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Some Applications of Bochner’s Method to
Riemannian Manifolds.

By

Makoto MATSUMOTO

The well-known treatise of S. Bochner [1, 2] is based upon
Green’s theorem and Ricci’s identity. Let V, be a compact, ori-
entable Riemannian manifold, whose metric is given by the posi-
tive definite quadratic form :

ds*=g,dx'dx’.

Hereafter, unless otherwise stated, we shall denote by V, a Rieman-
nian manifold as above mentioned.
If we put, for »tensors ¢;,..i, and ¢, i, ,
(¢-9) =@i,..i, pir-ir,
(¢ =0i..ir;j Pir-insd
and denote by d¢;, i, the Laplacian of ¢i, .i,; i.e.
dgi,...i,=@iy..ir 353 k G*,
we have clearly
%-4(¢-¢)=(4¢-¢)+(¢’-¢’).
And Green’s theorem gives that
j d(¢-¢)dv=0;
v

where dv is n-dimensional volume element. The other hand, we
define operator D and its dual D* as follows:

D ~ ay...8p+y

fy...dpty ij...ipty Gy...Qp;api1°

. — & . 3
D*Ez,,..zp-, = Sl;--.lp—ljikgd .

b,

. . by...
In above definitions &;, i, is a skew-symmetric p-tensor and 601'“ a,
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is generalized Kronecker’s delta. A tensor &i,...ip 18 called to be
harmonic p-tensor, if D<i..ip,=0 and D*§;,..i,,=0 [3]. In this
case we see readily ' ‘

‘k 3...4
p-" ASIA;..J.IJ == ng 6.7 3 \ 51’” HJ'/C im (p g 2)’ (0'1)

Iy10l3 ..1p a;...ay )

JE{'_—R»‘,' ¢ (p=D; (0.2)

where by definition
gﬁu= @—DRiyu— %* (guly—guRy+ Rugu—Rugy), (0.3)

and R, is the curvature tensor of V,, i. e.

- 811?’5_ ol
P R Y2

] —_pr
va=gy.R'¢.u, : Rr‘j—'Ri-jh_'gahRiajb-

) y
+ 15— 1" U,

In order to obtain (0.1) and (0.2) we depend upon the following
process, which is first effectively made use of S. Bochner. For an

arbitrary tensor i, i, We have the Ricci’s identity :

-y ‘
Vivd, ik iy k= El’yi,...(lsui,Ri,.jk
8

Hence, if »; ; is harmonic, we have D*y; , =0, so that

i,
Niay...a, 3 j; kguz Vlag.‘.a,.Rg—s_% ”iag...(l.)..a,.Ra,fjkgu
It follows from (0.1) or (0.2)
&8 =— D ¢ trem g (p=2),
2 3...0p (ﬂ)
(dé-8)=R,E (p=1).

This equations and Green's theorem is fundamental for many
beautiful theorems in the paper of I. Mogi [4], which is written
afresh systematically from papers of S. Bochner [1, 2]. Though
this method is seemed to be most impressive adapting to the
harmonic tensor, we shall obtain some interesting results for a
certain type of tensor. The first section of this paper is a small
attempt apply;ing this method to the imbedding problem of Rieman-
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nian manifold. In remaining sections we give some additional
results to the papers of I. Mogi [4] and Y. Tomonaga [5].

1. Application to the imbedding problem

A Riemannian manifold V, can be imbedded in an Euclidean
space of dimensionality (#+1), if and only if, there exists the
symmetric tensor H,;, which is called the second fundamental
tensor of V,, such that the Gauss’s and Codazzi’s equations are
satisfied, say

R!jlcl:Hichjl—Hill_Ijln (11)
Hq;k”‘ka;1=0- 1.2)

Paying our attention to the Codazzi’s equation (1.2), let us genera-
lize that type of tensor. We call a symmetric p-tensor &;,...i, (= 2)
to be of Codazzi type, if the differential equation

