by examining more closely
the Schmidt process. However we shall prefer to follow an idea
essentially due to Hurewicz.

Since our theorem is trivial for n=1, we shall assume by in-
duction that n>2. In this case the equation

is absolutely irreducible and defines a variety Q" - ' over p. Thereby
the case p = G .F .(2 )  (p=2) is exceptional and we must take the
linear equation

1= 0

for C'evi l  Now consider the projection 7 r  from to the space of
the first column vectors, then by the possibility of the Schmidt
process the projection of at least one and hence every coset of g
modulo go is Q - 1 . However i f  two matrices a , and a , in g have
the same projection on Q" - ' ,  they belong to the same coset modulo
a subgroup ii of the matrices of the from

111 0
o! I

Since is isomorphic with S O (n -1 ,  K ) ,  it is connected by in-
duction assumption. Therefore 1) is contained in g, and a l and a,
belong to the same coset of g modulo g,. On the other hand since
the generic point of Qn - 1  over p  is a projection of at least one
point in each coset of g modulo go, by what we have just remarked
g has only one coset ; and hence g is connected.

(Case 2 )  6----G L(2n, K ), s3=S p(n, K ).
In this Case we define the skew product of two column vec-

toi•s

x„'), Y„')
by

Ex, Y1=Ei=ni(x
Then a similar method as Schmidt process can be applied to the
2n column vectors of a generic point of G L (2 n ,K )  and we obtain
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a matrix in sp ( t, K ) .  On the other hand the equation

E,=:; (X, 171) - 1=0

is absolutely irreducible and defines a variety 1■71"- ' over p. Now
consider the projection n. from  63 to the space of the first two
column vectors, then the projection of any coset of g modulo go

is A P '.  The rest of the proof is the same as in the previous
case.

A direct consequence of our theorem I is the following well-
known corollary.

Corollary 1 . If  the universal dom ain K  is the field of  all com-
plex numbers, the classical groups are connected in the usual topology.

Moreover we can calculate the dimensions of the classical
groups by induction on n.

Corollary 2 .  T he dim ensions o f  th e  classical groups are as
follows

dim  S L (n, K ) =n -  — 1, dim  S O(n, K ) =n(n —1)/2

d im  S p(n , K )=2n '+n .

W e shall now prove the following theorem.
Theorem II. T he classical groups are  rational v arieties. More

precisely the field p(a) of the generic point a of  each one of them over
p  is  a purely transcendental extension over p.

Since our theorem is trivial for S L (n , K ) , we shall consider
the other cases.

(Case 1) SO (n , K ).
If p  is not the field G . F.(2), the "Cayley parametrization"

gives a birational correspondence over p  between S O (n , K )  and
the linear variety o f all skew-symmetric matrices of degree n  in
K .  The theorem follows immediately from this fact.

On the other hand if p— G.F.(2), the condition for a matrix
a  in G L (n , K ) to be in S O (n , K )  can be expressed successively
by the linear equations in the column vectors of a. Thereby if a
is a generic point of S O ( n , K )  over p , w e  conclude from the
dimension of S O (n , K )  and from the number of successive linear
equations that its column vectors are "general solutions" at each
step. Therefore our theorem holds also in this case.

(Case 2 )  S p(n , K ).
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' In this case if we remark that the field p (a, x , y ) o f  a
generic point (x, y ) of the variety with the equation

/ ,` ( X, Y,' — Y ,) —  a  0

over p (a) is purely transcendental extension over p(a) , the argu-
ment is similar as in the latter part of the above proof.

In concluding this paper we shall discuss about a criticism of
Prof. A k iz u k i. He has given me the following example.

Consider the case of SO(3, K )  for p=2, then we cari not find
a matrix in SO (3, K )  with the column vector

£ ( 1  1  1).

Therefore although the projection of S O (3, K ) by 7r (in the sense
of algebraic geometry) is Q2 ,  the "point-set theoretical "  projection
is not the whole q .  This phenomenon will be precised in the
following general theorem.

Theorem III. The point-set theoretical projection of SO (n,
by 7r i s  Q 4 - 1  in  general. The only exception arises when

p= G.F.(2) , n = 1  (mod. 2)

and only for the point
'( 1  1  ......  1).

