On the Primary Difference of Two Frame Functions in a Riemannian Manifold.

By
Seizi Takizawa

(Received April 15, 1953)
In a previous paper* we have expressed the Stiefel characteristic classes in terms of the forms Π^{r} and Ω^{r}. Now, we intend to express the deformation cochain of two frame functions by these forms. We make clear the geometrical meaning of the proof of theorem given in the said paper, and we show that I^{r} may be regarded as a form which represents the primary difference.

We shall use, throughout this paper, the same notations as in the preceding paper.

1. The deformation cochain $d\left(f_{0}, h, f_{1}\right)$. Let f_{0} and f_{1} be two cross-sections : $K^{\prime} \rightarrow \mathfrak{B}^{r}(1 \leqq r \leqq n-1)$, whose obstruction cocycles we denote by $c\left(f_{0}\right)$ and $c\left(f_{1}\right)$ respectively. Since $\pi_{i}\left(Y^{r}\right)=0$ for $i<r$, there exists a homotopy

$$
h: f_{0}\left|K^{r-1} \simeq f_{1}\right| K^{r-1}
$$

The interval I is regarded as a cell complex consisting of one 1 cell I and the 0 -cells 0 and 1 . Let $\overline{0}, \overline{1}$ be the generators of the group of 0 -cochains with integral coefficients; and let \bar{I} denote a generator of the group of 1 -cochains chosen so that $\delta \overline{0}=-\bar{I}, \delta \overline{1}=\bar{I}$. We may regard naturally $\mathfrak{B r} \times I$ as a bundle over $K^{n} \times I$; and a cross-section φ of the part of $\mathfrak{B} \times I$ over the r-dimensional skeleton of $K^{n} \times I$, is constructed by

$$
\begin{align*}
\varphi(x, 0)= & \left(f_{0}(x), 0\right), \varphi(x, 1)=\left(f_{1}(x), 1\right) \text { for } x \in K^{r}, \\
\varphi(x, t)=(h(x, t), t) & \text { for } x \in K^{r-1}, t \in I . \tag{1}
\end{align*}
$$

Then an obstruction cocycle $c(\varphi)$ is defined. If we set

$$
\begin{equation*}
d\left(f_{0}, h, f_{1}\right) \times \bar{I}=(-1)^{r+1}\left\{c(\varphi)-c\left(f_{0}\right) \times \overline{0}-c\left(f_{1}\right) \times \overline{1}\right\} \tag{2}
\end{equation*}
$$

the $(r+1)$-cochain $d\left(f_{0}, h, f_{1}\right) \times \bar{I}$ of $K^{n} \times I$ with coefficients in π_{r} is

[^0]zero on $K^{n} \times 0 \cup K^{n} \times 1$; and there exists a unique r-cochain $d\left(f_{0}, h, f_{1}\right)$ of K^{n} with coefficient in π_{r}, which is called the deformation cochain. The coboundary formula
\[

$$
\begin{equation*}
\partial d\left(f_{1}, h, f_{1}\right)=c\left(f_{0}\right)-c\left(f_{1}\right) \tag{3}
\end{equation*}
$$

\]

holds; and so, in case that f_{0} and f_{1} are extendable over K^{r+1}, $d\left(f_{0}, h, f_{1}\right)$ is a cocycle. Being d^{r} an r-cell of $K^{n}, d^{r} \times I$ is an $(r+1)$-cell of $K^{n} \times I$, and

$$
\begin{equation*}
\partial\left(d^{r} \times I\right)=2^{r-1} \times I+(-1)^{r}\left(J^{r} \times 1-d^{r} \times 0\right), \tag{4}
\end{equation*}
$$

where $\Sigma^{r-1}=\partial d^{r}$. Applying both sides of (2) to $d^{r} \times I$, it follows that

$$
\begin{equation*}
d\left(f_{0}, h, f_{1}\right) \cdot d^{r}=(-1)^{r+1} c(\varphi) \cdot\left(d^{r} \times I\right) \tag{5}
\end{equation*}
$$