$iaq...0p;j'—5jag...ap;i=0 (1.3)

is satisfied. Making use of the method of S. Bochner, we calcu-
late the Laplacian of above &i,..i, as follows:

ab

Afi,...ip=$a‘gl..ip;i, 08
ab : ¢ Z . )
=g (Eaiy...in: b3 iy —Ecia...inRa -i,b—L2 ¢aig..(.c;‘..pRz',.L-i,b)
r= 7,
b, C b ")1 ]
=g abiy...ip yies iy +Scin...i,Ri;— 8" $aig...c)‘..ipRi,A"~i,b.
(r

r=2

Hence, if a restriction

(g™ abiy...in); 6;d=0 (1.4)
is subjoined, we have finally
(48-¢) =Eabc“'"C”S"csi..cﬁ(]yaibj (p=2); (1.5)
where we put
Miny=— (= DRyt~ (@uioy R.). (16)

Define the positive-definiteness of M., following I. Mogi [4]. If,
for any symmetric tensor 7%,
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z’\/I,,,rhm""v" 2 0,
(») ES

then M.,,; is called to be positive-definite. In the above equation
(»)
“ =" means that the equality does not be satisfied at least one
= _

point of V,. The equation (1.5) gives us the
Theorem 1. If M,,,(p =2) of V, is positive-definite, there
(»

exists no p( = 2)-tensor of Codazzi type satisfying (1.4).

Now we apply Theorem I to the second fundamental tensor
H;. If V, can be imbedded in an Euclidean space of dimensio-
nality (n+1), such that (g*H.),:.,; =0 and furthermore Ma“,, is

positive-definite, then H;; must vanish, and hence from (1 1) Va
must be Euclidean. This fact leads us to the
Theorem 2. If V, is not Euclidean and Ma,,,j is positive-

deﬁmte then it is impossible that V, is imbedded thmughout in an
Eucliden S..., such that (g"H.).:.;=0.

In particular, if V, is an minimal variety of S..;, the mean
curvature g*H,, is equal to zero. Also, if V, is an umbilical
variety of S..;,, we have H,=/g;;; where 4 is constant in virtue of
(1.2). Hence we have H;,.=0. Thus we have, as a consequence
of Theorem 2, the

Corollary. If V, is not Euclidean and {lﬂ{a,:,,j is positive-definite,

then it is impossible that V, is imbedded throughout in an Euclidean
Sui1, Such that' V, is minimal or umbilical variety.

2. On harmonic vectors

Y. Tomonaga [5] gave a sufficient condition that the covariant
derivatives of any harmonic tensor vanish, provided that V, is
symmetric, say, R, =0. That is, if V, is symmetric and 1)2,,0,,,‘ is

(»

positive-definite, then any harmonic tensor is covariant constant. In
this statement 7., is given by
(p)

2

(Yr’:ubv‘jlcz - ul:ijgclc 4‘ g“ (Rm'ghj"" thgal)gok

— D (@uilsjr+ G Raicr) + ZuioiRer, (0 2= 1),

(this. form is slightly modified by the author) and the positive-
definiteness of this tensor is defined as follows:
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Tnhr’ijkvah[‘r/{jkg 0 ;
6] b

where 7** is any tensor, which is skew-symmetric with respect to
i and j. If V, is compact, £, .ip;;=0 is equivalent to 4¢;,  i,;;=0
[4], so that the above theorem of Y. Tomonaga say the vanishing
of Laplacian of any harmonic tensor. Hence if the assumptions
of the above theorem are satisfied and if the one-dimensional Betti
number does not vanish, then from (0.2) we have R;§’=0. Thus
we have the

Theorem 3. If V, is symmelric and Tam“(p > 1) is positive-

definite and furthermove the one-dzmenszonal Bettz number of V, does
not vanish, then the determinant | Ry; | is throughout equal to zero.

Next, in the theorems of I. Mogi [4] for the conformally flat
V., we must suppose that the dimension »# of V, is more than
three, because in case of dimensionality two or three the conformal
curvature tensor is identically equal to zero. Hence, in these
cases, those theorems are satisfied without such a supposition. Thus
we may expect more remarkable results for these cases.

