MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES, A Vol. XXVIII, Mathematics No. 1, 1953.

On the Primary Difference of Two Frame Functions in a Riemannian Manifold.

By

Seizi Takizawa

(Received April 15, 1953)

In a previous paper^{*} we have expressed the Stiefel characteristic classes in terms of the forms Π^r and Ω^r . Now, we intend to express the *deformation cochain* of two frame functions by these forms. We make clear the geometrical meaning of the proof of theorem given in the said paper, and we show that Π^r may be regarded as a form which represents the *primary difference*.

We shall use, throughout this paper, the same notations as in the preceding paper.

1. The deformation cochain $d(f_0, h, f_1)$. Let f_0 and f_1 be two cross-sections: $K^r \rightarrow \mathfrak{B}^r$ $(1 \leq r \leq n-1)$, whose obstruction cocycles we denote by $c(f_0)$ and $c(f_1)$ respectively. Since $\pi_i(Y^r) = 0$ for i < r, there exists a homotopy

$$h: f_0|K^{r-1} \cong f_1|K^{r-1}.$$

The interval I is regarded as a cell complex consisting of one 1cell I and the 0-cells 0 and 1. Let $\overline{0}$, $\overline{1}$ be the generators of the group of 0-cochains with integral coefficients; and let \overline{I} denote a generator of the group of 1-cochains chosen so that $\delta \overline{0} = -\overline{I}$, $\delta \overline{1} = \overline{I}$. We may regard naturally $\mathfrak{B}^r \times I$ as a bundle over $K^n \times I$; and a cross-section φ of the part of $\mathfrak{B}^r \times I$ over the *r*-dimensional skeleton of $K^n \times I$, is constructed by

(1)
$$\varphi(x, 0) = (f_0(x), 0), \ \varphi(x, 1) = (f_1(x), 1) \text{ for } x \in K^r, \\ \varphi(x, t) = (h(x, t), t) \text{ for } x \in K^{r-1}, t \in I.$$

Then an obstruction cocycle $c(\varphi)$ is defined. If we set

(2)
$$d(f_0, h, f_1) \times \bar{I} = (-1)^{r+1} \{ c(\varphi) - c(f_0) \times \bar{0} - c(f_1) \times \bar{1} \},$$

the (r+1)-cochain $d(f_0, h, f_1) \times \overline{I}$ of $K^n \times I$ with coefficients in π_r is

^{*)} On the Stiefel characteristic classes of a Riemannian manifold, these Memoirs, this number. We shall quote the paper as "[1]".

zero on $K^n \times 0 \cup K^n \times 1$; and there exists a unique *r*-cochain $d(f_0, h, f_1)$ of K^n with coefficient in π_r , which is called the *deformation* cochain. The coboundary formula

(3)
$$\delta d(f_0, h, f_1) = c(f_0) - c(f_1)$$

holds; and so, in case that f_0 and f_1 are extendable over K^{r+1} , $d(f_0, h, f_1)$ is a cocycle. Being \mathcal{A}^r an *r*-cell of K^n , $\mathcal{A}^r \times I$ is an (r+1)-cell of $K^n \times I$, and

(4)
$$\partial (\varDelta^r \times I) = \varSigma^{r-1} \times I + (-1)^r (\varDelta^r \times 1 - \varDelta^r \times 0),$$

where $\Sigma^{r-1} = \partial \Delta^r$. Applying both sides of (2) to $\Delta^r \times I$, it follows that

(5)
$$d(f_0,h,f_1) \cdot \mathcal{A}^r = (-1)^{r+1} c(\varphi) \cdot (\mathcal{A}^r \times I).$$

Since $\pi_r(Y^{r+1}) = 0$, there exists a homotopy $\bar{h} : pf_0|K^r \simeq pf_1|K^r$ such that $ph = \bar{h}$ on K^{r-1} . Moreover pf_0 and pf_1 have the extensions g_0 and g_1 over K^{r+1} . Then, a cross-section ψ of the part of $\mathfrak{B}^{r+1} \times I$ over the (r+1)-dimensional skeleton of $K^n \times I$, is constructed by

(6)
$$\begin{aligned} \psi(x, 0) &= (g_0(x), 0), \quad \psi(x, 1) = (g_1(x), 1) \quad \text{for } x \in K^{r+1}, \\ \psi(x, t) &= (\bar{h}(x, t), t) \qquad \text{for } x \in K^r, \ t \in I. \end{aligned}$$

Clearly $\psi(J^r \times I)$ is a cell which has the sphere $\psi \partial (J^r \times I)$ as boundary. We choose an interior point $\hat{\varsigma}$ of $J^r \times I$ and denote by Y_{ξ}^r the fibre of $\mathfrak{B}^r \times I$ over $\hat{\varsigma}$. If a contruction of $\psi \partial (J^r \times I)$ over $\psi(J^r \times I)$ into $\psi \hat{\varsigma}$ is chosen to sweep out each point of $\psi(J^r \times I) - \psi \hat{\varsigma}$ once and only once, then a covering homotopy of this contructon may give an extension of φ over $J^r \times I - \hat{\varsigma}$ and may carry φ into a map $\varphi_{\xi} : \partial (J^r \times I) \rightarrow p^{-1}(\psi \hat{\varsigma}) \subset Y_{\xi}^r$. Moreover $p^{-1}(\psi \hat{\varsigma})$ is an *r*-sphere in which Π^{r+1} is reduced to the form

$$(-1)^{r+1} \frac{\Gamma(\frac{r+1}{2})}{2\pi^{\frac{1}{2}(r+1)}} \omega_{1,r+1} \cdots \omega_{r,r+1}.$$