Since $\pi_{r}\left(Y^{r+1}\right)=0$, there exists a homotopy $\bar{h}: p f_{0}\left|K^{r} \simeq p f_{1}\right| K^{r}$ such that $p h=\bar{h}$ on K^{r-1}. Moreover $p f_{0}$ and $p f_{1}$ have the extensions g_{0} and g_{1} over $K^{\prime+1}$. Then, a cross-section ψ of the part of $\mathfrak{B}^{\prime+1} \times I$ over the $(r+1)$-dimensional skeleton of $K^{n} \times I$, is constructed by

$$
\begin{array}{cl}
\psi(x, 0)=\left(g_{0}(x), 0\right), \quad \psi(x, 1)=\left(g_{1}(x), 1\right) & \text { for } x \in K^{r+1}, \tag{6}\\
\psi(x, t)=(\vec{h}(x, t), t) & \text { for } x \in K^{r}, t \in I .
\end{array}
$$

Clearly $\psi\left(d^{r} \times I\right)$ is a cell which has the sphere $\psi \partial\left(d^{r} \times I\right)$ as boundary. We choose an interior point ξ of $d^{r} \times I$ and denote by Y_{ξ}^{r} the fibre of $\mathfrak{B} \times I$ over ξ. If a contruction of $\psi \partial\left(\Delta^{r} \times I\right)$ over $\psi\left(d^{r} \times I\right)$ into $\psi \hat{\xi}$ is chosen to sweep out each point of $\psi\left(d^{r} \times I\right)-\psi \hat{*}$ once and only once, then a covering homotopy of this contructon may give an extension of φ over $\Delta^{r} \times I-\xi$ and may carry φ into a map $\varphi_{\xi}: \partial\left(J^{r} \times I\right) \rightarrow p^{-1}(\psi \xi) \subset Y_{\xi}^{\prime}$. Moreover $p^{-1}(\psi \xi)$ is an r-sphere in which Π^{r+1} is reduced to the form

$$
(-1)^{r+1} \frac{\Gamma\binom{r+1}{2}}{2 \pi^{\frac{1}{2}(r+1)}} \omega_{1, r+1} \cdots\left(\omega_{r, r+1} .\right.
$$

Therefor, by Kronecker's formula we have

$$
(-1)^{r+1} D\left(\varphi_{\xi}\right)=\int_{\varphi \leftleftarrows \partial\left(d^{r} \times I\right)} I I^{r+1}
$$

where $D\left(\varphi_{\xi}\right)$ is the degree of r-sphere map φ_{ξ}. On the other hand we have directly

$$
c(\varphi) \cdot\left(d^{r} \times I\right)=u_{r} \cdot D\left(\varphi_{\xi}\right)
$$

and

$$
\int_{\varphi \xi \partial\left(\Delta^{r} \times I\right)} I I^{r+1}=\int_{\varphi \partial\left(\Delta^{r} \times I\right)} I I^{r+1}+\int_{\psi\left(\Delta^{r} \times I\right)} \Omega^{r+1}
$$

It follows that

$$
(-1)^{r+1} c(\varphi) \cdot\left(\Delta^{r} \times I\right)=\alpha_{r} \cdot\left\{\int_{\varphi \partial\left(\Delta^{r} \times I\right)} \Pi^{r+1}+\int_{\psi\left(\Delta^{r} \times I\right)} \Omega^{r+1}\right\} .
$$

In view of (4) and (5), we obtain
(7) $d\left(f_{0}, h, f_{1}\right) \cdot d^{r}=u_{r} \cdot\left\{(-1)^{r} \int_{f_{1} \Delta^{r}-f_{0} \Delta^{r}}^{I r^{r+1}}+\int_{\varphi\left(\Sigma^{r-1} \times I\right)}^{I I^{r+1}}+\int_{\psi\left(\Delta^{r} \times I\right)}^{g^{r+1}}\right\}$.