Let V., be conformally flat Riemannian manifold of three
dimensions and ¢&; be covariant constant (this is, of course,
harmonic). Then from (0.2) we obtain R,£'=0 and hence

(Rij;k_Rik:j)5i=0' (2.1)

Conformal flatness of V, means the vanishing of the tensor C
defined by

Cp=Ry, ,— Ry ;— (gURL guR;,).

Hence (2.1) is written as follows:
&R, —&.R, =0,

from which we have easily

m
>0
L
~

(2.2)

Since ¢, is covariant constant, we obtain from (2.2) by differen-
tiating covariantly

R, =21%"p 23)

From this we see that 4 in (2.2) is uniquely determined to within
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constant coefficient. The symmetry of R.;;; imposes
R:i:j‘—:/lR:fR:j- (24)
Putting together we obtain the

Theorem 4. If V. is conformally flat space of three-dimensions
and if there exists a covariant constant vector, them the scalar
curvature R of V, satisfies (2.4) and any covariant constant vector

is given by (2.2) and (2.3), which is uniquely determined to within
constant coefficient.

Thus, if we denote by s the number of harmonic vectors,
whose covariant derivatives do not vanish, then the one-dimensional
Betti number is equal to s+1.

‘3. Special harmonic tensor in Ruse’s space
Consider the Ruse’s space of recurrent curvature, say

Rme:z =Rm;z/¢/11, (21 =*= O) . (3-1)

By the similar process as the deduction of Y. Tomonaga in prov-

ing the theorem stated at the begining of the last section, we
obtain the form:

- a,...ap;d
¢=g”°¢a,.“a,,;d;b;c“ 4

»

~ b ap; ~17 .. £71
=§'a d3 d’ ¢ gu(ig ,.dp ;kzzabcuk +$ab£3 g ;UC:;...Cp;k'
(»

. 3.2
{ —‘g— (ZuRpsya+ 8rsRuirs) ¥ + —g—( R8s+ Ryygoi) e (5:2)

_p_(pz;]f—) Rahij )k} .

Now suppose that @ harmonic tensor &i,. i, satisfies the following
differential equation -

iy inii = Siyin Ay (3.3)

where 4, is the same one as in (3.1). Substituting from (3.3), @
is written in the form:

P =gabcs...cv gij C3...Cp {'—;_Run)‘u)‘ﬂ (8nirs— 8118»1)

- (l'l)gam}- (3.4)
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It is to be noted that H,,,,L, of (0.3) entrances into (3.4). On the
other hand, from (3. 1) and Bianchi’s identity we have

Ryt + Rk + Ry =0.
Contracting this equation by g"g®# gives
Ruitt=-LR- (1:1).

Therefore @ takes the form

P— ()\.1)501763 ”Cpgij(,‘g‘.‘(fpl;ahij (p _?: 2) ; (3.5)
(¢4
setting
Lahij_‘ _'Hahij +— (gmghj gajgbt) (36)

Especially the case p=1 is more simple; i. e.

= (D) L £ (3.7)
(p=1)
Ly=2R,+ ggq (8.8)

Since (4-2) is positive, (3.5) or (3.7) gives the

Theorem 5. If V, is Ruse’s space of recurrent curvature and
Lyi;(p=2) or L;(p=1) is positive-definite, then there exists no
(P)

harmonic p-tensor satisfying (3-3)
The positive-definiteness of L.; and L;; is given by
@)

Lab«ﬁ]‘“’/ijg 0,

Ly 72 0;
(»)

where ¥ is any skew-symmetric tensor and 7’ is any vector. From
(3.2) ¢ is also written as

D=4, iy, 81700
Hence we have the

Theorem 6. If V, is Ruse’s space of recurvent curvature and
{L)a,,i,(p = 2) or Ly(p=1) is definite (positive or negative), then there
P,

exists no harmonic p-tensor satisfying (3-3), such that its Laplacian
is covariant constant.

University of Kyoto
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