Therefor, by Kronecker's formula we have '

$$(-1)^{r+1}D(\varphi_{\xi}) = \int_{\varphi_{\xi}} \partial(d^{r} \times I) I^{r+1},$$

where $D(\varphi_t)$ is the degree of *r*-sphere map φ_t . On the other hand we have directly

$$c(\varphi) \cdot (\varDelta^r \times I) = u_r \cdot D(\varphi_{\mathfrak{g}})$$

and

$$\int_{\varphi \in \partial(\Delta^r \times I)} H^{r+1} = \int_{\varphi \partial(\Delta^r \times I)} H^{r+1} + \int_{\psi(\Delta^r \times I)} \mathcal{Q}^{r+1}.$$

It follows that

$$(-1)^{r+1}c(\varphi)\cdot(\varDelta^r\times I) = a_r\cdot\left\{\int_{\varphi\partial(\varDelta^r\times I)}\Pi^{r+1} + \int_{\psi(\varDelta^r\times I)}\mathcal{Q}^{r+1}\right\}$$

In view of (4) and (5), we obtain

(7)
$$d(f_0, h, f_1) \cdot d^r = a_r \cdot \left\{ (-1)^r \int_{f_1 d^r - f_0 d^r} \frac{\Pi^{r+1}}{f_1 d^r - f_0 d^r} + \int_{\varphi(\Sigma^{r+1} \times I)} \frac{\Pi^{r+1}}{f_0 (d^r \times I)} + \int_{\varphi(Z^{r+1} \times I)} \frac{Q^{r+1}}{f_0 (d^r \times I)} \right\}.$$

It is to be noted that this result does not depend on ψ . If z^r is an *r*-cycle of K^n with integral coefficients, then

(8)
$$(-1)^{r}d(f_{0}, h, f_{1}) \cdot z^{r} = a_{r} \cdot \left\{ \int_{f_{1}z^{r}} \Pi^{r+1} - \int_{f_{0}z^{r}} \Pi^{r+1} + (-1)^{r} \int_{\psi(z^{r} \times I)} \mathcal{Q}^{r+1} \right\}.$$

In particular, if $pf_0 = pf_1$, taking $h(x, t) = pf_0(x)$ for all $t \in I$, we have

(9)
$$(-1)^{r}d(f_{0},h,f_{1})\cdot z^{r} = a_{r}\cdot\left\{\int_{f_{1}z^{r}}H^{r+1}-\int_{f_{0}z^{r}}H^{r+1}\right\},$$

which shows that in this case $d(f_0, h, f_1)$ depends only on f_0 and f_1 . When r=n-1, (9) always holds.

The formula (17) in [1], § 6 means $d(F, \tilde{k}, F_0) \cdot \Sigma^{r-1} = 0$. And it is easy to see that (9) implies the theorem of [1]: since $c(*F) \cdot d^r$ =0, we have $c(F) \cdot d^r = \partial d(F, *F) \cdot d^r = d(F, *F) \cdot \partial d^r = d(F, *F) \cdot \Sigma^{r-1}$ by (3), and so the formula (15) in [1] follows from (9) taking account of (14) in [1], § 5.

2. The primary difference $\overline{d}(f_0, f_1)$. If f_0 and f_1 are crosssections: $\mathbb{R}^n \to \mathfrak{B}^r$, then $d(f_0, h, f_1)$ is an *r*-cocycle whose cohomology class does not depend upon the choice of homotopy $h: f_0 | K^{r-1} \simeq f_1 | K^{r-1}$. This class denoted by $\overline{d}(f_0, f_1)$ is called the *primary difference* of f_0 and f_1 . Let Z^r be an arbitrary homology class of \mathbb{R}^n with integral coefficients, and choose a cycle z^r to represent Z^r . For f_0 and f_1 we take a cross-section ψ as (6). Then, from (8) and (9) we have the following formulas.

THEOREM. If r is even or r=n-1,

(10)
$$(-1)^{r} \bar{d}(f_{0}, f_{1}) \cdot Z^{r} = \int_{f_{1} 2^{r}} II^{r+1} - \int_{f_{0} 2^{r}} II^{r+1} ;$$

Seizi Takizawa

and if r is odd and r < n-1,

(11)
$$\bar{d}(f_0, f_1) \cdot Z^r \equiv \int_{f_1 z^r} II^{r+1} - \int_{f_0 z^r} II^{r+1} - \int_{\psi(z^r \times I)} Q^{r+1} \pmod{2}.$$

So far as we consider the Stiefel characteristic classes, the form Π^r has been used only as a supplementary one, and we can regard Ω^r as an essential form which represents the class; for, the formula

$$(-1)^r \bar{c_r}(\mathbf{R}^n) \cdot Z^r = a_{r-1} \cdot \int_{\mathbf{G} \cdot z^r} \mathcal{Q}^r$$

holds when coefficients of a cycle z^r are integers. As against this, the formulas (8)—(11) show that Π^r is the very form which represents the primary difference or at least the deformation cochain, and that \mathcal{Q}^r merely assists the form Π^r in case that it is not closed.

14