For the variety N ' '  there does not arise any exceptional case.
We shall now prove this theorem by examining the Schmidt

process somewhat closely.

(Case 1 )  S O (n , K ) .
Let a  be a matrix of the from

a.=  (x ( 1 )  x ( 2 ) • • • x ( n) )  ( x ( ' ) -=e)

where e  is a  given point of Q" - 1  and .x 2 ) ,- •-, x ( n ) are algebraically
independent vectors over p(e). It is clear that e is  an " excep-
tional "  point if and only if the Schmidt process is impossible for a
from x  P ) . Moreover the set of exceptional points is invariant
under the transformation

'(e , e , • • ±e1±e2 ± en) .

Now if the process is impossible at the 1)-th step (2 < v < n ), the
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Gramian of x" ) ,..., .704  must vanish. Then by specializing x( 1 ) ,---, x( ' )

to the following type of vectors

'(0 ••• 0 1 0•-• 0)

over p(e), we see readily that e must be of the form

e = (± 6  ± E  • • •  ± e )

with the supplementary conditions

n. E2  =  1, n , v- 1  (mod. p ) .

Therefore if p = 2 , we have

e= '(1  1  ••• 1 ), n 1  (mod. 2) ;

and this is actually exceptional.
In the general case of p > 3  we can assume by our previous

remark that e is of the form

e-=g(e ••• E).

Since v<n  and at the same time n=--- --v- 1  (mod. p ) ,  we have

v<n — p+1<n - 1

even in the case of p = 2 .  Then by specializing ,c ( 2 ) ,• •• ,  .x( '') first
to

' ( e  — e 0   0 )

' ( 0 e   0 )

'( e 0 0•••— e •••0)

and next to

' ( e  — 6 0 0 ••• ••• 0 )

' ( 0 0 e — e •-• •-• 0 )

' ( 0 0 e 0 ••• — e•-• 0 ) ,

v + 1

we conclude the incompatible congruences

O (mod. p ) ,  v--=-1 (mod. p ) .
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Thereby the assumption p > 3  is essential for the second congru-
ence.

(Case 2) Sp(n, K).
This case can be treated similarly, hence we shall omit its

detail.

We conclude from this theorem that the varieties V - 1  and
N 1' 1 are algebraic homogeneous spaces with the "structure groups ".
SO (n, K ) and Sp(n, K ) respectively . in general.

Appendix

Let A (n , K ) be the space o f non-singular matrices a of deg-
ree n  in K  such that x•a-x----- 0  for every vector x in K .  It is
clear that A (n ,  K )  is roughly speaking the space o f  skew-
symmetric non-singular matrices o f degree n  in K ;  hence it is
present only for n=22). On the other hand the group G L(n , K )
operates transitively on A (n ,  K ) by

A(n, K) D r  ( r  E GL(n, K));

hence A (n , K ) is a homogeneous rational variety

A (n , K )= G L (n , K )/ S p (, K ).

In the same way let S (n ,  K )  be the space of non-singular
symmetric matrices of degree n in K , then S (n , K ) is certainly
a homogeneous rational variety

S (n , K )=G L (n , K )/0 (n ,

for p 2. Thereby the "isotropy group"  0 (n , K )  is the orthogonal
group of degree n in K .  We shall show that

the only exceptional case arises when
p=G.F.(2), n  0  (mod. 2);

and then G L (n , K ) operates transitively on S (n , K )-A (n , K )

S (n , K )— A (n , K )= G L (n , K )/ 0 (n , K ).

In fact the well-known process o f " diagonalization " for the
symmetric matrix will be useless if and only if it is contained in
A (n ,  K ) .  Therefore every matrix in S (n , K ) is equivalent under
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some operation in GL(n, .11) to one of the following matrices

f  4  0 (a + 2 b  n ) .
\ 0  J b

However we can see readily that the matrix of degree 3

1  0 \
0  J , I

is equivalent to I. Therefore if a 0  0, the above matrix is equi-
valent to h.; which clearly implies our assertion.