It is to be noted that this result does not depend on ψ. If z^{r} is an r-cycle of K^{n} with integral coefficients, then

$$
\begin{equation*}
(-1)^{r} d\left(f_{0}, h, f_{1}\right) \cdot z^{r}=\mu_{r} \cdot\left\{\int_{f_{1} z^{r}} \Pi^{r+1}-\int_{f_{0} z^{r}} \Pi^{r+1}+(-1)^{r} \int_{\psi\left(z^{r} \times I\right)} \Omega^{r+1}\right\} \tag{8}
\end{equation*}
$$

In particular, if $p f_{0}=p f_{1}$, taking $\bar{h}(x, t)=p f_{0}(x)$ for all $t \in I$, we have

$$
\begin{equation*}
(-1)^{r} d\left(f_{0}, h, f_{1}\right) \cdot z^{r}=\alpha_{r} \cdot\left\{\int_{f_{1} z^{r}} I^{r+1}-\int_{f_{0} z^{r}} I^{r+1}\right\} \tag{9}
\end{equation*}
$$

which shows that in this case $d\left(f_{0}, h, f_{1}\right)$ depends only on f_{0} and f_{1}. When $r=n-1$, (9) always holds.

The formula (17) in [1], § 6 means $d\left(F, \tilde{k}, F_{0}\right) \cdot \Sigma^{r-1}=0$. And it is easy to see that (9) implies the theorem of [1]: since $c\left({ }^{*} F\right) \cdot d^{r}$ $=0$, we have $c(F) \cdot \Delta^{*}=\partial d\left(F,{ }^{*} F\right) \cdot \Delta^{r}=d\left(F,{ }^{*} F\right) \cdot \partial d^{r}=d(F, * F) \cdot \underline{Y}^{r-1}$ by (3), and so the formula (15) in [1] follows from (9) taking account of (14) in [1], §5.
2. The primary difference $\bar{d}\left(f_{0}, f_{1}\right)$. If f_{0} and f_{1} are crosssections: $\boldsymbol{R}^{n} \rightarrow \mathfrak{B}^{n}$, then $d\left(f_{0}, h, f_{1}\right)$ is an r-cocycle whose cohomology class does not depend upon the choice of homotopy $h: f_{0}\left|K^{r-1} \simeq f_{1}\right| K^{r-1}$. This class denoted by $\bar{d}\left(f_{0}, f_{1}\right)$ is called the primary difference of f_{0} and f_{1}. Let Z^{r} be an arbitrary homology class of \boldsymbol{R}^{n} with integral coefficients, and choose a cycle z^{r} to represent Z^{r}. For f_{0} and f_{1} we take a cross-section ψ as (6). Then, from (8) and (9) we have the following formulas.

Theorem. If r is even or $r=n-1$,

$$
\begin{equation*}
(-1)^{r} \bar{d}\left(f_{0}, f_{1}\right) \cdot Z^{r}=\int_{f_{1} 2^{r}} \Pi^{r+1}-\int_{f_{0} z^{r}} \Pi^{r+1} ; \tag{10}
\end{equation*}
$$

and if r is odd and $r<n-1$,

$$
\begin{equation*}
\ddot{d}\left(f_{0}, f_{1}\right) \cdot Z^{r} \equiv \int_{f_{1} z^{r}} I^{r+1}-\int_{f_{0} 2^{r}} I I^{r+1}-\int_{\psi\left(z^{r} \times I\right)} \Omega^{r+1}(\bmod 2) . \tag{11}
\end{equation*}
$$

So far as we consider the Stiefel characteristic classes, the form Π^{r} has been used only as a supplementary one, and we can regard Ω^{r} as an essential form which represents the class; for, the formula

$$
(-1)^{r} \bar{c}_{r}\left(\boldsymbol{R}^{n}\right) \cdot Z^{r}=u_{r-1} \cdot \int_{\boldsymbol{G} \cdot z^{r}} \Omega^{r}
$$

holds when coefficients of a cycle z^{r} are integers. As against this, the formulas (8)-(11) show that I^{\prime} is the very form which represents the primary difference or at least the deformation cochain, and that Ω^{r} merely assists the form I^{r} in case that it is not closed.

[^0]: $\left.{ }^{*}\right)$ On the Stiefel characteristic classes of a Riemannian manifold, these Memoirs, this number. We shall quote the paper as "[1]".

